| //===- OutputSections.cpp -------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "OutputSections.h" |
| #include "Config.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/Arrays.h" |
| #include "lld/Common/Memory.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/Parallel.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #if LLVM_ENABLE_ZLIB |
| // Avoid introducing max as a macro from Windows headers. |
| #define NOMINMAX |
| #include <zlib.h> |
| #endif |
| #if LLVM_ENABLE_ZSTD |
| #include <zstd.h> |
| #endif |
| |
| using namespace llvm; |
| using namespace llvm::dwarf; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| uint32_t OutputSection::getPhdrFlags() const { |
| uint32_t ret = 0; |
| if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) |
| ret |= PF_R; |
| if (flags & SHF_WRITE) |
| ret |= PF_W; |
| if (flags & SHF_EXECINSTR) |
| ret |= PF_X; |
| return ret; |
| } |
| |
| template <class ELFT> |
| void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { |
| shdr->sh_entsize = entsize; |
| shdr->sh_addralign = addralign; |
| shdr->sh_type = type; |
| shdr->sh_offset = offset; |
| shdr->sh_flags = flags; |
| shdr->sh_info = info; |
| shdr->sh_link = link; |
| shdr->sh_addr = addr; |
| shdr->sh_size = size; |
| shdr->sh_name = shName; |
| } |
| |
| OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) |
| : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, |
| /*Info*/ 0, /*Link*/ 0) {} |
| |
| // We allow sections of types listed below to merged into a |
| // single progbits section. This is typically done by linker |
| // scripts. Merging nobits and progbits will force disk space |
| // to be allocated for nobits sections. Other ones don't require |
| // any special treatment on top of progbits, so there doesn't |
| // seem to be a harm in merging them. |
| // |
| // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow |
| // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). |
| static bool canMergeToProgbits(unsigned type) { |
| return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || |
| type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || |
| type == SHT_NOTE || |
| (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64); |
| } |
| |
| // Record that isec will be placed in the OutputSection. isec does not become |
| // permanent until finalizeInputSections() is called. The function should not be |
| // used after finalizeInputSections() is called. If you need to add an |
| // InputSection post finalizeInputSections(), then you must do the following: |
| // |
| // 1. Find or create an InputSectionDescription to hold InputSection. |
| // 2. Add the InputSection to the InputSectionDescription::sections. |
| // 3. Call commitSection(isec). |
| void OutputSection::recordSection(InputSectionBase *isec) { |
| partition = isec->partition; |
| isec->parent = this; |
| if (commands.empty() || !isa<InputSectionDescription>(commands.back())) |
| commands.push_back(make<InputSectionDescription>("")); |
| auto *isd = cast<InputSectionDescription>(commands.back()); |
| isd->sectionBases.push_back(isec); |
| } |
| |
| // Update fields (type, flags, alignment, etc) according to the InputSection |
| // isec. Also check whether the InputSection flags and type are consistent with |
| // other InputSections. |
| void OutputSection::commitSection(InputSection *isec) { |
| if (LLVM_UNLIKELY(type != isec->type)) { |
| if (!hasInputSections && !typeIsSet) { |
| type = isec->type; |
| } else if (isStaticRelSecType(type) && isStaticRelSecType(isec->type) && |
| (type == SHT_CREL) != (isec->type == SHT_CREL)) { |
| // Combine mixed SHT_REL[A] and SHT_CREL to SHT_CREL. |
| type = SHT_CREL; |
| if (type == SHT_REL) { |
| if (name.consume_front(".rel")) |
| name = saver().save(".crel" + name); |
| } else if (name.consume_front(".rela")) { |
| name = saver().save(".crel" + name); |
| } |
| } else { |
| if (typeIsSet || !canMergeToProgbits(type) || |
| !canMergeToProgbits(isec->type)) { |
| // The (NOLOAD) changes the section type to SHT_NOBITS, the intention is |
| // that the contents at that address is provided by some other means. |
| // Some projects (e.g. |
| // https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the |
