blob: 9272e23c7da3fc63fd873460a3ef58ef78122c92 [file] [log] [blame]
//===- ASTReaderDecl.cpp - Decl Deserialization ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTReader::readDeclRecord method, which is the
// entrypoint for loading a decl.
//
//===----------------------------------------------------------------------===//
#include "ASTCommon.h"
#include "ASTReaderInternals.h"
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTStructuralEquivalence.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/AttrKinds.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Stack.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "clang/Serialization/ASTRecordReader.h"
#include "clang/Serialization/ContinuousRangeMap.h"
#include "clang/Serialization/ModuleFile.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Bitstream/BitstreamReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <string>
#include <utility>
using namespace clang;
using namespace serialization;
//===----------------------------------------------------------------------===//
// Declaration Merging
//===----------------------------------------------------------------------===//
namespace {
/// Results from loading a RedeclarableDecl.
class RedeclarableResult {
Decl *MergeWith;
GlobalDeclID FirstID;
bool IsKeyDecl;
public:
RedeclarableResult(Decl *MergeWith, GlobalDeclID FirstID, bool IsKeyDecl)
: MergeWith(MergeWith), FirstID(FirstID), IsKeyDecl(IsKeyDecl) {}
/// Retrieve the first ID.
GlobalDeclID getFirstID() const { return FirstID; }
/// Is this declaration a key declaration?
bool isKeyDecl() const { return IsKeyDecl; }
/// Get a known declaration that this should be merged with, if
/// any.
Decl *getKnownMergeTarget() const { return MergeWith; }
};
} // namespace
namespace clang {
class ASTDeclMerger {
ASTReader &Reader;
public:
ASTDeclMerger(ASTReader &Reader) : Reader(Reader) {}
void mergeLambda(CXXRecordDecl *D, RedeclarableResult &Redecl, Decl &Context,
unsigned Number);
/// \param KeyDeclID the decl ID of the key declaration \param D.
/// GlobalDeclID() if \param is not a key declaration.
/// See the comments of ASTReader::KeyDecls for the explanation
/// of key declaration.
template <typename T>
void mergeRedeclarableImpl(Redeclarable<T> *D, T *Existing,
GlobalDeclID KeyDeclID);
template <typename T>
void mergeRedeclarable(Redeclarable<T> *D, T *Existing,
RedeclarableResult &Redecl) {
mergeRedeclarableImpl(
D, Existing, Redecl.isKeyDecl() ? Redecl.getFirstID() : GlobalDeclID());
}
void mergeTemplatePattern(RedeclarableTemplateDecl *D,
RedeclarableTemplateDecl *Existing, bool IsKeyDecl);
void MergeDefinitionData(CXXRecordDecl *D,
struct CXXRecordDecl::DefinitionData &&NewDD);
void MergeDefinitionData(ObjCInterfaceDecl *D,
struct ObjCInterfaceDecl::DefinitionData &&NewDD);
void MergeDefinitionData(ObjCProtocolDecl *D,
struct ObjCProtocolDecl::DefinitionData &&NewDD);
};
} // namespace clang
//===----------------------------------------------------------------------===//
// Declaration deserialization
//===----------------------------------------------------------------------===//
namespace clang {
class ASTDeclReader : public DeclVisitor<ASTDeclReader, void> {
ASTReader &Reader;
ASTDeclMerger MergeImpl;
ASTRecordReader &Record;
ASTReader::RecordLocation Loc;
const GlobalDeclID ThisDeclID;
const SourceLocation ThisDeclLoc;
using RecordData = ASTReader::RecordData;
TypeID DeferredTypeID = 0;
unsigned AnonymousDeclNumber = 0;
GlobalDeclID NamedDeclForTagDecl = GlobalDeclID();
IdentifierInfo *TypedefNameForLinkage = nullptr;
/// A flag to carry the information for a decl from the entity is
/// used. We use it to delay the marking of the canonical decl as used until
/// the entire declaration is deserialized and merged.
bool IsDeclMarkedUsed = false;
uint64_t GetCurrentCursorOffset();
uint64_t ReadLocalOffset() {
uint64_t LocalOffset = Record.readInt();
assert(LocalOffset < Loc.Offset && "offset point after current record");
return LocalOffset ? Loc.Offset - LocalOffset : 0;
}
uint64_t ReadGlobalOffset() {
uint64_t Local = ReadLocalOffset();
return Local ? Record.getGlobalBitOffset(Local) : 0;
}
SourceLocation readSourceLocation() { return Record.readSourceLocation(); }
SourceRange readSourceRange() { return Record.readSourceRange(); }
TypeSourceInfo *readTypeSourceInfo() { return Record.readTypeSourceInfo(); }
GlobalDeclID readDeclID() { return Record.readDeclID(); }
std::string readString() { return Record.readString(); }
void readDeclIDList(SmallVectorImpl<GlobalDeclID> &IDs) {
for (unsigned I = 0, Size = Record.readInt(); I != Size; ++I)
IDs.push_back(readDeclID());
}
Decl *readDecl() { return Record.readDecl(); }
template <typename T> T *readDeclAs() { return Record.readDeclAs<T>(); }
serialization::SubmoduleID readSubmoduleID() {
if (Record.getIdx() == Record.size())
return 0;
return Record.getGlobalSubmoduleID(Record.readInt());
}
Module *readModule() { return Record.getSubmodule(readSubmoduleID()); }
void ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update,
Decl *LambdaContext = nullptr,
unsigned IndexInLambdaContext = 0);
void ReadCXXDefinitionData(struct CXXRecordDecl::DefinitionData &Data,
const CXXRecordDecl *D, Decl *LambdaContext,
unsigned IndexInLambdaContext);
void ReadObjCDefinitionData(struct ObjCInterfaceDecl::DefinitionData &Data);
void ReadObjCDefinitionData(struct ObjCProtocolDecl::DefinitionData &Data);
static DeclContext *getPrimaryDCForAnonymousDecl(DeclContext *LexicalDC);
static NamedDecl *getAnonymousDeclForMerging(ASTReader &Reader,
DeclContext *DC, unsigned Index);
static void setAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC,
unsigned Index, NamedDecl *D);
/// Commit to a primary definition of the class RD, which is known to be
/// a definition of the class. We might not have read the definition data
/// for it yet. If we haven't then allocate placeholder definition data
/// now too.
static CXXRecordDecl *getOrFakePrimaryClassDefinition(ASTReader &Reader,
CXXRecordDecl *RD);
/// Class used to capture the result of searching for an existing
/// declaration of a specific kind and name, along with the ability
/// to update the place where this result was found (the declaration
/// chain hanging off an identifier or the DeclContext we searched in)
/// if requested.
class FindExistingResult {
ASTReader &Reader;
NamedDecl *New = nullptr;
NamedDecl *Existing = nullptr;
bool AddResult = false;
unsigned AnonymousDeclNumber = 0;
IdentifierInfo *TypedefNameForLinkage = nullptr;
public:
FindExistingResult(ASTReader &Reader) : Reader(Reader) {}
FindExistingResult(ASTReader &Reader, NamedDecl *New, NamedDecl *Existing,
unsigned AnonymousDeclNumber,
IdentifierInfo *TypedefNameForLinkage)
: Reader(Reader), New(New), Existing(Existing), AddResult(true),
AnonymousDeclNumber(AnonymousDeclNumber),
TypedefNameForLinkage(TypedefNameForLinkage) {}
FindExistingResult(FindExistingResult &&Other)
: Reader(Other.Reader), New(Other.New), Existing(Other.Existing),
AddResult(Other.AddResult),
AnonymousDeclNumber(Other.AnonymousDeclNumber),
TypedefNameForLinkage(Other.TypedefNameForLinkage) {
Other.AddResult = false;
}
FindExistingResult &operator=(FindExistingResult &&) = delete;
~FindExistingResult();
/// Suppress the addition of this result into the known set of
/// names.
void suppress() { AddResult = false; }
operator NamedDecl *() const { return Existing; }
template <typename T> operator T *() const {
return dyn_cast_or_null<T>(Existing);
}
};
static DeclContext *getPrimaryContextForMerging(ASTReader &Reader,
DeclContext *DC);
FindExistingResult findExisting(NamedDecl *D);
public:
ASTDeclReader(ASTReader &Reader, ASTRecordReader &Record,
ASTReader::RecordLocation Loc, GlobalDeclID thisDeclID,
SourceLocation ThisDeclLoc)
: Reader(Reader), MergeImpl(Reader), Record(Record), Loc(Loc),
ThisDeclID(thisDeclID), ThisDeclLoc(ThisDeclLoc) {}
template <typename T>
static void AddLazySpecializations(T *D, SmallVectorImpl<GlobalDeclID> &IDs) {
if (IDs.empty())
return;
// FIXME: We should avoid this pattern of getting the ASTContext.
