| //===- ARMErrataFix.cpp ---------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // This file implements Section Patching for the purpose of working around the |
| // Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions |
| // can result in an incorrect instruction fetch or processor deadlock." The |
| // erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the |
| // Cortex-A8. A high level description of the patching technique is given in |
| // the opening comment of AArch64ErrataFix.cpp. |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMErrataFix.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/CommonLinkerContext.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/Support/Endian.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| // The documented title for Erratum 657417 is: |
| // "A 32bit branch instruction that spans two 4K regions can result in an |
| // incorrect instruction fetch or processor deadlock". Graphically using a |
| // 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff |
| // xxxxxx000 // Memory region 1 start |
| // target: |
| // ... |
| // xxxxxxffe f7fe // First halfword of branch to target: |
| // xxxxxx000 // Memory region 2 start |
| // xxxxxx002 bfff // Second halfword of branch to target: |
| // |
| // The specific trigger conditions that can be detected at link time are: |
| // - There is a 32-bit Thumb-2 branch instruction with an address of the form |
| // xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the |
| // second 2 bytes are in region 2. |
| // - The branch instruction is one of BLX, BL, B.w BCC.w |
| // - The instruction preceding the branch is a 32-bit non-branch instruction. |
| // - The target of the branch is in region 1. |
| // |
| // The linker mitigation for the fix is to redirect any branch that meets the |
| // erratum conditions to a patch section containing a branch to the target. |
| // |
| // As adding patch sections may move branches onto region boundaries the patch |
| // must iterate until no more patches are added. |
| // |
| // Example, before: |
| // 00000FFA func: NOP.w // 32-bit Thumb function |
| // 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st. |
| // Example, after: |
| // 00000FFA func: NOP.w // 32-bit Thumb function |
| // 00000FFE B.w __CortexA8657417_00000FFE |
| // 00001002 2 - bytes padding |
| // 00001004 __CortexA8657417_00000FFE: B.w func |
| |
| class elf::Patch657417Section final : public SyntheticSection { |
| public: |
| Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM); |
| |
| void writeTo(uint8_t *buf) override; |
| |
| size_t getSize() const override { return 4; } |
| |
| // Get the virtual address of the branch instruction at patcheeOffset. |
| uint64_t getBranchAddr() const; |
| |
| static bool classof(const SectionBase *d) { |
| return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch"; |
| } |
| |
| // The Section we are patching. |
| const InputSection *patchee; |
| // The offset of the instruction in the Patchee section we are patching. |
| uint64_t patcheeOffset; |
| // A label for the start of the Patch that we can use as a relocation target. |
| Symbol *patchSym; |
| // A decoding of the branch instruction at patcheeOffset. |
| uint32_t instr; |
| // True If the patch is to be written in ARM state, otherwise the patch will |
| // be written in Thumb state. |
| bool isARM; |
| }; |
| |
| // Return true if the half-word, when taken as the first of a pair of halfwords |
| // is the first half of a 32-bit instruction. |
| // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition |
| // section A6.3: 32-bit Thumb instruction encoding |
| // | HW1 | HW2 | |
| // | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) | |
| // With op1 == 0b00, a 16-bit instruction is encoded. |
| // |
| // We test only the first halfword, looking for op != 0b00. |
| static bool is32bitInstruction(uint16_t hw) { |
| return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000; |
| } |
| |
| // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition |
| // section A6.3.4 Branches and miscellaneous control. |
| // | HW1 | HW2 | |
| // | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) | |
| // op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W) |
| // op1 == 0x1 | Branch (B.W) |