| // behavior. Other types get an error. |
| if (type != SHT_NOBITS) { |
| errorOrWarn("section type mismatch for " + isec->name + "\n>>> " + |
| toString(isec) + ": " + |
| getELFSectionTypeName(config->emachine, isec->type) + |
| "\n>>> output section " + name + ": " + |
| getELFSectionTypeName(config->emachine, type)); |
| } |
| } |
| if (!typeIsSet) |
| type = SHT_PROGBITS; |
| } |
| } |
| if (!hasInputSections) { |
| // If IS is the first section to be added to this section, |
| // initialize type, entsize and flags from isec. |
| hasInputSections = true; |
| entsize = isec->entsize; |
| flags = isec->flags; |
| } else { |
| // Otherwise, check if new type or flags are compatible with existing ones. |
| if ((flags ^ isec->flags) & SHF_TLS) |
| error("incompatible section flags for " + name + "\n>>> " + |
| toString(isec) + ": 0x" + utohexstr(isec->flags) + |
| "\n>>> output section " + name + ": 0x" + utohexstr(flags)); |
| } |
| |
| isec->parent = this; |
| uint64_t andMask = |
| config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; |
| uint64_t orMask = ~andMask; |
| uint64_t andFlags = (flags & isec->flags) & andMask; |
| uint64_t orFlags = (flags | isec->flags) & orMask; |
| flags = andFlags | orFlags; |
| if (nonAlloc) |
| flags &= ~(uint64_t)SHF_ALLOC; |
| |
| addralign = std::max(addralign, isec->addralign); |
| |
| // If this section contains a table of fixed-size entries, sh_entsize |
| // holds the element size. If it contains elements of different size we |
| // set sh_entsize to 0. |
| if (entsize != isec->entsize) |
| entsize = 0; |
| } |
| |
| static MergeSyntheticSection *createMergeSynthetic(StringRef name, |
| uint32_t type, |
| uint64_t flags, |
| uint32_t addralign) { |
| if ((flags & SHF_STRINGS) && config->optimize >= 2) |
| return make<MergeTailSection>(name, type, flags, addralign); |
| return make<MergeNoTailSection>(name, type, flags, addralign); |
| } |
| |
| // This function scans over the InputSectionBase list sectionBases to create |
| // InputSectionDescription::sections. |
| // |
| // It removes MergeInputSections from the input section array and adds |
| // new synthetic sections at the location of the first input section |
| // that it replaces. It then finalizes each synthetic section in order |
| // to compute an output offset for each piece of each input section. |
| void OutputSection::finalizeInputSections(LinkerScript *script) { |
| std::vector<MergeSyntheticSection *> mergeSections; |
| for (SectionCommand *cmd : commands) { |
| auto *isd = dyn_cast<InputSectionDescription>(cmd); |
| if (!isd) |
| continue; |
| isd->sections.reserve(isd->sectionBases.size()); |
| for (InputSectionBase *s : isd->sectionBases) { |
| MergeInputSection *ms = dyn_cast<MergeInputSection>(s); |
| if (!ms) { |
| isd->sections.push_back(cast<InputSection>(s)); |
| continue; |
| } |
| |
| // We do not want to handle sections that are not alive, so just remove |
| // them instead of trying to merge. |
| if (!ms->isLive()) |
| continue; |
| |
| auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { |
| // While we could create a single synthetic section for two different |
| // values of Entsize, it is better to take Entsize into consideration. |
| // |
| // With a single synthetic section no two pieces with different Entsize |
| // could be equal, so we may as well have two sections. |
| // |
| // Using Entsize in here also allows us to propagate it to the synthetic |
| // section. |
| // |
| // SHF_STRINGS section with different alignments should not be merged. |
| return sec->flags == ms->flags && sec->entsize == ms->entsize && |
| (sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS)); |
| }); |
| if (i == mergeSections.end()) { |
| MergeSyntheticSection *syn = |
| createMergeSynthetic(s->name, ms->type, ms->flags, ms->addralign); |
| mergeSections.push_back(syn); |
| i = std::prev(mergeSections.end()); |
| syn->entsize = ms->entsize; |
| isd->sections.push_back(syn); |
| // The merge synthetic section inherits the potential spill locations of |
| // its first contained section. |
| auto it = script->potentialSpillLists.find(ms); |
| if (it != script->potentialSpillLists.end()) |
| script->potentialSpillLists.try_emplace(syn, it->second); |