ASTContext &C = D->getASTContext();
auto *&LazySpecializations = D->getCommonPtr()->LazySpecializations;
if (auto &Old = LazySpecializations) {
IDs.insert(IDs.end(), Old + 1, Old + 1 + Old[0].getRawValue());
llvm::sort(IDs);
IDs.erase(std::unique(IDs.begin(), IDs.end()), IDs.end());
}
auto *Result = new (C) GlobalDeclID[1 + IDs.size()];
*Result = GlobalDeclID(IDs.size());
std::copy(IDs.begin(), IDs.end(), Result + 1);
LazySpecializations = Result;
}
template <typename DeclT>
static Decl *getMostRecentDeclImpl(Redeclarable<DeclT> *D);
static Decl *getMostRecentDeclImpl(...);
static Decl *getMostRecentDecl(Decl *D);
template <typename DeclT>
static void attachPreviousDeclImpl(ASTReader &Reader, Redeclarable<DeclT> *D,
Decl *Previous, Decl *Canon);
static void attachPreviousDeclImpl(ASTReader &Reader, ...);
static void attachPreviousDecl(ASTReader &Reader, Decl *D, Decl *Previous,
Decl *Canon);
static void checkMultipleDefinitionInNamedModules(ASTReader &Reader, Decl *D,
Decl *Previous);
template <typename DeclT>
static void attachLatestDeclImpl(Redeclarable<DeclT> *D, Decl *Latest);
static void attachLatestDeclImpl(...);
static void attachLatestDecl(Decl *D, Decl *latest);
template <typename DeclT>
static void markIncompleteDeclChainImpl(Redeclarable<DeclT> *D);
static void markIncompleteDeclChainImpl(...);
void ReadFunctionDefinition(FunctionDecl *FD);
void Visit(Decl *D);
void UpdateDecl(Decl *D, SmallVectorImpl<GlobalDeclID> &);
static void setNextObjCCategory(ObjCCategoryDecl *Cat,
ObjCCategoryDecl *Next) {
Cat->NextClassCategory = Next;
}
void VisitDecl(Decl *D);
void VisitPragmaCommentDecl(PragmaCommentDecl *D);
void VisitPragmaDetectMismatchDecl(PragmaDetectMismatchDecl *D);
void VisitTranslationUnitDecl(TranslationUnitDecl *TU);
void VisitNamedDecl(NamedDecl *ND);
void VisitLabelDecl(LabelDecl *LD);
void VisitNamespaceDecl(NamespaceDecl *D);
void VisitHLSLBufferDecl(HLSLBufferDecl *D);
void VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
void VisitTypeDecl(TypeDecl *TD);
RedeclarableResult VisitTypedefNameDecl(TypedefNameDecl *TD);
void VisitTypedefDecl(TypedefDecl *TD);
void VisitTypeAliasDecl(TypeAliasDecl *TD);
void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
void VisitUnresolvedUsingIfExistsDecl(UnresolvedUsingIfExistsDecl *D);
RedeclarableResult VisitTagDecl(TagDecl *TD);
void VisitEnumDecl(EnumDecl *ED);
RedeclarableResult VisitRecordDeclImpl(RecordDecl *RD);
void VisitRecordDecl(RecordDecl *RD);
RedeclarableResult VisitCXXRecordDeclImpl(CXXRecordDecl *D);
void VisitCXXRecordDecl(CXXRecordDecl *D) { VisitCXXRecordDeclImpl(D); }
RedeclarableResult
VisitClassTemplateSpecializationDeclImpl(ClassTemplateSpecializationDecl *D);
void
VisitClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *D) {
VisitClassTemplateSpecializationDeclImpl(D);
}
void VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D);
RedeclarableResult
VisitVarTemplateSpecializationDeclImpl(VarTemplateSpecializationDecl *D);
void VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D) {
VisitVarTemplateSpecializationDeclImpl(D);
}
void VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D);
void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
void VisitValueDecl(ValueDecl *VD);
void VisitEnumConstantDecl(EnumConstantDecl *ECD);
void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
void VisitDeclaratorDecl(DeclaratorDecl *DD);
void VisitFunctionDecl(FunctionDecl *FD);
void VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *GD);
void VisitCXXMethodDecl(CXXMethodDecl *D);
void VisitCXXConstructorDecl(CXXConstructorDecl *D);
void VisitCXXDestructorDecl(CXXDestructorDecl *D);
void VisitCXXConversionDecl(CXXConversionDecl *D);
void VisitFieldDecl(FieldDecl *FD);
void VisitMSPropertyDecl(MSPropertyDecl *FD);
void VisitMSGuidDecl(MSGuidDecl *D);
void VisitUnnamedGlobalConstantDecl(UnnamedGlobalConstantDecl *D);
void VisitTemplateParamObjectDecl(TemplateParamObjectDecl *D);
void VisitIndirectFieldDecl(IndirectFieldDecl *FD);
RedeclarableResult VisitVarDeclImpl(VarDecl *D);
void ReadVarDeclInit(VarDecl *VD);
void VisitVarDecl(VarDecl *VD) { VisitVarDeclImpl(VD); }
void VisitImplicitParamDecl(ImplicitParamDecl *PD);
void VisitParmVarDecl(ParmVarDecl *PD);
void VisitDecompositionDecl(DecompositionDecl *DD);
void VisitBindingDecl(BindingDecl *BD);
void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
void VisitTemplateDecl(TemplateDecl *D);
void VisitConceptDecl(ConceptDecl *D);
void
VisitImplicitConceptSpecializationDecl(ImplicitConceptSpecializationDecl *D);
void VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D);
RedeclarableResult VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D);
void VisitClassTemplateDecl(ClassTemplateDecl *D);
void VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D);
void VisitVarTemplateDecl(VarTemplateDecl *D);
void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D);
void VisitUsingDecl(UsingDecl *D);
void VisitUsingEnumDecl(UsingEnumDecl *D);
void VisitUsingPackDecl(UsingPackDecl *D);
void VisitUsingShadowDecl(UsingShadowDecl *D);
void VisitConstructorUsingShadowDecl(ConstructorUsingShadowDecl *D);
void VisitLinkageSpecDecl(LinkageSpecDecl *D);
void VisitExportDecl(ExportDecl *D);
void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD);
void VisitTopLevelStmtDecl(TopLevelStmtDecl *D);
void VisitImportDecl(ImportDecl *D);
void VisitAccessSpecDecl(AccessSpecDecl *D);
void VisitFriendDecl(FriendDecl *D);
void VisitFriendTemplateDecl(FriendTemplateDecl *D);
void VisitStaticAssertDecl(StaticAssertDecl *D);
void VisitBlockDecl(BlockDecl *BD);
void VisitCapturedDecl(CapturedDecl *CD);
void VisitEmptyDecl(EmptyDecl *D);
void VisitLifetimeExtendedTemporaryDecl(LifetimeExtendedTemporaryDecl *D);
std::pair<uint64_t, uint64_t> VisitDeclContext(DeclContext *DC);
template <typename T>
RedeclarableResult VisitRedeclarable(Redeclarable<T> *D);
template <typename T>
void mergeRedeclarable(Redeclarable<T> *D, RedeclarableResult &Redecl);
void mergeRedeclarableTemplate(RedeclarableTemplateDecl *D,
RedeclarableResult &Redecl);
template <typename T> void mergeMergeable(Mergeable<T> *D);
void mergeMergeable(LifetimeExtendedTemporaryDecl *D);
ObjCTypeParamList *ReadObjCTypeParamList();
// FIXME: Reorder according to DeclNodes.td?
void VisitObjCMethodDecl(ObjCMethodDecl *D);
void VisitObjCTypeParamDecl(ObjCTypeParamDecl *D);
void VisitObjCContainerDecl(ObjCContainerDecl *D);
void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
void VisitObjCIvarDecl(ObjCIvarDecl *D);
void VisitObjCProtocolDecl(ObjCProtocolDecl *D);
void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D);
void VisitObjCCategoryDecl(ObjCCategoryDecl *D);
void VisitObjCImplDecl(ObjCImplDecl *D);
void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
void VisitObjCImplementationDecl(ObjCImplementationDecl *D);
void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D);
void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D);
void VisitOMPAllocateDecl(OMPAllocateDecl *D);
void VisitOMPDeclareReductionDecl(OMPDeclareReductionDecl *D);
void VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D);
void VisitOMPRequiresDecl(OMPRequiresDecl *D);
void VisitOMPCapturedExprDecl(OMPCapturedExprDecl *D);
};
} // namespace clang
namespace {
/// Iterator over the redeclarations of a declaration that have already
/// been merged into the same redeclaration chain.
