| /* |
| * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| // This version is derived from the generic fma software implementation |
| // (__clc_sw_fma), but avoids the use of ulong in favor of uint2. The logic has |
| // been updated as appropriate. |
| |
| #include <clc/clc.h> |
| #include "../../../generic/lib/clcmacro.h" |
| #include "../../../generic/lib/math/math.h" |
| |
| struct fp { |
| uint2 mantissa; |
| int exponent; |
| uint sign; |
| }; |
| |
| static uint2 u2_set(uint hi, uint lo) { |
| uint2 res; |
| res.lo = lo; |
| res.hi = hi; |
| return res; |
| } |
| |
| static uint2 u2_set_u(uint val) { return u2_set(0, val); } |
| |
| static uint2 u2_mul(uint a, uint b) { |
| uint2 res; |
| res.hi = mul_hi(a, b); |
| res.lo = a * b; |
| return res; |
| } |
| |
| static uint2 u2_sll(uint2 val, uint shift) { |
| if (shift == 0) |
| return val; |
| if (shift < 32) { |
| val.hi <<= shift; |
| val.hi |= val.lo >> (32 - shift); |
| val.lo <<= shift; |
| } else { |
| val.hi = val.lo << (shift - 32); |
| val.lo = 0; |
| } |
| return val; |
| } |
| |
| static uint2 u2_srl(uint2 val, uint shift) { |
| if (shift == 0) |
| return val; |
| if (shift < 32) { |
| val.lo >>= shift; |
| val.lo |= val.hi << (32 - shift); |
| val.hi >>= shift; |
| } else { |
| val.lo = val.hi >> (shift - 32); |
| val.hi = 0; |
| } |
| return val; |
| } |
| |
| static uint2 u2_or(uint2 a, uint b) { |
| a.lo |= b; |
| return a; |
| } |
| |
| static uint2 u2_and(uint2 a, uint2 b) { |
| a.lo &= b.lo; |
| a.hi &= b.hi; |
| return a; |
| } |
| |
| static uint2 u2_add(uint2 a, uint2 b) { |
| uint carry = (hadd(a.lo, b.lo) >> 31) & 0x1; |
| a.lo += b.lo; |
| a.hi += b.hi + carry; |
| return a; |
| } |
| |
| static uint2 u2_add_u(uint2 a, uint b) { return u2_add(a, u2_set_u(b)); } |
| |
| static uint2 u2_inv(uint2 a) { |
| a.lo = ~a.lo; |
| a.hi = ~a.hi; |
| return u2_add_u(a, 1); |
| } |
| |
| static uint u2_clz(uint2 a) { |
| uint leading_zeroes = clz(a.hi); |
| if (leading_zeroes == 32) { |
| leading_zeroes += clz(a.lo); |
| } |
| return leading_zeroes; |
| } |
| |
| static bool u2_eq(uint2 a, uint2 b) { return a.lo == b.lo && a.hi == b.hi; } |
| |
| static bool u2_zero(uint2 a) { return u2_eq(a, u2_set_u(0)); } |
| |
| static bool u2_gt(uint2 a, uint2 b) { |
| return a.hi > b.hi || (a.hi == b.hi && a.lo > b.lo); |
| } |
| |
| _CLC_DEF _CLC_OVERLOAD float fma(float a, float b, float c) { |
| /* special cases */ |
| if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) { |
| return mad(a, b, c); |
| } |
| |
| /* If only c is inf, and both a,b are regular numbers, the result is c*/ |
| if (isinf(c)) { |
| return c; |
| } |
| |
| a = __clc_flush_denormal_if_not_supported(a); |
| b = __clc_flush_denormal_if_not_supported(b); |
| c = __clc_flush_denormal_if_not_supported(c); |
| |
| if (a == 0.0f || b == 0.0f) { |
| return c; |
| } |
| |
| if (c == 0) { |
| return a * b; |
| } |
| |
| struct fp st_a, st_b, st_c; |
| |
| st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127; |
| st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127; |
| st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127; |
| |
| st_a.mantissa = u2_set_u(a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000); |
| st_b.mantissa = u2_set_u(b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000); |
| st_c.mantissa = u2_set_u(c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000); |
| |
| st_a.sign = as_uint(a) & 0x80000000; |
| st_b.sign = as_uint(b) & 0x80000000; |
| st_c.sign = as_uint(c) & 0x80000000; |
| |
| // Multiplication. |
| // Move the product to the highest bits to maximize precision |
| // mantissa is 24 bits => product is 48 bits, 2bits non-fraction. |
| // Add one bit for future addition overflow, |
| // add another bit to detect subtraction underflow |
| struct fp st_mul; |
| st_mul.sign = st_a.sign ^ st_b.sign; |