| } |
| (*i)->addSection(ms); |
| } |
| |
| // sectionBases should not be used from this point onwards. Clear it to |
| // catch misuses. |
| isd->sectionBases.clear(); |
| |
| // Some input sections may be removed from the list after ICF. |
| for (InputSection *s : isd->sections) |
| commitSection(s); |
| } |
| for (auto *ms : mergeSections) |
| ms->finalizeContents(); |
| } |
| |
| static void sortByOrder(MutableArrayRef<InputSection *> in, |
| llvm::function_ref<int(InputSectionBase *s)> order) { |
| std::vector<std::pair<int, InputSection *>> v; |
| for (InputSection *s : in) |
| v.emplace_back(order(s), s); |
| llvm::stable_sort(v, less_first()); |
| |
| for (size_t i = 0; i < v.size(); ++i) |
| in[i] = v[i].second; |
| } |
| |
| uint64_t elf::getHeaderSize() { |
| if (config->oFormatBinary) |
| return 0; |
| return ctx.out.elfHeader->size + ctx.out.programHeaders->size; |
| } |
| |
| void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) { |
| assert(isLive()); |
| for (SectionCommand *b : commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(b)) |
| sortByOrder(isd->sections, order); |
| } |
| |
| static void nopInstrFill(uint8_t *buf, size_t size) { |
| if (size == 0) |
| return; |
| unsigned i = 0; |
| if (size == 0) |
| return; |
| std::vector<std::vector<uint8_t>> nopFiller = *ctx.target->nopInstrs; |
| unsigned num = size / nopFiller.back().size(); |
| for (unsigned c = 0; c < num; ++c) { |
| memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); |
| i += nopFiller.back().size(); |
| } |
| unsigned remaining = size - i; |
| if (!remaining) |
| return; |
| assert(nopFiller[remaining - 1].size() == remaining); |
| memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); |
| } |
| |
| // Fill [Buf, Buf + Size) with Filler. |
| // This is used for linker script "=fillexp" command. |
| static void fill(uint8_t *buf, size_t size, |
| const std::array<uint8_t, 4> &filler) { |
| size_t i = 0; |
| for (; i + 4 < size; i += 4) |
| memcpy(buf + i, filler.data(), 4); |
| memcpy(buf + i, filler.data(), size - i); |
| } |
| |
| #if LLVM_ENABLE_ZLIB |
| static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level, |
| int flush) { |
| // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate |
| // data with no zlib header or trailer. |
| z_stream s = {}; |
| auto res = deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); |
| if (res != 0) { |
| errorOrWarn("--compress-sections: deflateInit2 returned " + Twine(res)); |
| return {}; |
| } |
| s.next_in = const_cast<uint8_t *>(in.data()); |
| s.avail_in = in.size(); |
| |
| // Allocate a buffer of half of the input size, and grow it by 1.5x if |
| // insufficient. |
| SmallVector<uint8_t, 0> out; |
| size_t pos = 0; |
| out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64)); |
| do { |
| if (pos == out.size()) |
| out.resize_for_overwrite(out.size() * 3 / 2); |
| s.next_out = out.data() + pos; |
| s.avail_out = out.size() - pos; |
| (void)deflate(&s, flush); |
| pos = s.next_out - out.data(); |
| } while (s.avail_out == 0); |
| assert(s.avail_in == 0); |
| |
| out.truncate(pos); |
| deflateEnd(&s); |
| return out; |
| } |
| #endif |
| |
| // Compress certain non-SHF_ALLOC sections: |
| // |
| // * (if --compress-debug-sections is specified) non-empty .debug_* sections |
| // * (if --compress-sections is specified) matched sections |
| template <class ELFT> void OutputSection::maybeCompress() { |
| using Elf_Chdr = typename ELFT::Chdr; |
| (void)sizeof(Elf_Chdr); |
| |
| DebugCompressionType ctype = DebugCompressionType::None; |
| size_t compressedSize = sizeof(Elf_Chdr); |
| unsigned level = 0; // default compression level |
| if (!(flags & SHF_ALLOC) && config->compressDebugSections && |
| name.starts_with(".debug_")) |
| ctype = *config->compressDebugSections; |
| for (auto &[glob, t, l] : config->compressSections) |
| if (glob.match(name)) |
| std::tie(ctype, level) = {t, l}; |
| if (ctype == DebugCompressionType::None) |
| return; |
| if (flags & SHF_ALLOC) { |
| errorOrWarn("--compress-sections: section '" + name + |
| "' with the SHF_ALLOC flag cannot be compressed"); |
| return; |
| } |
| |
| llvm::TimeTraceScope timeScope("Compress sections"); |
| auto buf = std::make_unique<uint8_t[]>(size); |