template <typename DeclT> class MergedRedeclIterator {
DeclT *Start = nullptr;
DeclT *Canonical = nullptr;
DeclT *Current = nullptr;
public:
MergedRedeclIterator() = default;
MergedRedeclIterator(DeclT *Start) : Start(Start), Current(Start) {}
DeclT *operator*() { return Current; }
MergedRedeclIterator &operator++() {
if (Current->isFirstDecl()) {
Canonical = Current;
Current = Current->getMostRecentDecl();
} else
Current = Current->getPreviousDecl();
// If we started in the merged portion, we'll reach our start position
// eventually. Otherwise, we'll never reach it, but the second declaration
// we reached was the canonical declaration, so stop when we see that one
// again.
if (Current == Start || Current == Canonical)
Current = nullptr;
return *this;
}
friend bool operator!=(const MergedRedeclIterator &A,
const MergedRedeclIterator &B) {
return A.Current != B.Current;
}
};
} // namespace
template <typename DeclT>
static llvm::iterator_range<MergedRedeclIterator<DeclT>>
merged_redecls(DeclT *D) {
return llvm::make_range(MergedRedeclIterator<DeclT>(D),
MergedRedeclIterator<DeclT>());
}
uint64_t ASTDeclReader::GetCurrentCursorOffset() {
return Loc.F->DeclsCursor.GetCurrentBitNo() + Loc.F->GlobalBitOffset;
}
void ASTDeclReader::ReadFunctionDefinition(FunctionDecl *FD) {
if (Record.readInt()) {
Reader.DefinitionSource[FD] =
Loc.F->Kind == ModuleKind::MK_MainFile ||
Reader.getContext().getLangOpts().BuildingPCHWithObjectFile;
}
if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) {
CD->setNumCtorInitializers(Record.readInt());
if (CD->getNumCtorInitializers())
CD->CtorInitializers = ReadGlobalOffset();
}
// Store the offset of the body so we can lazily load it later.
Reader.PendingBodies[FD] = GetCurrentCursorOffset();
}
void ASTDeclReader::Visit(Decl *D) {
DeclVisitor<ASTDeclReader, void>::Visit(D);
// At this point we have deserialized and merged the decl and it is safe to
// update its canonical decl to signal that the entire entity is used.
D->getCanonicalDecl()->Used |= IsDeclMarkedUsed;
IsDeclMarkedUsed = false;
if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
if (auto *TInfo = DD->getTypeSourceInfo())
Record.readTypeLoc(TInfo->getTypeLoc());
}
if (auto *TD = dyn_cast<TypeDecl>(D)) {
// We have a fully initialized TypeDecl. Read its type now.
TD->setTypeForDecl(Reader.GetType(DeferredTypeID).getTypePtrOrNull());
// If this is a tag declaration with a typedef name for linkage, it's safe
// to load that typedef now.
if (NamedDeclForTagDecl.isValid())
cast<TagDecl>(D)->TypedefNameDeclOrQualifier =
cast<TypedefNameDecl>(Reader.GetDecl(NamedDeclForTagDecl));
} else if (auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
// if we have a fully initialized TypeDecl, we can safely read its type now.
ID->TypeForDecl = Reader.GetType(DeferredTypeID).getTypePtrOrNull();
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
// FunctionDecl's body was written last after all other Stmts/Exprs.
if (Record.readInt())
ReadFunctionDefinition(FD);
} else if (auto *VD = dyn_cast<VarDecl>(D)) {
ReadVarDeclInit(VD);
} else if (auto *FD = dyn_cast<FieldDecl>(D)) {
if (FD->hasInClassInitializer() && Record.readInt()) {
FD->setLazyInClassInitializer(LazyDeclStmtPtr(GetCurrentCursorOffset()));
}
}
}
void ASTDeclReader::VisitDecl(Decl *D) {
BitsUnpacker DeclBits(Record.readInt());
auto ModuleOwnership =
(Decl::ModuleOwnershipKind)DeclBits.getNextBits(/*Width=*/3);
D->setReferenced(DeclBits.getNextBit());
D->Used = DeclBits.getNextBit();
IsDeclMarkedUsed |= D->Used;
D->setAccess((AccessSpecifier)DeclBits.getNextBits(/*Width=*/2));
D->setImplicit(DeclBits.getNextBit());
bool HasStandaloneLexicalDC = DeclBits.getNextBit();
bool HasAttrs = DeclBits.getNextBit();
D->setTopLevelDeclInObjCContainer(DeclBits.getNextBit());
D->InvalidDecl = DeclBits.getNextBit();
D->FromASTFile = true;
if (D->isTemplateParameter() || D->isTemplateParameterPack() ||
isa<ParmVarDecl, ObjCTypeParamDecl>(D)) {
// We don't want to deserialize the DeclContext of a template
// parameter or of a parameter of a function template immediately. These
// entities might be used in the formulation of its DeclContext (for
// example, a function parameter can be used in decltype() in trailing
// return type of the function). Use the translation unit DeclContext as a
// placeholder.
GlobalDeclID SemaDCIDForTemplateParmDecl = readDeclID();
GlobalDeclID LexicalDCIDForTemplateParmDecl =
HasStandaloneLexicalDC ? readDeclID() : GlobalDeclID();
if (LexicalDCIDForTemplateParmDecl.isInvalid())
LexicalDCIDForTemplateParmDecl = SemaDCIDForTemplateParmDecl;
Reader.addPendingDeclContextInfo(D,
SemaDCIDForTemplateParmDecl,
LexicalDCIDForTemplateParmDecl);
D->setDeclContext(Reader.getContext().getTranslationUnitDecl());
} else {
auto *SemaDC = readDeclAs<DeclContext>();
auto *LexicalDC =
HasStandaloneLexicalDC ? readDeclAs<DeclContext>() : nullptr;
if (!LexicalDC)
LexicalDC = SemaDC;
// If the context is a class, we might not have actually merged it yet, in
// the case where the definition comes from an update record.
DeclContext *MergedSemaDC;
if (auto *RD = dyn_cast<CXXRecordDecl>(SemaDC))
MergedSemaDC = getOrFakePrimaryClassDefinition(Reader, RD);
else
MergedSemaDC = Reader.MergedDeclContexts.lookup(SemaDC);
// Avoid calling setLexicalDeclContext() directly because it uses
// Decl::getASTContext() internally which is unsafe during derialization.
D->setDeclContextsImpl(MergedSemaDC ? MergedSemaDC : SemaDC, LexicalDC,
Reader.getContext());
}
D->setLocation(ThisDeclLoc);
if (HasAttrs) {
AttrVec Attrs;
Record.readAttributes(Attrs);
// Avoid calling setAttrs() directly because it uses Decl::getASTContext()
// internally which is unsafe during derialization.
D->setAttrsImpl(Attrs, Reader.getContext());
}
// Determine whether this declaration is part of a (sub)module. If so, it
// may not yet be visible.
bool ModulePrivate =
(ModuleOwnership == Decl::ModuleOwnershipKind::ModulePrivate);
if (unsigned SubmoduleID = readSubmoduleID()) {
switch (ModuleOwnership) {
case Decl::ModuleOwnershipKind::Visible:
ModuleOwnership = Decl::ModuleOwnershipKind::VisibleWhenImported;
break;
case Decl::ModuleOwnershipKind::Unowned:
case Decl::ModuleOwnershipKind::VisibleWhenImported:
case Decl::ModuleOwnershipKind::ReachableWhenImported:
case Decl::ModuleOwnershipKind::ModulePrivate:
break;
}
D->setModuleOwnershipKind(ModuleOwnership);
// Store the owning submodule ID in the declaration.
D->setOwningModuleID(SubmoduleID);
if (ModulePrivate) {
// Module-private declarations are never visible, so there is no work to
// do.
} else if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
// If local visibility is being tracked, this declaration will become
// hidden and visible as the owning module does.