| // op1 == 1x0 | Branch with Link and Exchange (BLX.w) |
| // op1 == 1x1 | Branch with Link (BL.W) |
| |
| static bool isBcc(uint32_t instr) { |
| return (instr & 0xf800d000) == 0xf0008000 && |
| (instr & 0x03800000) != 0x03800000; |
| } |
| |
| static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; } |
| |
| static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; } |
| |
| static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; } |
| |
| static bool is32bitBranch(uint32_t instr) { |
| return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr); |
| } |
| |
| Patch657417Section::Patch657417Section(InputSection *p, uint64_t off, |
| uint32_t instr, bool isARM) |
| : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, |
| ".text.patch"), |
| patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) { |
| parent = p->getParent(); |
| patchSym = addSyntheticLocal( |
| saver().save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC, |
| isARM ? 0 : 1, getSize(), *this); |
| addSyntheticLocal(saver().save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this); |
| } |
| |
| uint64_t Patch657417Section::getBranchAddr() const { |
| return patchee->getVA(patcheeOffset); |
| } |
| |
| // Given a branch instruction instr at sourceAddr work out its destination |
| // address. This is only used when the branch instruction has no relocation. |
| static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) { |
| uint8_t buf[4]; |
| write16le(buf, instr >> 16); |
| write16le(buf + 2, instr & 0x0000ffff); |
| int64_t offset; |
| if (isBcc(instr)) |
| offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_JUMP19); |
| else if (isB(instr)) |
| offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_JUMP24); |
| else |
| offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_CALL); |
| // A BLX instruction from Thumb to Arm may have an address that is |
| // not 4-byte aligned. As Arm instructions are always 4-byte aligned |
| // the instruction is calculated (from Arm ARM): |
| // targetAddress = Align(PC, 4) + imm32 |
| // where |
| // Align(x, y) = y * (x Div y) |
| // which corresponds to alignDown. |
| if (isBLX(instr)) |
| sourceAddr = alignDown(sourceAddr, 4); |
| return sourceAddr + offset + 4; |
| } |
| |
| void Patch657417Section::writeTo(uint8_t *buf) { |
| // The base instruction of the patch is always a 32-bit unconditional branch. |
| if (isARM) |
| write32le(buf, 0xea000000); |
| else |
| write32le(buf, 0x9000f000); |
| // If we have a relocation then apply it. |
| if (!relocs().empty()) { |
| ctx.target->relocateAlloc(*this, buf); |
| return; |
| } |
| |
| // If we don't have a relocation then we must calculate and write the offset |
| // ourselves. |
| // Get the destination offset from the addend in the branch instruction. |
| // We cannot use the instruction in the patchee section as this will have |
| // been altered to point to us! |
| uint64_t s = getThumbDestAddr(getBranchAddr(), instr); |
| // A BLX changes the state of the branch in the patch to Arm state, which |
| // has a PC Bias of 8, whereas in all other cases the branch is in Thumb |
| // state with a PC Bias of 4. |
| uint64_t pcBias = isBLX(instr) ? 8 : 4; |
| uint64_t p = getVA(pcBias); |
| ctx.target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, |
| s - p); |
| } |
| |
| // Given a branch instruction spanning two 4KiB regions, at offset off from the |
| // start of isec, return true if the destination of the branch is within the |
| // first of the two 4Kib regions. |
| static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off, |
| uint32_t instr, const Relocation *r) { |
| uint64_t sourceAddr = isec->getVA(0) + off; |
| assert((sourceAddr & 0xfff) == 0xffe); |
| uint64_t destAddr; |
| // If there is a branch relocation at the same offset we must use this to |
| // find the destination address as the branch could be indirected via a thunk |
| // or the PLT. |
| if (r) { |
| uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA(); |
| // Account for Thumb PC bias, usually cancelled to 0 by addend of -4. |
| destAddr = dst + r->addend + 4; |
| } else { |
| // If there is no relocation, we must have an intra-section branch |
| // We must extract the offset from the addend manually. |