| // Write uncompressed data to a temporary zero-initialized buffer. |
| { |
| parallel::TaskGroup tg; |
| writeTo<ELFT>(buf.get(), tg); |
| } |
| // The generic ABI specifies "The sh_size and sh_addralign fields of the |
| // section header for a compressed section reflect the requirements of the |
| // compressed section." However, 1-byte alignment has been wildly accepted |
| // and utilized for a long time. Removing alignment padding is particularly |
| // useful when there are many compressed output sections. |
| addralign = 1; |
| |
| // Split input into 1-MiB shards. |
| [[maybe_unused]] constexpr size_t shardSize = 1 << 20; |
| auto shardsIn = split(ArrayRef<uint8_t>(buf.get(), size), shardSize); |
| const size_t numShards = shardsIn.size(); |
| auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards); |
| |
| #if LLVM_ENABLE_ZSTD |
| // Use ZSTD's streaming compression API. See |
| // http://facebook.github.io/zstd/zstd_manual.html "Streaming compression - |
| // HowTo". |
| if (ctype == DebugCompressionType::Zstd) { |
| parallelFor(0, numShards, [&](size_t i) { |
| SmallVector<uint8_t, 0> out; |
| ZSTD_CCtx *cctx = ZSTD_createCCtx(); |
| ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, level); |
| ZSTD_inBuffer zib = {shardsIn[i].data(), shardsIn[i].size(), 0}; |
| ZSTD_outBuffer zob = {nullptr, 0, 0}; |
| size_t size; |
| do { |
| // Allocate a buffer of half of the input size, and grow it by 1.5x if |
| // insufficient. |
| if (zob.pos == zob.size) { |
| out.resize_for_overwrite( |
| zob.size ? zob.size * 3 / 2 : std::max<size_t>(zib.size / 4, 64)); |
| zob = {out.data(), out.size(), zob.pos}; |
| } |
| size = ZSTD_compressStream2(cctx, &zob, &zib, ZSTD_e_end); |
| assert(!ZSTD_isError(size)); |
| } while (size != 0); |
| out.truncate(zob.pos); |
| ZSTD_freeCCtx(cctx); |
| shardsOut[i] = std::move(out); |
| }); |
| compressed.type = ELFCOMPRESS_ZSTD; |
| for (size_t i = 0; i != numShards; ++i) |
| compressedSize += shardsOut[i].size(); |
| } |
| #endif |
| |
| #if LLVM_ENABLE_ZLIB |
| // We chose 1 (Z_BEST_SPEED) as the default compression level because it is |
| // fast and provides decent compression ratios. |
| if (ctype == DebugCompressionType::Zlib) { |
| if (!level) |
| level = Z_BEST_SPEED; |
| |
| // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all |
| // shards but the last to flush the output to a byte boundary to be |
| // concatenated with the next shard. |
| auto shardsAdler = std::make_unique<uint32_t[]>(numShards); |
| parallelFor(0, numShards, [&](size_t i) { |
| shardsOut[i] = deflateShard(shardsIn[i], level, |
| i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); |
| shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); |
| }); |
| |
| // Update section size and combine Alder-32 checksums. |
| uint32_t checksum = 1; // Initial Adler-32 value |
| compressedSize += 2; // Elf_Chdir and zlib header |
| for (size_t i = 0; i != numShards; ++i) { |
| compressedSize += shardsOut[i].size(); |
| checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); |
| } |
| compressedSize += 4; // checksum |
| compressed.type = ELFCOMPRESS_ZLIB; |
| compressed.checksum = checksum; |
| } |
| #endif |
| |
| if (compressedSize >= size) |
| return; |
| compressed.uncompressedSize = size; |
| compressed.shards = std::move(shardsOut); |
| compressed.numShards = numShards; |
| size = compressedSize; |
| flags |= SHF_COMPRESSED; |
| } |
| |
| static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { |
| if (size == 1) |
| *buf = data; |
| else if (size == 2) |
| write16(buf, data); |
| else if (size == 4) |
| write32(buf, data); |
| else if (size == 8) |
| write64(buf, data); |
| else |
| llvm_unreachable("unsupported Size argument"); |
| } |
| |
| template <class ELFT> |
| void OutputSection::writeTo(uint8_t *buf, parallel::TaskGroup &tg) { |
| llvm::TimeTraceScope timeScope("Write sections", name); |
| if (type == SHT_NOBITS) |
| return; |
| if (type == SHT_CREL && !(flags & SHF_ALLOC)) { |
| buf += encodeULEB128(crelHeader, buf); |
| memcpy(buf, crelBody.data(), crelBody.size()); |
| return; |
| } |
| |
| // If the section is compressed due to |
| // --compress-debug-section/--compress-sections, the content is already known. |