} else if (Module *Owner = Reader.getSubmodule(SubmoduleID)) {
// Mark the declaration as visible when its owning module becomes visible.
if (Owner->NameVisibility == Module::AllVisible)
D->setVisibleDespiteOwningModule();
else
Reader.HiddenNamesMap[Owner].push_back(D);
}
} else if (ModulePrivate) {
D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
}
}
void ASTDeclReader::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
VisitDecl(D);
D->setLocation(readSourceLocation());
D->CommentKind = (PragmaMSCommentKind)Record.readInt();
std::string Arg = readString();
memcpy(D->getTrailingObjects<char>(), Arg.data(), Arg.size());
D->getTrailingObjects<char>()[Arg.size()] = '\0';
}
void ASTDeclReader::VisitPragmaDetectMismatchDecl(PragmaDetectMismatchDecl *D) {
VisitDecl(D);
D->setLocation(readSourceLocation());
std::string Name = readString();
memcpy(D->getTrailingObjects<char>(), Name.data(), Name.size());
D->getTrailingObjects<char>()[Name.size()] = '\0';
D->ValueStart = Name.size() + 1;
std::string Value = readString();
memcpy(D->getTrailingObjects<char>() + D->ValueStart, Value.data(),
Value.size());
D->getTrailingObjects<char>()[D->ValueStart + Value.size()] = '\0';
}
void ASTDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) {
llvm_unreachable("Translation units are not serialized");
}
void ASTDeclReader::VisitNamedDecl(NamedDecl *ND) {
VisitDecl(ND);
ND->setDeclName(Record.readDeclarationName());
AnonymousDeclNumber = Record.readInt();
}
void ASTDeclReader::VisitTypeDecl(TypeDecl *TD) {
VisitNamedDecl(TD);
TD->setLocStart(readSourceLocation());
// Delay type reading until after we have fully initialized the decl.
DeferredTypeID = Record.getGlobalTypeID(Record.readInt());
}
RedeclarableResult ASTDeclReader::VisitTypedefNameDecl(TypedefNameDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TypeSourceInfo *TInfo = readTypeSourceInfo();
if (Record.readInt()) { // isModed
QualType modedT = Record.readType();
TD->setModedTypeSourceInfo(TInfo, modedT);
} else
TD->setTypeSourceInfo(TInfo);
// Read and discard the declaration for which this is a typedef name for
// linkage, if it exists. We cannot rely on our type to pull in this decl,
// because it might have been merged with a type from another module and
// thus might not refer to our version of the declaration.
readDecl();
return Redecl;
}
void ASTDeclReader::VisitTypedefDecl(TypedefDecl *TD) {
RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
mergeRedeclarable(TD, Redecl);
}
void ASTDeclReader::VisitTypeAliasDecl(TypeAliasDecl *TD) {
RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
if (auto *Template = readDeclAs<TypeAliasTemplateDecl>())
// Merged when we merge the template.
TD->setDescribedAliasTemplate(Template);
else
mergeRedeclarable(TD, Redecl);
}
RedeclarableResult ASTDeclReader::VisitTagDecl(TagDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TD->IdentifierNamespace = Record.readInt();
BitsUnpacker TagDeclBits(Record.readInt());
TD->setTagKind(
static_cast<TagTypeKind>(TagDeclBits.getNextBits(/*Width=*/3)));
TD->setCompleteDefinition(TagDeclBits.getNextBit());
TD->setEmbeddedInDeclarator(TagDeclBits.getNextBit());
TD->setFreeStanding(TagDeclBits.getNextBit());
TD->setCompleteDefinitionRequired(TagDeclBits.getNextBit());
TD->setBraceRange(readSourceRange());
switch (TagDeclBits.getNextBits(/*Width=*/2)) {
case 0:
break;
case 1: { // ExtInfo
auto *Info = new (Reader.getContext()) TagDecl::ExtInfo();
Record.readQualifierInfo(*Info);
TD->TypedefNameDeclOrQualifier = Info;
break;
}
case 2: // TypedefNameForAnonDecl
NamedDeclForTagDecl = readDeclID();
TypedefNameForLinkage = Record.readIdentifier();
break;
default:
llvm_unreachable("unexpected tag info kind");
}
if (!isa<CXXRecordDecl>(TD))
mergeRedeclarable(TD, Redecl);
return Redecl;
}
void ASTDeclReader::VisitEnumDecl(EnumDecl *ED) {
VisitTagDecl(ED);
if (TypeSourceInfo *TI = readTypeSourceInfo())
ED->setIntegerTypeSourceInfo(TI);
else
ED->setIntegerType(Record.readType());
ED->setPromotionType(Record.readType());
BitsUnpacker EnumDeclBits(Record.readInt());
ED->setNumPositiveBits(EnumDeclBits.getNextBits(/*Width=*/8));
ED->setNumNegativeBits(EnumDeclBits.getNextBits(/*Width=*/8));
ED->setScoped(EnumDeclBits.getNextBit());
ED->setScopedUsingClassTag(EnumDeclBits.getNextBit());
ED->setFixed(EnumDeclBits.getNextBit());
ED->setHasODRHash(true);
ED->ODRHash = Record.readInt();
// If this is a definition subject to the ODR, and we already have a
// definition, merge this one into it.
if (ED->isCompleteDefinition() && Reader.getContext().getLangOpts().Modules) {
EnumDecl *&OldDef = Reader.EnumDefinitions[ED->getCanonicalDecl()];
if (!OldDef) {
// This is the first time we've seen an imported definition. Look for a
// local definition before deciding that we are the first definition.
for (auto *D : merged_redecls(ED->getCanonicalDecl())) {
if (!D->isFromASTFile() && D->isCompleteDefinition()) {
OldDef = D;
break;
}
}
}
if (OldDef) {
Reader.MergedDeclContexts.insert(std::make_pair(ED, OldDef));
ED->demoteThisDefinitionToDeclaration();
Reader.mergeDefinitionVisibility(OldDef, ED);
// We don't want to check the ODR hash value for declarations from global
// module fragment.
if (!shouldSkipCheckingODR(ED) && !shouldSkipCheckingODR(OldDef) &&
OldDef->getODRHash() != ED->getODRHash())
Reader.PendingEnumOdrMergeFailures[OldDef].push_back(ED);
} else {
OldDef = ED;
}
}
if (auto *InstED = readDeclAs<EnumDecl>()) {
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
ED->setInstantiationOfMemberEnum(Reader.getContext(), InstED, TSK);
ED->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
}
}
RedeclarableResult ASTDeclReader::VisitRecordDeclImpl(RecordDecl *RD) {
RedeclarableResult Redecl = VisitTagDecl(RD);
BitsUnpacker RecordDeclBits(Record.readInt());
RD->setHasFlexibleArrayMember(RecordDeclBits.getNextBit());
RD->setAnonymousStructOrUnion(RecordDeclBits.getNextBit());
RD->setHasObjectMember(RecordDeclBits.getNextBit());
RD->setHasVolatileMember(RecordDeclBits.getNextBit());
RD->setNonTrivialToPrimitiveDefaultInitialize(RecordDeclBits.getNextBit());
RD->setNonTrivialToPrimitiveCopy(RecordDeclBits.getNextBit());
RD->setNonTrivialToPrimitiveDestroy(RecordDeclBits.getNextBit());
RD->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(
RecordDeclBits.getNextBit());
RD->setHasNonTrivialToPrimitiveDestructCUnion(RecordDeclBits.getNextBit());
RD->setHasNonTrivialToPrimitiveCopyCUnion(RecordDeclBits.getNextBit());
RD->setParamDestroyedInCallee(RecordDeclBits.getNextBit());
RD->setArgPassingRestrictions(
(RecordArgPassingKind)RecordDeclBits.getNextBits(/*Width=*/2));
return Redecl;
}
void ASTDeclReader::VisitRecordDecl(RecordDecl *RD) {
VisitRecordDeclImpl(RD);
RD->setODRHash(Record.readInt());
// Maintain the invariant of a redeclaration chain containing only
// a single definition.
if (RD->isCompleteDefinition()) {
RecordDecl *Canon = static_cast<RecordDecl *>(RD->getCanonicalDecl());
RecordDecl *&OldDef = Reader.RecordDefinitions[Canon];
if (!OldDef) {
// This is the first time we've seen an imported definition. Look for a
// local definition before deciding that we are the first definition.
for (auto *D : merged_redecls(Canon)) {
if (!D->isFromASTFile() && D->isCompleteDefinition()) {
OldDef = D;
break;
}
}
}
if (OldDef) {
Reader.MergedDeclContexts.insert(std::make_pair(RD, OldDef));
RD->demoteThisDefinitionToDeclaration();
Reader.mergeDefinitionVisibility(OldDef, RD);
if (OldDef->getODRHash() != RD->getODRHash())
Reader.PendingRecordOdrMergeFailures[OldDef].push_back(RD);
} else {
OldDef = RD;
}
}
}
void ASTDeclReader::VisitValueDecl(ValueDecl *VD) {
VisitNamedDecl(VD);
// For function or variable declarations, defer reading the type in case the
// declaration has a deduced type that references an entity declared within
// the function definition or variable initializer.