| st_mul.mantissa = u2_sll(u2_mul(st_a.mantissa.lo, st_b.mantissa.lo), 14); |
| st_mul.exponent = |
| !u2_zero(st_mul.mantissa) ? st_a.exponent + st_b.exponent : 0; |
| |
| // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel |
| if (st_mul.exponent == 0 && u2_zero(st_mul.mantissa)) |
| return c; |
| |
| // Mantissa is 23 fractional bits, shift it the same way as product mantissa |
| #define C_ADJUST 37ul |
| |
| // both exponents are bias adjusted |
| int exp_diff = st_mul.exponent - st_c.exponent; |
| |
| st_c.mantissa = u2_sll(st_c.mantissa, C_ADJUST); |
| uint2 cutoff_bits = u2_set_u(0); |
| uint2 cutoff_mask = u2_add(u2_sll(u2_set_u(1), abs(exp_diff)), |
| u2_set(0xffffffff, 0xffffffff)); |
| if (exp_diff > 0) { |
| cutoff_bits = |
| exp_diff >= 64 ? st_c.mantissa : u2_and(st_c.mantissa, cutoff_mask); |
| st_c.mantissa = |
| exp_diff >= 64 ? u2_set_u(0) : u2_srl(st_c.mantissa, exp_diff); |
| } else { |
| cutoff_bits = -exp_diff >= 64 ? st_mul.mantissa |
| : u2_and(st_mul.mantissa, cutoff_mask); |
| st_mul.mantissa = |
| -exp_diff >= 64 ? u2_set_u(0) : u2_srl(st_mul.mantissa, -exp_diff); |
| } |
| |
| struct fp st_fma; |
| st_fma.sign = st_mul.sign; |
| st_fma.exponent = max(st_mul.exponent, st_c.exponent); |
| if (st_c.sign == st_mul.sign) { |
| st_fma.mantissa = u2_add(st_mul.mantissa, st_c.mantissa); |
| } else { |
| // cutoff bits borrow one |
| st_fma.mantissa = |
| u2_add(u2_add(st_mul.mantissa, u2_inv(st_c.mantissa)), |
| (!u2_zero(cutoff_bits) && (st_mul.exponent > st_c.exponent) |
| ? u2_set(0xffffffff, 0xffffffff) |
| : u2_set_u(0))); |
| } |
| |
| // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign |
| if (u2_gt(st_fma.mantissa, u2_set(0x7fffffff, 0xffffffff))) { |
| st_fma.mantissa = u2_inv(st_fma.mantissa); |
| st_fma.sign = st_mul.sign ^ 0x80000000; |
| } |
| |
| // detect overflow/underflow |
| int overflow_bits = 3 - u2_clz(st_fma.mantissa); |
| |
| // adjust exponent |
| st_fma.exponent += overflow_bits; |
| |
| // handle underflow |
| if (overflow_bits < 0) { |
| st_fma.mantissa = u2_sll(st_fma.mantissa, -overflow_bits); |
| overflow_bits = 0; |
| } |
| |
| // rounding |
| uint2 trunc_mask = u2_add(u2_sll(u2_set_u(1), C_ADJUST + overflow_bits), |
| u2_set(0xffffffff, 0xffffffff)); |
| uint2 trunc_bits = |
| u2_or(u2_and(st_fma.mantissa, trunc_mask), !u2_zero(cutoff_bits)); |
| uint2 last_bit = |
| u2_and(st_fma.mantissa, u2_sll(u2_set_u(1), C_ADJUST + overflow_bits)); |
| uint2 grs_bits = u2_sll(u2_set_u(4), C_ADJUST - 3 + overflow_bits); |
| |
| // round to nearest even |
| if (u2_gt(trunc_bits, grs_bits) || |
| (u2_eq(trunc_bits, grs_bits) && !u2_zero(last_bit))) { |
| st_fma.mantissa = |
| u2_add(st_fma.mantissa, u2_sll(u2_set_u(1), C_ADJUST + overflow_bits)); |
| } |
| |
| // Shift mantissa back to bit 23 |
| st_fma.mantissa = u2_srl(st_fma.mantissa, C_ADJUST + overflow_bits); |
| |
| // Detect rounding overflow |
| if (u2_gt(st_fma.mantissa, u2_set_u(0xffffff))) { |
| ++st_fma.exponent; |
| st_fma.mantissa = u2_srl(st_fma.mantissa, 1); |
| } |
| |
| if (u2_zero(st_fma.mantissa)) { |
| return 0.0f; |
| } |
| |
| // Flating point range limit |
| if (st_fma.exponent > 127) { |
| return as_float(as_uint(INFINITY) | st_fma.sign); |
| } |
| |
| // Flush denormals |
| if (st_fma.exponent <= -127) { |
| return as_float(st_fma.sign); |
| } |
| |
| return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) | |
| ((uint)st_fma.mantissa.lo & 0x7fffff)); |
| } |
| _CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, fma, float, float, float) |
| |
| #ifdef cl_khr_fp16 |
| |
| #pragma OPENCL EXTENSION cl_khr_fp16 : enable |
| |
| _CLC_DEF _CLC_OVERLOAD half fma(half a, half b, half c) { |
| return (half)mad((float)a, (float)b, (float)c); |
| } |
| _CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, half, fma, half, half, half) |
| |
| #endif |