| if (compressed.shards) { |
| auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf); |
| chdr->ch_type = compressed.type; |
| chdr->ch_size = compressed.uncompressedSize; |
| chdr->ch_addralign = addralign; |
| buf += sizeof(*chdr); |
| |
| auto offsets = std::make_unique<size_t[]>(compressed.numShards); |
| if (compressed.type == ELFCOMPRESS_ZLIB) { |
| buf[0] = 0x78; // CMF |
| buf[1] = 0x01; // FLG: best speed |
| offsets[0] = 2; // zlib header |
| write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); |
| } |
| |
| // Compute shard offsets. |
| for (size_t i = 1; i != compressed.numShards; ++i) |
| offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); |
| parallelFor(0, compressed.numShards, [&](size_t i) { |
| memcpy(buf + offsets[i], compressed.shards[i].data(), |
| compressed.shards[i].size()); |
| }); |
| return; |
| } |
| |
| // Write leading padding. |
| ArrayRef<InputSection *> sections = getInputSections(*this, storage); |
| std::array<uint8_t, 4> filler = getFiller(); |
| bool nonZeroFiller = read32(filler.data()) != 0; |
| if (nonZeroFiller) |
| fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); |
| |
| if (type == SHT_CREL && !(flags & SHF_ALLOC)) { |
| buf += encodeULEB128(crelHeader, buf); |
| memcpy(buf, crelBody.data(), crelBody.size()); |
| return; |
| } |
| |
| auto fn = [=](size_t begin, size_t end) { |
| size_t numSections = sections.size(); |
| for (size_t i = begin; i != end; ++i) { |
| InputSection *isec = sections[i]; |
| if (auto *s = dyn_cast<SyntheticSection>(isec)) |
| s->writeTo(buf + isec->outSecOff); |
| else |
| isec->writeTo<ELFT>(buf + isec->outSecOff); |
| |
| // When in Arm BE8 mode, the linker has to convert the big-endian |
| // instructions to little-endian, leaving the data big-endian. |
| if (config->emachine == EM_ARM && !config->isLE && config->armBe8 && |
| (flags & SHF_EXECINSTR)) |
| convertArmInstructionstoBE8(isec, buf + isec->outSecOff); |
| |
| // Fill gaps between sections. |
| if (nonZeroFiller) { |
| uint8_t *start = buf + isec->outSecOff + isec->getSize(); |
| uint8_t *end; |
| if (i + 1 == numSections) |
| end = buf + size; |
| else |
| end = buf + sections[i + 1]->outSecOff; |
| if (isec->nopFiller) { |
| assert(ctx.target->nopInstrs); |
| nopInstrFill(start, end - start); |
| } else |
| fill(start, end - start, filler); |
| } |
| } |
| }; |
| |
| // If there is any BYTE()-family command (rare), write the section content |
| // first then process BYTE to overwrite the filler content. The write is |
| // serial due to the limitation of llvm/Support/Parallel.h. |
| bool written = false; |
| size_t numSections = sections.size(); |
| for (SectionCommand *cmd : commands) |
| if (auto *data = dyn_cast<ByteCommand>(cmd)) { |
| if (!std::exchange(written, true)) |
| fn(0, numSections); |
| writeInt(buf + data->offset, data->expression().getValue(), data->size); |
| } |
| if (written || !numSections) |
| return; |
| |
| // There is no data command. Write content asynchronously to overlap the write |
| // time with other output sections. Note, if a linker script specifies |
| // overlapping output sections (needs --noinhibit-exec or --no-check-sections |
| // to supress the error), the output may be non-deterministic. |
| const size_t taskSizeLimit = 4 << 20; |
| for (size_t begin = 0, i = 0, taskSize = 0;;) { |
| taskSize += sections[i]->getSize(); |
| bool done = ++i == numSections; |
| if (done || taskSize >= taskSizeLimit) { |
| tg.spawn([=] { fn(begin, i); }); |
| if (done) |
| break; |
| begin = i; |
| taskSize = 0; |
| } |
| } |
| } |
| |
| static void finalizeShtGroup(OutputSection *os, InputSection *section) { |
| // sh_link field for SHT_GROUP sections should contain the section index of |
| // the symbol table. |
| os->link = in.symTab->getParent()->sectionIndex; |
| |
| if (!section) |
| return; |
| |
| // sh_info then contain index of an entry in symbol table section which |
| // provides signature of the section group. |
| ArrayRef<Symbol *> symbols = section->file->getSymbols(); |
| os->info = in.symTab->getSymbolIndex(*symbols[section->info]); |
| |
| // Some group members may be combined or discarded, so we need to compute the |
| // new size. The content will be rewritten in InputSection::copyShtGroup. |