if (isa<FunctionDecl, VarDecl>(VD))
DeferredTypeID = Record.getGlobalTypeID(Record.readInt());
else
VD->setType(Record.readType());
}
void ASTDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) {
VisitValueDecl(ECD);
if (Record.readInt())
ECD->setInitExpr(Record.readExpr());
ECD->setInitVal(Reader.getContext(), Record.readAPSInt());
mergeMergeable(ECD);
}
void ASTDeclReader::VisitDeclaratorDecl(DeclaratorDecl *DD) {
VisitValueDecl(DD);
DD->setInnerLocStart(readSourceLocation());
if (Record.readInt()) { // hasExtInfo
auto *Info = new (Reader.getContext()) DeclaratorDecl::ExtInfo();
Record.readQualifierInfo(*Info);
Info->TrailingRequiresClause = Record.readExpr();
DD->DeclInfo = Info;
}
QualType TSIType = Record.readType();
DD->setTypeSourceInfo(
TSIType.isNull() ? nullptr
: Reader.getContext().CreateTypeSourceInfo(TSIType));
}
void ASTDeclReader::VisitFunctionDecl(FunctionDecl *FD) {
RedeclarableResult Redecl = VisitRedeclarable(FD);
FunctionDecl *Existing = nullptr;
switch ((FunctionDecl::TemplatedKind)Record.readInt()) {
case FunctionDecl::TK_NonTemplate:
break;
case FunctionDecl::TK_DependentNonTemplate:
FD->setInstantiatedFromDecl(readDeclAs<FunctionDecl>());
break;
case FunctionDecl::TK_FunctionTemplate: {
auto *Template = readDeclAs<FunctionTemplateDecl>();
Template->init(FD);
FD->setDescribedFunctionTemplate(Template);
break;
}
case FunctionDecl::TK_MemberSpecialization: {
auto *InstFD = readDeclAs<FunctionDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
FD->setInstantiationOfMemberFunction(Reader.getContext(), InstFD, TSK);
FD->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
break;
}
case FunctionDecl::TK_FunctionTemplateSpecialization: {
auto *Template = readDeclAs<FunctionTemplateDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
// Template arguments.
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true);
// Template args as written.
TemplateArgumentListInfo TemplArgsWritten;
bool HasTemplateArgumentsAsWritten = Record.readBool();
if (HasTemplateArgumentsAsWritten)
Record.readTemplateArgumentListInfo(TemplArgsWritten);
SourceLocation POI = readSourceLocation();
ASTContext &C = Reader.getContext();
TemplateArgumentList *TemplArgList =
TemplateArgumentList::CreateCopy(C, TemplArgs);
MemberSpecializationInfo *MSInfo = nullptr;
if (Record.readInt()) {
auto *FD = readDeclAs<FunctionDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
MSInfo = new (C) MemberSpecializationInfo(FD, TSK);
MSInfo->setPointOfInstantiation(POI);
}
FunctionTemplateSpecializationInfo *FTInfo =
FunctionTemplateSpecializationInfo::Create(
C, FD, Template, TSK, TemplArgList,
HasTemplateArgumentsAsWritten ? &TemplArgsWritten : nullptr, POI,
MSInfo);
FD->TemplateOrSpecialization = FTInfo;
if (FD->isCanonicalDecl()) { // if canonical add to template's set.
// The template that contains the specializations set. It's not safe to
// use getCanonicalDecl on Template since it may still be initializing.
auto *CanonTemplate = readDeclAs<FunctionTemplateDecl>();
// Get the InsertPos by FindNodeOrInsertPos() instead of calling
// InsertNode(FTInfo) directly to avoid the getASTContext() call in
// FunctionTemplateSpecializationInfo's Profile().
// We avoid getASTContext because a decl in the parent hierarchy may
// be initializing.
llvm::FoldingSetNodeID ID;
FunctionTemplateSpecializationInfo::Profile(ID, TemplArgs, C);
void *InsertPos = nullptr;
FunctionTemplateDecl::Common *CommonPtr = CanonTemplate->getCommonPtr();
FunctionTemplateSpecializationInfo *ExistingInfo =
CommonPtr->Specializations.FindNodeOrInsertPos(ID, InsertPos);
if (InsertPos)
CommonPtr->Specializations.InsertNode(FTInfo, InsertPos);
else {
assert(Reader.getContext().getLangOpts().Modules &&
"already deserialized this template specialization");
Existing = ExistingInfo->getFunction();
}
}
break;
}
case FunctionDecl::TK_DependentFunctionTemplateSpecialization: {
// Templates.
UnresolvedSet<8> Candidates;
unsigned NumCandidates = Record.readInt();
while (NumCandidates--)
Candidates.addDecl(readDeclAs<NamedDecl>());
// Templates args.
TemplateArgumentListInfo TemplArgsWritten;
bool HasTemplateArgumentsAsWritten = Record.readBool();
if (HasTemplateArgumentsAsWritten)
Record.readTemplateArgumentListInfo(TemplArgsWritten);
FD->setDependentTemplateSpecialization(
Reader.getContext(), Candidates,
HasTemplateArgumentsAsWritten ? &TemplArgsWritten : nullptr);
// These are not merged; we don't need to merge redeclarations of dependent
// template friends.
break;
}
}
VisitDeclaratorDecl(FD);
// Attach a type to this function. Use the real type if possible, but fall
// back to the type as written if it involves a deduced return type.
if (FD->getTypeSourceInfo() && FD->getTypeSourceInfo()
->getType()
->castAs<FunctionType>()
->getReturnType()
->getContainedAutoType()) {
// We'll set up the real type in Visit, once we've finished loading the
// function.
FD->setType(FD->getTypeSourceInfo()->getType());
Reader.PendingDeducedFunctionTypes.push_back({FD, DeferredTypeID});
} else {
FD->setType(Reader.GetType(DeferredTypeID));
}
DeferredTypeID = 0;
FD->DNLoc = Record.readDeclarationNameLoc(FD->getDeclName());
FD->IdentifierNamespace = Record.readInt();
// FunctionDecl's body is handled last at ASTDeclReader::Visit,
// after everything else is read.
BitsUnpacker FunctionDeclBits(Record.readInt());
FD->setCachedLinkage((Linkage)FunctionDeclBits.getNextBits(/*Width=*/3));
FD->setStorageClass((StorageClass)FunctionDeclBits.getNextBits(/*Width=*/3));
FD->setInlineSpecified(FunctionDeclBits.getNextBit());
FD->setImplicitlyInline(FunctionDeclBits.getNextBit());
FD->setHasSkippedBody(FunctionDeclBits.getNextBit());
FD->setVirtualAsWritten(FunctionDeclBits.getNextBit());
// We defer calling `FunctionDecl::setPure()` here as for methods of
// `CXXTemplateSpecializationDecl`s, we may not have connected up the
// definition (which is required for `setPure`).
const bool Pure = FunctionDeclBits.getNextBit();
FD->setHasInheritedPrototype(FunctionDeclBits.getNextBit());
FD->setHasWrittenPrototype(FunctionDeclBits.getNextBit());
FD->setDeletedAsWritten(FunctionDeclBits.getNextBit());
FD->setTrivial(FunctionDeclBits.getNextBit());
FD->setTrivialForCall(FunctionDeclBits.getNextBit());
FD->setDefaulted(FunctionDeclBits.getNextBit());
FD->setExplicitlyDefaulted(FunctionDeclBits.getNextBit());
FD->setIneligibleOrNotSelected(FunctionDeclBits.getNextBit());
FD->setConstexprKind(
(ConstexprSpecKind)FunctionDeclBits.getNextBits(/*Width=*/2));
FD->setHasImplicitReturnZero(FunctionDeclBits.getNextBit());
FD->setIsMultiVersion(FunctionDeclBits.getNextBit());
FD->setLateTemplateParsed(FunctionDeclBits.getNextBit());
FD->setFriendConstraintRefersToEnclosingTemplate(
FunctionDeclBits.getNextBit());
FD->setUsesSEHTry(FunctionDeclBits.getNextBit());
FD->EndRangeLoc = readSourceLocation();
if (FD->isExplicitlyDefaulted())
FD->setDefaultLoc(readSourceLocation());
FD->ODRHash = Record.readInt();
FD->setHasODRHash(true);
if (FD->isDefaulted() || FD->isDeletedAsWritten()) {
// If 'Info' is nonzero, we need to read an DefaultedOrDeletedInfo; if,
// additionally, the second bit is also set, we also need to read
// a DeletedMessage for the DefaultedOrDeletedInfo.
if (auto Info = Record.readInt()) {
bool HasMessage = Info & 2;
StringLiteral *DeletedMessage =
HasMessage ? cast<StringLiteral>(Record.readExpr()) : nullptr;
unsigned NumLookups = Record.readInt();
SmallVector<DeclAccessPair, 8> Lookups;
for (unsigned I = 0; I != NumLookups; ++I) {
NamedDecl *ND = Record.readDeclAs<NamedDecl>();
AccessSpecifier AS = (AccessSpecifier)Record.readInt();
Lookups.push_back(DeclAccessPair::make(ND, AS));
}
FD->setDefaultedOrDeletedInfo(
FunctionDecl::DefaultedOrDeletedFunctionInfo::Create(
Reader.getContext(), Lookups, DeletedMessage));
}
}
if (Existing)
MergeImpl.mergeRedeclarable(FD, Existing, Redecl);
else if (auto Kind = FD->getTemplatedKind();
Kind == FunctionDecl::TK_FunctionTemplate ||
Kind == FunctionDecl::TK_FunctionTemplateSpecialization) {
// Function Templates have their FunctionTemplateDecls merged instead of
// their FunctionDecls.