| destAddr = getThumbDestAddr(sourceAddr, instr); |
| } |
| |
| return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000); |
| } |
| |
| // Return true if a branch can reach a patch section placed after isec. |
| // The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB. |
| static bool patchInRange(const InputSection *isec, uint64_t off, |
| uint32_t instr) { |
| |
| // We need the branch at source to reach a patch section placed immediately |
| // after isec. As there can be more than one patch in the patch section we |
| // add 0x100 as contingency to account for worst case of 1 branch every 4KiB |
| // for a 1 MiB range. |
| return ctx.target->inBranchRange( |
| isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off), |
| isec->getVA() + isec->getSize() + 0x100); |
| } |
| |
| struct ScanResult { |
| // Offset of branch within its InputSection. |
| uint64_t off; |
| // Cached decoding of the branch instruction. |
| uint32_t instr; |
| // Branch relocation at off. Will be nullptr if no relocation exists. |
| Relocation *rel; |
| }; |
| |
| // Detect the erratum sequence, returning the offset of the branch instruction |
| // and a decoding of the branch. If the erratum sequence is not found then |
| // return an offset of 0 for the branch. 0 is a safe value to use for no patch |
| // as there must be at least one 32-bit non-branch instruction before the |
| // branch so the minimum offset for a patch is 4. |
| static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off, |
| uint64_t limit) { |
| uint64_t isecAddr = isec->getVA(0); |
| // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We |
| // need to check for a 32-bit instruction immediately before a 32-bit branch |
| // at 0xffe modulo 0x1000. |
| off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr; |
| if (off >= limit || limit - off < 8) { |
| // Need at least 2 4-byte sized instructions to trigger erratum. |
| off = limit; |
| return {0, 0, nullptr}; |
| } |
| |
| ScanResult scanRes = {0, 0, nullptr}; |
| const uint8_t *buf = isec->content().begin(); |
| // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive |
| // little-endian halfwords. |
| const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off); |
| uint16_t hw11 = *instBuf++; |
| uint16_t hw12 = *instBuf++; |
| uint16_t hw21 = *instBuf++; |
| uint16_t hw22 = *instBuf++; |
| if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) { |
| uint32_t instr1 = (hw11 << 16) | hw12; |
| uint32_t instr2 = (hw21 << 16) | hw22; |
| if (!is32bitBranch(instr1) && is32bitBranch(instr2)) { |
| // Find a relocation for the branch if it exists. This will be used |
| // to determine the target. |
| uint64_t branchOff = off + 4; |
| auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) { |
| return r.offset == branchOff && |
| (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 || |
| r.type == R_ARM_THM_CALL); |
| }); |
| if (relIt != isec->relocs().end()) |
| scanRes.rel = &(*relIt); |
| if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) { |
| if (patchInRange(isec, branchOff, instr2)) { |
| scanRes.off = branchOff; |
| scanRes.instr = instr2; |
| } else { |
| warn(toString(isec->file) + |
| ": skipping cortex-a8 657417 erratum sequence, section " + |
| isec->name + " is too large to patch"); |
| } |
| } |
| } |
| } |
| off += 0x1000; |
| return scanRes; |
| } |
| |
| void ARMErr657417Patcher::init() { |
| // The Arm ABI permits a mix of ARM, Thumb and Data in the same |
| // InputSection. We must only scan Thumb instructions to avoid false |
| // matches. We use the mapping symbols in the InputObjects to identify this |
| // data, caching the results in sectionMap so we don't have to recalculate |
| // it each pass. |
| |
| // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe |
| // half open intervals [Symbol Value, Next Symbol Value) of code and data |
| // within sections. If there is no next symbol then the half open interval is |
| // [Symbol Value, End of section). The type, code or data, is determined by |
| // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data. |
| auto isArmMapSymbol = [](const Symbol *s) { |
| return s->getName() == "$a" || s->getName().starts_with("$a."); |
| }; |
| auto isThumbMapSymbol = [](const Symbol *s) { |
| return s->getName() == "$t" || s->getName().starts_with("$t."); |