| DenseSet<uint32_t> seen; |
| ArrayRef<InputSectionBase *> sections = section->file->getSections(); |
| for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1)) |
| if (OutputSection *osec = sections[read32(&idx)]->getOutputSection()) |
| seen.insert(osec->sectionIndex); |
| os->size = (1 + seen.size()) * sizeof(uint32_t); |
| } |
| |
| template <class uint> |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static void |
| encodeOneCrel(raw_svector_ostream &os, Elf_Crel<sizeof(uint) == 8> &out, |
| uint offset, const Symbol &sym, uint32_t type, uint addend) { |
| const auto deltaOffset = static_cast<uint64_t>(offset - out.r_offset); |
| out.r_offset = offset; |
| int64_t symidx = in.symTab->getSymbolIndex(sym); |
| if (sym.type == STT_SECTION) { |
| auto *d = dyn_cast<Defined>(&sym); |
| if (d) { |
| SectionBase *section = d->section; |
| assert(section->isLive()); |
| addend = sym.getVA(addend) - section->getOutputSection()->addr; |
| } else { |
| // Encode R_*_NONE(symidx=0). |
| symidx = type = addend = 0; |
| } |
| } |
| |
| // Similar to llvm::ELF::encodeCrel. |
| uint8_t b = deltaOffset * 8 + (out.r_symidx != symidx) + |
| (out.r_type != type ? 2 : 0) + |
| (uint(out.r_addend) != addend ? 4 : 0); |
| if (deltaOffset < 0x10) { |
| os << char(b); |
| } else { |
| os << char(b | 0x80); |
| encodeULEB128(deltaOffset >> 4, os); |
| } |
| if (b & 1) { |
| encodeSLEB128(static_cast<int32_t>(symidx - out.r_symidx), os); |
| out.r_symidx = symidx; |
| } |
| if (b & 2) { |
| encodeSLEB128(static_cast<int32_t>(type - out.r_type), os); |
| out.r_type = type; |
| } |
| if (b & 4) { |
| encodeSLEB128(std::make_signed_t<uint>(addend - out.r_addend), os); |
| out.r_addend = addend; |
| } |
| } |
| |
| template <class ELFT> |
| static size_t relToCrel(raw_svector_ostream &os, Elf_Crel<ELFT::Is64Bits> &out, |
| InputSection *relSec, InputSectionBase *sec) { |
| const auto &file = *cast<ELFFileBase>(relSec->file); |
| if (relSec->type == SHT_REL) { |
| // REL conversion is complex and unsupported yet. |
| errorOrWarn(toString(relSec) + ": REL cannot be converted to CREL"); |
| return 0; |
| } |
| auto rels = relSec->getDataAs<typename ELFT::Rela>(); |
| for (auto rel : rels) { |
| encodeOneCrel<typename ELFT::uint>( |
| os, out, sec->getVA(rel.r_offset), file.getRelocTargetSym(rel), |
| rel.getType(config->isMips64EL), getAddend<ELFT>(rel)); |
| } |
| return rels.size(); |
| } |
| |
| // Compute the content of a non-alloc CREL section due to -r or --emit-relocs. |
| // Input CREL sections are decoded while REL[A] need to be converted. |
| template <bool is64> void OutputSection::finalizeNonAllocCrel() { |
| using uint = typename Elf_Crel_Impl<is64>::uint; |
| raw_svector_ostream os(crelBody); |
| uint64_t totalCount = 0; |
| Elf_Crel<is64> out{}; |
| assert(commands.size() == 1); |
| auto *isd = cast<InputSectionDescription>(commands[0]); |
| for (InputSection *relSec : isd->sections) { |
| const auto &file = *cast<ELFFileBase>(relSec->file); |
| InputSectionBase *sec = relSec->getRelocatedSection(); |
| if (relSec->type == SHT_CREL) { |
| RelocsCrel<is64> entries(relSec->content_); |
| totalCount += entries.size(); |
| for (Elf_Crel_Impl<is64> r : entries) { |
| encodeOneCrel<uint>(os, out, uint(sec->getVA(r.r_offset)), |
| file.getSymbol(r.r_symidx), r.r_type, r.r_addend); |
| } |
| continue; |
| } |
| |
| // Convert REL[A] to CREL. |
| if constexpr (is64) { |
| totalCount += config->isLE ? relToCrel<ELF64LE>(os, out, relSec, sec) |
| : relToCrel<ELF64BE>(os, out, relSec, sec); |
| } else { |
| totalCount += config->isLE ? relToCrel<ELF32LE>(os, out, relSec, sec) |
| : relToCrel<ELF32BE>(os, out, relSec, sec); |
| } |
| } |
| |
| crelHeader = totalCount * 8 + 4; |
| size = getULEB128Size(crelHeader) + crelBody.size(); |
| } |
| |
| void OutputSection::finalize() { |
| InputSection *first = getFirstInputSection(this); |
| |
| if (flags & SHF_LINK_ORDER) { |
| // We must preserve the link order dependency of sections with the |
| // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We |
| // need to translate the InputSection sh_link to the OutputSection sh_link, |
| // all InputSections in the OutputSection have the same dependency. |