auto merge = [this, &Redecl, FD](auto &&F) {
auto *Existing = cast_or_null<FunctionDecl>(Redecl.getKnownMergeTarget());
RedeclarableResult NewRedecl(Existing ? F(Existing) : nullptr,
Redecl.getFirstID(), Redecl.isKeyDecl());
mergeRedeclarableTemplate(F(FD), NewRedecl);
};
if (Kind == FunctionDecl::TK_FunctionTemplate)
merge(
[](FunctionDecl *FD) { return FD->getDescribedFunctionTemplate(); });
else
merge([](FunctionDecl *FD) {
return FD->getTemplateSpecializationInfo()->getTemplate();
});
} else
mergeRedeclarable(FD, Redecl);
// Defer calling `setPure` until merging above has guaranteed we've set
// `DefinitionData` (as this will need to access it).
FD->setIsPureVirtual(Pure);
// Read in the parameters.
unsigned NumParams = Record.readInt();
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(readDeclAs<ParmVarDecl>());
FD->setParams(Reader.getContext(), Params);
}
void ASTDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) {
VisitNamedDecl(MD);
if (Record.readInt()) {
// Load the body on-demand. Most clients won't care, because method
// definitions rarely show up in headers.
Reader.PendingBodies[MD] = GetCurrentCursorOffset();
}
MD->setSelfDecl(readDeclAs<ImplicitParamDecl>());
MD->setCmdDecl(readDeclAs<ImplicitParamDecl>());
MD->setInstanceMethod(Record.readInt());
MD->setVariadic(Record.readInt());
MD->setPropertyAccessor(Record.readInt());
MD->setSynthesizedAccessorStub(Record.readInt());
MD->setDefined(Record.readInt());
MD->setOverriding(Record.readInt());
MD->setHasSkippedBody(Record.readInt());
MD->setIsRedeclaration(Record.readInt());
MD->setHasRedeclaration(Record.readInt());
if (MD->hasRedeclaration())
Reader.getContext().setObjCMethodRedeclaration(MD,
readDeclAs<ObjCMethodDecl>());
MD->setDeclImplementation(
static_cast<ObjCImplementationControl>(Record.readInt()));
MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record.readInt());
MD->setRelatedResultType(Record.readInt());
MD->setReturnType(Record.readType());
MD->setReturnTypeSourceInfo(readTypeSourceInfo());
MD->DeclEndLoc = readSourceLocation();
unsigned NumParams = Record.readInt();
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(readDeclAs<ParmVarDecl>());
MD->setSelLocsKind((SelectorLocationsKind)Record.readInt());
unsigned NumStoredSelLocs = Record.readInt();
SmallVector<SourceLocation, 16> SelLocs;
SelLocs.reserve(NumStoredSelLocs);
for (unsigned i = 0; i != NumStoredSelLocs; ++i)
SelLocs.push_back(readSourceLocation());
MD->setParamsAndSelLocs(Reader.getContext(), Params, SelLocs);
}
void ASTDeclReader::VisitObjCTypeParamDecl(ObjCTypeParamDecl *D) {
VisitTypedefNameDecl(D);
D->Variance = Record.readInt();
D->Index = Record.readInt();
D->VarianceLoc = readSourceLocation();
D->ColonLoc = readSourceLocation();
}
void ASTDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) {
VisitNamedDecl(CD);
CD->setAtStartLoc(readSourceLocation());
CD->setAtEndRange(readSourceRange());
}
ObjCTypeParamList *ASTDeclReader::ReadObjCTypeParamList() {
unsigned numParams = Record.readInt();
if (numParams == 0)
return nullptr;
SmallVector<ObjCTypeParamDecl *, 4> typeParams;
typeParams.reserve(numParams);
for (unsigned i = 0; i != numParams; ++i) {
auto *typeParam = readDeclAs<ObjCTypeParamDecl>();
if (!typeParam)
return nullptr;
typeParams.push_back(typeParam);
}
SourceLocation lAngleLoc = readSourceLocation();
SourceLocation rAngleLoc = readSourceLocation();
return ObjCTypeParamList::create(Reader.getContext(), lAngleLoc,
typeParams, rAngleLoc);
}
void ASTDeclReader::ReadObjCDefinitionData(
struct ObjCInterfaceDecl::DefinitionData &Data) {
// Read the superclass.
Data.SuperClassTInfo = readTypeSourceInfo();
Data.EndLoc = readSourceLocation();
Data.HasDesignatedInitializers = Record.readInt();
Data.ODRHash = Record.readInt();
Data.HasODRHash = true;
// Read the directly referenced protocols and their SourceLocations.
unsigned NumProtocols = Record.readInt();
SmallVector<ObjCProtocolDecl *, 16> Protocols;
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(readDeclAs<ObjCProtocolDecl>());
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
ProtoLocs.push_back(readSourceLocation());
Data.ReferencedProtocols.set(Protocols.data(), NumProtocols, ProtoLocs.data(),
Reader.getContext());
// Read the transitive closure of protocols referenced by this class.
NumProtocols = Record.readInt();
Protocols.clear();
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(readDeclAs<ObjCProtocolDecl>());
Data.AllReferencedProtocols.set(Protocols.data(), NumProtocols,
Reader.getContext());
}
void ASTDeclMerger::MergeDefinitionData(
ObjCInterfaceDecl *D, struct ObjCInterfaceDecl::DefinitionData &&NewDD) {
struct ObjCInterfaceDecl::DefinitionData &DD = D->data();
if (DD.Definition == NewDD.Definition)
return;
Reader.MergedDeclContexts.insert(
std::make_pair(NewDD.Definition, DD.Definition));
Reader.mergeDefinitionVisibility(DD.Definition, NewDD.Definition);
if (D->getODRHash() != NewDD.ODRHash)
Reader.PendingObjCInterfaceOdrMergeFailures[DD.Definition].push_back(
{NewDD.Definition, &NewDD});
}
void ASTDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) {
RedeclarableResult Redecl = VisitRedeclarable(ID);
VisitObjCContainerDecl(ID);
DeferredTypeID = Record.getGlobalTypeID(Record.readInt());
mergeRedeclarable(ID, Redecl);
ID->TypeParamList = ReadObjCTypeParamList();
if (Record.readInt()) {
// Read the definition.
ID->allocateDefinitionData();
ReadObjCDefinitionData(ID->data());
ObjCInterfaceDecl *Canon = ID->getCanonicalDecl();
if (Canon->Data.getPointer()) {
// If we already have a definition, keep the definition invariant and
// merge the data.
MergeImpl.MergeDefinitionData(Canon, std::move(ID->data()));
ID->Data = Canon->Data;
} else {
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
ID->getCanonicalDecl()->Data = ID->Data;
// We will rebuild this list lazily.
ID->setIvarList(nullptr);
}
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(ID);
// Note that we've loaded this Objective-C class.
Reader.ObjCClassesLoaded.push_back(ID);
} else {
ID->Data = ID->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) {
VisitFieldDecl(IVD);
IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record.readInt());
// This field will be built lazily.
IVD->setNextIvar(nullptr);
bool synth = Record.readInt();
IVD->setSynthesize(synth);
// Check ivar redeclaration.
if (IVD->isInvalidDecl())
return;
// Don't check ObjCInterfaceDecl as interfaces are named and mismatches can be
// detected in VisitObjCInterfaceDecl. Here we are looking for redeclarations
// in extensions.
if (isa<ObjCInterfaceDecl>(IVD->getDeclContext()))
return;
ObjCInterfaceDecl *CanonIntf =
IVD->getContainingInterface()->getCanonicalDecl();
IdentifierInfo *II = IVD->getIdentifier();
ObjCIvarDecl *PrevIvar = CanonIntf->lookupInstanceVariable(II);
if (PrevIvar && PrevIvar != IVD) {
auto *ParentExt = dyn_cast<ObjCCategoryDecl>(IVD->getDeclContext());
auto *PrevParentExt =
dyn_cast<ObjCCategoryDecl>(PrevIvar->getDeclContext());
if (ParentExt && PrevParentExt) {
// Postpone diagnostic as we should merge identical extensions from
// different modules.