| }; |
| auto isDataMapSymbol = [](const Symbol *s) { |
| return s->getName() == "$d" || s->getName().starts_with("$d."); |
| }; |
| |
| // Collect mapping symbols for every executable InputSection. |
| for (ELFFileBase *file : ctx.objectFiles) { |
| for (Symbol *s : file->getLocalSymbols()) { |
| auto *def = dyn_cast<Defined>(s); |
| if (!def) |
| continue; |
| if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) && |
| !isDataMapSymbol(def)) |
| continue; |
| if (auto *sec = dyn_cast_or_null<InputSection>(def->section)) |
| if (sec->flags & SHF_EXECINSTR) |
| sectionMap[sec].push_back(def); |
| } |
| } |
| // For each InputSection make sure the mapping symbols are in sorted in |
| // ascending order and are in alternating Thumb, non-Thumb order. |
| for (auto &kv : sectionMap) { |
| std::vector<const Defined *> &mapSyms = kv.second; |
| llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { |
| return a->value < b->value; |
| }); |
| mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(), |
| [=](const Defined *a, const Defined *b) { |
| return (isThumbMapSymbol(a) == |
| isThumbMapSymbol(b)); |
| }), |
| mapSyms.end()); |
| // Always start with a Thumb Mapping Symbol |
| if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front())) |
| mapSyms.erase(mapSyms.begin()); |
| } |
| initialized = true; |
| } |
| |
| void ARMErr657417Patcher::insertPatches( |
| InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) { |
| uint64_t spacing = 0x100000 - 0x7500; |
| uint64_t isecLimit; |
| uint64_t prevIsecLimit = isd.sections.front()->outSecOff; |
| uint64_t patchUpperBound = prevIsecLimit + spacing; |
| uint64_t outSecAddr = isd.sections.front()->getParent()->addr; |
| |
| // Set the outSecOff of patches to the place where we want to insert them. |
| // We use a similar strategy to initial thunk placement, using 1 MiB as the |
| // range of the Thumb-2 conditional branch with a contingency accounting for |
| // thunk generation. |
| auto patchIt = patches.begin(); |
| auto patchEnd = patches.end(); |
| for (const InputSection *isec : isd.sections) { |
| isecLimit = isec->outSecOff + isec->getSize(); |
| if (isecLimit > patchUpperBound) { |
| for (; patchIt != patchEnd; ++patchIt) { |
| if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit) |
| break; |
| (*patchIt)->outSecOff = prevIsecLimit; |
| } |
| patchUpperBound = prevIsecLimit + spacing; |
| } |
| prevIsecLimit = isecLimit; |
| } |
| for (; patchIt != patchEnd; ++patchIt) |
| (*patchIt)->outSecOff = isecLimit; |
| |
| // Merge all patch sections. We use the outSecOff assigned above to |
| // determine the insertion point. This is ok as we only merge into an |
| // InputSectionDescription once per pass, and at the end of the pass |
| // assignAddresses() will recalculate all the outSecOff values. |
| SmallVector<InputSection *, 0> tmp; |
| tmp.reserve(isd.sections.size() + patches.size()); |
| auto mergeCmp = [](const InputSection *a, const InputSection *b) { |
| if (a->outSecOff != b->outSecOff) |
| return a->outSecOff < b->outSecOff; |
| return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b); |
| }; |
| std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), |
| patches.end(), std::back_inserter(tmp), mergeCmp); |
| isd.sections = std::move(tmp); |
| } |
| |
| // Given a branch instruction described by ScanRes redirect it to a patch |
| // section containing an unconditional branch instruction to the target. |
| // Ensure that this patch section is 4-byte aligned so that the branch cannot |
| // span two 4 KiB regions. Place the patch section so that it is always after |
| // isec so the branch we are patching always goes forwards. |
| static void implementPatch(ScanResult sr, InputSection *isec, |
| std::vector<Patch657417Section *> &patches) { |
| |
| log("detected cortex-a8-657419 erratum sequence starting at " + |
| utohexstr(isec->getVA(sr.off)) + " in unpatched output."); |
| Patch657417Section *psec; |
| // We have two cases to deal with. |
| // Case 1. There is a relocation at patcheeOffset to a symbol. The |
| // unconditional branch in the patch must have a relocation so that any |
| // further redirection via the PLT or a Thunk happens as normal. At |
| // patcheeOffset we redirect the existing relocation to a Symbol defined at |