| if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first)) |
| link = ex->getLinkOrderDep()->getParent()->sectionIndex; |
| else if (first->flags & SHF_LINK_ORDER) |
| if (auto *d = first->getLinkOrderDep()) |
| link = d->getParent()->sectionIndex; |
| } |
| |
| if (type == SHT_GROUP) { |
| finalizeShtGroup(this, first); |
| return; |
| } |
| |
| if (!config->copyRelocs || !isStaticRelSecType(type)) |
| return; |
| |
| // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. |
| // Normally 'type' was changed by 'first' so 'first' should be non-null. |
| // However, if the output section is .rela.dyn, 'type' can be set by the empty |
| // synthetic .rela.plt and first can be null. |
| if (!first || isa<SyntheticSection>(first)) |
| return; |
| |
| link = in.symTab->getParent()->sectionIndex; |
| // sh_info for SHT_REL[A] sections should contain the section header index of |
| // the section to which the relocation applies. |
| InputSectionBase *s = first->getRelocatedSection(); |
| info = s->getOutputSection()->sectionIndex; |
| flags |= SHF_INFO_LINK; |
| // Finalize the content of non-alloc CREL. |
| if (type == SHT_CREL) { |
| if (config->is64) |
| finalizeNonAllocCrel<true>(); |
| else |
| finalizeNonAllocCrel<false>(); |
| } |
| } |
| |
| // Returns true if S is in one of the many forms the compiler driver may pass |
| // crtbegin files. |
| // |
| // Gcc uses any of crtbegin[<empty>|S|T].o. |
| // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o. |
| |
| static bool isCrt(StringRef s, StringRef beginEnd) { |
| s = sys::path::filename(s); |
| if (!s.consume_back(".o")) |
| return false; |
| if (s.consume_front("clang_rt.")) |
| return s.consume_front(beginEnd); |
| return s.consume_front(beginEnd) && s.size() <= 1; |
| } |
| |
| // .ctors and .dtors are sorted by this order: |
| // |
| // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). |
| // 2. The section is named ".ctors" or ".dtors" (priority: 65536). |
| // 3. The section has an optional priority value in the form of ".ctors.N" or |
| // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). |
| // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). |
| // |
| // For 2 and 3, the sections are sorted by priority from high to low, e.g. |
| // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's |
| // internal linker scripts, the sorting is by string comparison which can |
| // achieve the same goal given the optional priority values are of the same |
| // length. |
| // |
| // In an ideal world, we don't need this function because .init_array and |
| // .ctors are duplicate features (and .init_array is newer.) However, there |
| // are too many real-world use cases of .ctors, so we had no choice to |
| // support that with this rather ad-hoc semantics. |
| static bool compCtors(const InputSection *a, const InputSection *b) { |
| bool beginA = isCrt(a->file->getName(), "crtbegin"); |
| bool beginB = isCrt(b->file->getName(), "crtbegin"); |
| if (beginA != beginB) |
| return beginA; |
| bool endA = isCrt(a->file->getName(), "crtend"); |
| bool endB = isCrt(b->file->getName(), "crtend"); |
| if (endA != endB) |
| return endB; |
| return getPriority(a->name) > getPriority(b->name); |
| } |
| |
| // Sorts input sections by the special rules for .ctors and .dtors. |
| // Unfortunately, the rules are different from the one for .{init,fini}_array. |
| // Read the comment above. |
| void OutputSection::sortCtorsDtors() { |
| assert(commands.size() == 1); |
| auto *isd = cast<InputSectionDescription>(commands[0]); |
| llvm::stable_sort(isd->sections, compCtors); |
| } |
| |
| // If an input string is in the form of "foo.N" where N is a number, return N |
| // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one |
| // greater than the lowest priority. |
| int elf::getPriority(StringRef s) { |
| size_t pos = s.rfind('.'); |
| if (pos == StringRef::npos) |
| return 65536; |
| int v = 65536; |
| if (to_integer(s.substr(pos + 1), v, 10) && |
| (pos == 6 && (s.starts_with(".ctors") || s.starts_with(".dtors")))) |
| v = 65535 - v; |
| return v; |
| } |
| |
| InputSection *elf::getFirstInputSection(const OutputSection *os) { |
| for (SectionCommand *cmd : os->commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) |