Reader
.PendingObjCExtensionIvarRedeclarations[std::make_pair(ParentExt,
PrevParentExt)]
.push_back(std::make_pair(IVD, PrevIvar));
} else if (ParentExt || PrevParentExt) {
// Duplicate ivars in extension + implementation are never compatible.
// Compatibility of implementation + implementation should be handled in
// VisitObjCImplementationDecl.
Reader.Diag(IVD->getLocation(), diag::err_duplicate_ivar_declaration)
<< II;
Reader.Diag(PrevIvar->getLocation(), diag::note_previous_definition);
}
}
}
void ASTDeclReader::ReadObjCDefinitionData(
struct ObjCProtocolDecl::DefinitionData &Data) {
unsigned NumProtoRefs = Record.readInt();
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(readDeclAs<ObjCProtocolDecl>());
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(readSourceLocation());
Data.ReferencedProtocols.set(ProtoRefs.data(), NumProtoRefs,
ProtoLocs.data(), Reader.getContext());
Data.ODRHash = Record.readInt();
Data.HasODRHash = true;
}
void ASTDeclMerger::MergeDefinitionData(
ObjCProtocolDecl *D, struct ObjCProtocolDecl::DefinitionData &&NewDD) {
struct ObjCProtocolDecl::DefinitionData &DD = D->data();
if (DD.Definition == NewDD.Definition)
return;
Reader.MergedDeclContexts.insert(
std::make_pair(NewDD.Definition, DD.Definition));
Reader.mergeDefinitionVisibility(DD.Definition, NewDD.Definition);
if (D->getODRHash() != NewDD.ODRHash)
Reader.PendingObjCProtocolOdrMergeFailures[DD.Definition].push_back(
{NewDD.Definition, &NewDD});
}
void ASTDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) {
RedeclarableResult Redecl = VisitRedeclarable(PD);
VisitObjCContainerDecl(PD);
mergeRedeclarable(PD, Redecl);
if (Record.readInt()) {
// Read the definition.
PD->allocateDefinitionData();
ReadObjCDefinitionData(PD->data());
ObjCProtocolDecl *Canon = PD->getCanonicalDecl();
if (Canon->Data.getPointer()) {
// If we already have a definition, keep the definition invariant and
// merge the data.
MergeImpl.MergeDefinitionData(Canon, std::move(PD->data()));
PD->Data = Canon->Data;
} else {
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
PD->getCanonicalDecl()->Data = PD->Data;
}
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(PD);
} else {
PD->Data = PD->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) {
VisitFieldDecl(FD);
}
void ASTDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) {
VisitObjCContainerDecl(CD);
CD->setCategoryNameLoc(readSourceLocation());
CD->setIvarLBraceLoc(readSourceLocation());
CD->setIvarRBraceLoc(readSourceLocation());
// Note that this category has been deserialized. We do this before
// deserializing the interface declaration, so that it will consider this
/// category.
Reader.CategoriesDeserialized.insert(CD);
CD->ClassInterface = readDeclAs<ObjCInterfaceDecl>();
CD->TypeParamList = ReadObjCTypeParamList();
unsigned NumProtoRefs = Record.readInt();
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(readDeclAs<ObjCProtocolDecl>());
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(readSourceLocation());
CD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
Reader.getContext());
// Protocols in the class extension belong to the class.
if (NumProtoRefs > 0 && CD->ClassInterface && CD->IsClassExtension())
CD->ClassInterface->mergeClassExtensionProtocolList(
(ObjCProtocolDecl *const *)ProtoRefs.data(), NumProtoRefs,
Reader.getContext());
}
void ASTDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) {
VisitNamedDecl(CAD);
CAD->setClassInterface(readDeclAs<ObjCInterfaceDecl>());
}
void ASTDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
VisitNamedDecl(D);
D->setAtLoc(readSourceLocation());
D->setLParenLoc(readSourceLocation());
QualType T = Record.readType();
TypeSourceInfo *TSI = readTypeSourceInfo();
D->setType(T, TSI);
D->setPropertyAttributes((ObjCPropertyAttribute::Kind)Record.readInt());
D->setPropertyAttributesAsWritten(
(ObjCPropertyAttribute::Kind)Record.readInt());
D->setPropertyImplementation(
(ObjCPropertyDecl::PropertyControl)Record.readInt());
DeclarationName GetterName = Record.readDeclarationName();
SourceLocation GetterLoc = readSourceLocation();
D->setGetterName(GetterName.getObjCSelector(), GetterLoc);
DeclarationName SetterName = Record.readDeclarationName();
SourceLocation SetterLoc = readSourceLocation();
D->setSetterName(SetterName.getObjCSelector(), SetterLoc);
D->setGetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setSetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setPropertyIvarDecl(readDeclAs<ObjCIvarDecl>());
}
void ASTDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) {
VisitObjCContainerDecl(D);
D->setClassInterface(readDeclAs<ObjCInterfaceDecl>());
}
void ASTDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
VisitObjCImplDecl(D);
D->CategoryNameLoc = readSourceLocation();
}
void ASTDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
VisitObjCImplDecl(D);
D->setSuperClass(readDeclAs<ObjCInterfaceDecl>());
D->SuperLoc = readSourceLocation();
D->setIvarLBraceLoc(readSourceLocation());
D->setIvarRBraceLoc(readSourceLocation());
D->setHasNonZeroConstructors(Record.readInt());
D->setHasDestructors(Record.readInt());
D->NumIvarInitializers = Record.readInt();
if (D->NumIvarInitializers)
D->IvarInitializers = ReadGlobalOffset();
}
void ASTDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
VisitDecl(D);
D->setAtLoc(readSourceLocation());
D->setPropertyDecl(readDeclAs<ObjCPropertyDecl>());
D->PropertyIvarDecl = readDeclAs<ObjCIvarDecl>();
D->IvarLoc = readSourceLocation();
D->setGetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setSetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setGetterCXXConstructor(Record.readExpr());
D->setSetterCXXAssignment(Record.readExpr());
}
void ASTDeclReader::VisitFieldDecl(FieldDecl *FD) {
VisitDeclaratorDecl(FD);
FD->Mutable = Record.readInt();
unsigned Bits = Record.readInt();
FD->StorageKind = Bits >> 1;
if (FD->StorageKind == FieldDecl::ISK_CapturedVLAType)
FD->CapturedVLAType =
cast<VariableArrayType>(Record.readType().getTypePtr());
else if (Bits & 1)
FD->setBitWidth(Record.readExpr());
if (!FD->getDeclName()) {
if (auto *Tmpl = readDeclAs<FieldDecl>())
Reader.getContext().setInstantiatedFromUnnamedFieldDecl(FD, Tmpl);
}
mergeMergeable(FD);
}
void ASTDeclReader::VisitMSPropertyDecl(MSPropertyDecl *PD) {
VisitDeclaratorDecl(PD);
PD->GetterId = Record.readIdentifier();
PD->SetterId = Record.readIdentifier();
}
void ASTDeclReader::VisitMSGuidDecl(MSGuidDecl *D) {
VisitValueDecl(D);
D->PartVal.Part1 = Record.readInt();
D->PartVal.Part2 = Record.readInt();
D->PartVal.Part3 = Record.readInt();
for (auto &C : D->PartVal.Part4And5)
C = Record.readInt();
// Add this GUID to the AST context's lookup structure, and merge if needed.
if (MSGuidDecl *Existing = Reader.getContext().MSGuidDecls.GetOrInsertNode(D))
Reader.getContext().setPrimaryMergedDecl(D, Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitUnnamedGlobalConstantDecl(
UnnamedGlobalConstantDecl *D) {
VisitValueDecl(D);
D->Value = Record.readAPValue();
// Add this to the AST context's lookup structure, and merge if needed.
if (UnnamedGlobalConstantDecl *Existing =
Reader.getContext().UnnamedGlobalConstantDecls.GetOrInsertNode(D))
Reader.getContext().setPrimaryMergedDecl(D, Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitTemplateParamObjectDecl(TemplateParamObjectDecl *D) {
VisitValueDecl(D);
D->Value = Record.readAPValue();
// Add this template parameter object to the AST context's lookup structure,
// and merge if needed.