| // the start of the patch section. |
| // |
| // Case 2. There is no relocation at patcheeOffset. We are unlikely to have |
| // a symbol that we can use as a target for a relocation in the patch section. |
| // Luckily we know that the destination cannot be indirected via the PLT or |
| // a Thunk so we can just write the destination directly. |
| if (sr.rel) { |
| // Case 1. We have an existing relocation to redirect to patch and a |
| // Symbol target. |
| |
| // Create a branch relocation for the unconditional branch in the patch. |
| // This can be redirected via the PLT or Thunks. |
| RelType patchRelType = R_ARM_THM_JUMP24; |
| int64_t patchRelAddend = sr.rel->addend; |
| bool destIsARM = false; |
| if (isBL(sr.instr) || isBLX(sr.instr)) { |
| // The final target of the branch may be ARM or Thumb, if the target |
| // is ARM then we write the patch in ARM state to avoid a state change |
| // Thunk from the patch to the target. |
| uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA() |
| : sr.rel->sym->getVA(); |
| destIsARM = (dstSymAddr & 1) == 0; |
| } |
| psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM); |
| if (destIsARM) { |
| // The patch will be in ARM state. Use an ARM relocation and account for |
| // the larger ARM PC-bias of 8 rather than Thumb's 4. |
| patchRelType = R_ARM_JUMP24; |
| patchRelAddend -= 4; |
| } |
| psec->addReloc( |
| Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym}); |
| // Redirect the existing branch relocation to the patch. |
| sr.rel->expr = R_PC; |
| sr.rel->addend = -4; |
| sr.rel->sym = psec->patchSym; |
| } else { |
| // Case 2. We do not have a relocation to the patch. Add a relocation of the |
| // appropriate type to the patch at patcheeOffset. |
| |
| // The destination is ARM if we have a BLX. |
| psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr)); |
| RelType type; |
| if (isBcc(sr.instr)) |
| type = R_ARM_THM_JUMP19; |
| else if (isB(sr.instr)) |
| type = R_ARM_THM_JUMP24; |
| else |
| type = R_ARM_THM_CALL; |
| isec->addReloc(Relocation{R_PC, type, sr.off, -4, psec->patchSym}); |
| } |
| patches.push_back(psec); |
| } |
| |
| // Scan all the instructions in InputSectionDescription, for each instance of |
| // the erratum sequence create a Patch657417Section. We return the list of |
| // Patch657417Sections that need to be applied to the InputSectionDescription. |
| std::vector<Patch657417Section *> |
| ARMErr657417Patcher::patchInputSectionDescription( |
| InputSectionDescription &isd) { |
| std::vector<Patch657417Section *> patches; |
| for (InputSection *isec : isd.sections) { |
| // LLD doesn't use the erratum sequence in SyntheticSections. |
| if (isa<SyntheticSection>(isec)) |
| continue; |
| // Use sectionMap to make sure we only scan Thumb code and not Arm or inline |
| // data. We have already sorted mapSyms in ascending order and removed |
| // consecutive mapping symbols of the same type. Our range of executable |
| // instructions to scan is therefore [thumbSym->value, nonThumbSym->value) |
| // or [thumbSym->value, section size). |
| std::vector<const Defined *> &mapSyms = sectionMap[isec]; |
| |
| auto thumbSym = mapSyms.begin(); |
| while (thumbSym != mapSyms.end()) { |
| auto nonThumbSym = std::next(thumbSym); |
| uint64_t off = (*thumbSym)->value; |
| uint64_t limit = nonThumbSym == mapSyms.end() ? isec->content().size() |
| : (*nonThumbSym)->value; |
| |
| while (off < limit) { |
| ScanResult sr = scanCortexA8Errata657417(isec, off, limit); |
| if (sr.off) |
| implementPatch(sr, isec, patches); |
| } |
| if (nonThumbSym == mapSyms.end()) |
| break; |
| thumbSym = std::next(nonThumbSym); |
| } |
| } |
| return patches; |
| } |
| |
| bool ARMErr657417Patcher::createFixes() { |
| if (!initialized) |
| init(); |
| |
| bool addressesChanged = false; |
| for (OutputSection *os : ctx.outputSections) { |
| if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) |
| continue; |
| for (SectionCommand *cmd : os->commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { |
| std::vector<Patch657417Section *> patches = |
| patchInputSectionDescription(*isd); |
| if (!patches.empty()) { |
| insertPatches(*isd, patches); |
| addressesChanged = true; |
| } |
| } |
| } |
| return addressesChanged; |
| } |