| if (!isd->sections.empty()) |
| return isd->sections[0]; |
| return nullptr; |
| } |
| |
| ArrayRef<InputSection *> |
| elf::getInputSections(const OutputSection &os, |
| SmallVector<InputSection *, 0> &storage) { |
| ArrayRef<InputSection *> ret; |
| storage.clear(); |
| for (SectionCommand *cmd : os.commands) { |
| auto *isd = dyn_cast<InputSectionDescription>(cmd); |
| if (!isd) |
| continue; |
| if (ret.empty()) { |
| ret = isd->sections; |
| } else { |
| if (storage.empty()) |
| storage.assign(ret.begin(), ret.end()); |
| storage.insert(storage.end(), isd->sections.begin(), isd->sections.end()); |
| } |
| } |
| return storage.empty() ? ret : ArrayRef(storage); |
| } |
| |
| // Sorts input sections by section name suffixes, so that .foo.N comes |
| // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. |
| // We want to keep the original order if the priorities are the same |
| // because the compiler keeps the original initialization order in a |
| // translation unit and we need to respect that. |
| // For more detail, read the section of the GCC's manual about init_priority. |
| void OutputSection::sortInitFini() { |
| // Sort sections by priority. |
| sort([](InputSectionBase *s) { return getPriority(s->name); }); |
| } |
| |
| std::array<uint8_t, 4> OutputSection::getFiller() { |
| if (filler) |
| return *filler; |
| if (flags & SHF_EXECINSTR) |
| return ctx.target->trapInstr; |
| return {0, 0, 0, 0}; |
| } |
| |
| void OutputSection::checkDynRelAddends(const uint8_t *bufStart) { |
| assert(config->writeAddends && config->checkDynamicRelocs); |
| assert(isStaticRelSecType(type)); |
| SmallVector<InputSection *, 0> storage; |
| ArrayRef<InputSection *> sections = getInputSections(*this, storage); |
| parallelFor(0, sections.size(), [&](size_t i) { |
| // When linking with -r or --emit-relocs we might also call this function |
| // for input .rel[a].<sec> sections which we simply pass through to the |
| // output. We skip over those and only look at the synthetic relocation |
| // sections created during linking. |
| const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]); |
| if (!sec) |
| return; |
| for (const DynamicReloc &rel : sec->relocs) { |
| int64_t addend = rel.addend; |
| const OutputSection *relOsec = rel.inputSec->getOutputSection(); |
| assert(relOsec != nullptr && "missing output section for relocation"); |
| // Some targets have NOBITS synthetic sections with dynamic relocations |
| // with non-zero addends. Skip such sections. |
| if (is_contained({EM_PPC, EM_PPC64}, config->emachine) && |
| (rel.inputSec == in.ppc64LongBranchTarget.get() || |
| rel.inputSec == in.igotPlt.get())) |
| continue; |
| const uint8_t *relocTarget = |
| bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec); |
| // For SHT_NOBITS the written addend is always zero. |
| int64_t writtenAddend = |
| relOsec->type == SHT_NOBITS |
| ? 0 |
| : ctx.target->getImplicitAddend(relocTarget, rel.type); |
| if (addend != writtenAddend) |
| internalLinkerError( |
| getErrorLocation(relocTarget), |
| "wrote incorrect addend value 0x" + utohexstr(writtenAddend) + |
| " instead of 0x" + utohexstr(addend) + |
| " for dynamic relocation " + toString(rel.type) + |
| " at offset 0x" + utohexstr(rel.getOffset()) + |
| (rel.sym ? " against symbol " + toString(*rel.sym) : "")); |
| } |
| }); |
| } |
| |
| template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); |
| template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); |
| template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); |
| template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); |
| |
| template void OutputSection::writeTo<ELF32LE>(uint8_t *, |
| llvm::parallel::TaskGroup &); |
| template void OutputSection::writeTo<ELF32BE>(uint8_t *, |
| llvm::parallel::TaskGroup &); |
| template void OutputSection::writeTo<ELF64LE>(uint8_t *, |
| llvm::parallel::TaskGroup &); |
| template void OutputSection::writeTo<ELF64BE>(uint8_t *, |
| llvm::parallel::TaskGroup &); |
| |
| template void OutputSection::maybeCompress<ELF32LE>(); |
| template void OutputSection::maybeCompress<ELF32BE>(); |
| template void OutputSection::maybeCompress<ELF64LE>(); |
| template void OutputSection::maybeCompress<ELF64BE>(); |