if (TemplateParamObjectDecl *Existing =
Reader.getContext().TemplateParamObjectDecls.GetOrInsertNode(D))
Reader.getContext().setPrimaryMergedDecl(D, Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitIndirectFieldDecl(IndirectFieldDecl *FD) {
VisitValueDecl(FD);
FD->ChainingSize = Record.readInt();
assert(FD->ChainingSize >= 2 && "Anonymous chaining must be >= 2");
FD->Chaining = new (Reader.getContext())NamedDecl*[FD->ChainingSize];
for (unsigned I = 0; I != FD->ChainingSize; ++I)
FD->Chaining[I] = readDeclAs<NamedDecl>();
mergeMergeable(FD);
}
RedeclarableResult ASTDeclReader::VisitVarDeclImpl(VarDecl *VD) {
RedeclarableResult Redecl = VisitRedeclarable(VD);
VisitDeclaratorDecl(VD);
BitsUnpacker VarDeclBits(Record.readInt());
auto VarLinkage = Linkage(VarDeclBits.getNextBits(/*Width=*/3));
bool DefGeneratedInModule = VarDeclBits.getNextBit();
VD->VarDeclBits.SClass = (StorageClass)VarDeclBits.getNextBits(/*Width=*/3);
VD->VarDeclBits.TSCSpec = VarDeclBits.getNextBits(/*Width=*/2);
VD->VarDeclBits.InitStyle = VarDeclBits.getNextBits(/*Width=*/2);
VD->VarDeclBits.ARCPseudoStrong = VarDeclBits.getNextBit();
bool HasDeducedType = false;
if (!isa<ParmVarDecl>(VD)) {
VD->NonParmVarDeclBits.IsThisDeclarationADemotedDefinition =
VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.ExceptionVar = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.NRVOVariable = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.CXXForRangeDecl = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.IsInline = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.IsInlineSpecified = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.IsConstexpr = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.IsInitCapture = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.PreviousDeclInSameBlockScope =
VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.EscapingByref = VarDeclBits.getNextBit();
HasDeducedType = VarDeclBits.getNextBit();
VD->NonParmVarDeclBits.ImplicitParamKind =
VarDeclBits.getNextBits(/*Width*/ 3);
VD->NonParmVarDeclBits.ObjCForDecl = VarDeclBits.getNextBit();
}
// If this variable has a deduced type, defer reading that type until we are
// done deserializing this variable, because the type might refer back to the
// variable.
if (HasDeducedType)
Reader.PendingDeducedVarTypes.push_back({VD, DeferredTypeID});
else
VD->setType(Reader.GetType(DeferredTypeID));
DeferredTypeID = 0;
VD->setCachedLinkage(VarLinkage);
// Reconstruct the one piece of the IdentifierNamespace that we need.
if (VD->getStorageClass() == SC_Extern && VarLinkage != Linkage::None &&
VD->getLexicalDeclContext()->isFunctionOrMethod())
VD->setLocalExternDecl();
if (DefGeneratedInModule) {
Reader.DefinitionSource[VD] =
Loc.F->Kind == ModuleKind::MK_MainFile ||
Reader.getContext().getLangOpts().BuildingPCHWithObjectFile;
}
if (VD->hasAttr<BlocksAttr>()) {
Expr *CopyExpr = Record.readExpr();
if (CopyExpr)
Reader.getContext().setBlockVarCopyInit(VD, CopyExpr, Record.readInt());
}
enum VarKind {
VarNotTemplate = 0, VarTemplate, StaticDataMemberSpecialization
};
switch ((VarKind)Record.readInt()) {
case VarNotTemplate:
// Only true variables (not parameters or implicit parameters) can be
// merged; the other kinds are not really redeclarable at all.
if (!isa<ParmVarDecl>(VD) && !isa<ImplicitParamDecl>(VD) &&
!isa<VarTemplateSpecializationDecl>(VD))
mergeRedeclarable(VD, Redecl);
break;
case VarTemplate:
// Merged when we merge the template.
VD->setDescribedVarTemplate(readDeclAs<VarTemplateDecl>());
break;
case StaticDataMemberSpecialization: { // HasMemberSpecializationInfo.
auto *Tmpl = readDeclAs<VarDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
Reader.getContext().setInstantiatedFromStaticDataMember(VD, Tmpl, TSK,POI);
mergeRedeclarable(VD, Redecl);
break;
}
}
return Redecl;
}
void ASTDeclReader::ReadVarDeclInit(VarDecl *VD) {
if (uint64_t Val = Record.readInt()) {
EvaluatedStmt *Eval = VD->ensureEvaluatedStmt();
Eval->HasConstantInitialization = (Val & 2) != 0;
Eval->HasConstantDestruction = (Val & 4) != 0;
Eval->WasEvaluated = (Val & 8) != 0;
if (Eval->WasEvaluated) {
Eval->Evaluated = Record.readAPValue();
if (Eval->Evaluated.needsCleanup())
Reader.getContext().addDestruction(&Eval->Evaluated);
}
// Store the offset of the initializer. Don't deserialize it yet: it might
// not be needed, and might refer back to the variable, for example if it
// contains a lambda.
Eval->Value = GetCurrentCursorOffset();
}
}
void ASTDeclReader::VisitImplicitParamDecl(ImplicitParamDecl *PD) {
VisitVarDecl(PD);
}
void ASTDeclReader::VisitParmVarDecl(ParmVarDecl *PD) {
VisitVarDecl(PD);
unsigned scopeIndex = Record.readInt();
BitsUnpacker ParmVarDeclBits(Record.readInt());
unsigned isObjCMethodParam = ParmVarDeclBits.getNextBit();
unsigned scopeDepth = ParmVarDeclBits.getNextBits(/*Width=*/7);
unsigned declQualifier = ParmVarDeclBits.getNextBits(/*Width=*/7);
if (isObjCMethodParam) {
assert(scopeDepth == 0);
PD->setObjCMethodScopeInfo(scopeIndex);
PD->ParmVarDeclBits.ScopeDepthOrObjCQuals = declQualifier;
} else {
PD->setScopeInfo(scopeDepth, scopeIndex);
}
PD->ParmVarDeclBits.IsKNRPromoted = ParmVarDeclBits.getNextBit();
PD->ParmVarDeclBits.HasInheritedDefaultArg = ParmVarDeclBits.getNextBit();
if (ParmVarDeclBits.getNextBit()) // hasUninstantiatedDefaultArg.
PD->setUninstantiatedDefaultArg(Record.readExpr());
if (ParmVarDeclBits.getNextBit()) // Valid explicit object parameter
PD->ExplicitObjectParameterIntroducerLoc = Record.readSourceLocation();
// FIXME: If this is a redeclaration of a function from another module, handle
// inheritance of default arguments.
}
void ASTDeclReader::VisitDecompositionDecl(DecompositionDecl *DD) {
VisitVarDecl(DD);
auto **BDs = DD->getTrailingObjects<BindingDecl *>();
for (unsigned I = 0; I != DD->NumBindings; ++I) {
BDs[I] = readDeclAs<BindingDecl>();
BDs[I]->setDecomposedDecl(DD);
}
}
void ASTDeclReader::VisitBindingDecl(BindingDecl *BD) {
VisitValueDecl(BD);
BD->Binding = Record.readExpr();
}
void ASTDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) {
VisitDecl(AD);
AD->setAsmString(cast<StringLiteral>(Record.readExpr()));
AD->setRParenLoc(readSourceLocation());
}
void ASTDeclReader::VisitTopLevelStmtDecl(TopLevelStmtDecl *D) {
VisitDecl(D);
D->Statement = Record.readStmt();
}
void ASTDeclReader::VisitBlockDecl(BlockDecl *BD) {
VisitDecl(BD);
BD->setBody(cast_or_null<CompoundStmt>(Record.readStmt()));
BD->setSignatureAsWritten(readTypeSourceInfo());
unsigned NumParams = Record.readInt();
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(readDeclAs<ParmVarDecl>());
BD->setParams(Params);
BD->setIsVariadic(Record.readInt());
BD->setBlockMissingReturnType(Record.readInt());
BD->setIsConversionFromLambda(Record.readInt());
BD->setDoesNotEscape(Record.readInt());
BD->setCanAvoidCopyToHeap(Record.readInt());
bool capturesCXXThis = Record.readInt();
unsigned numCaptures = Record.readInt();
SmallVector<BlockDecl::Capture, 16> captures;
captures.reserve(numCaptures);
for (unsigned i = 0; i != numCaptures; ++i) {
auto *decl = readDeclAs<VarDecl>();
unsigned flags = Record.readInt();
bool byRef = (flags & 1);
bool nested = (flags & 2);
Expr *copyExpr = ((flags & 4) ? Record.readExpr() : nullptr);
captures.push_back(BlockDecl::Capture(decl, byRef, nested, copyExpr));
}
BD->setCaptures(Reader.getContext(), captures, capturesCXXThis);
}
void ASTDeclReader::VisitCapturedDecl(CapturedDecl *CD) {
VisitDecl(CD);
unsigned ContextParamPos = Record.readInt();
CD->setNothrow(Record.readInt() != 0);
// Body is set by VisitCapturedStmt.
for (unsigned I = 0; I < CD->NumParams; ++I) {
if (I != ContextParamPos)
CD->setParam(I, readDeclAs<ImplicitParamDecl>());
else
CD->setContextParam(I, readDeclAs<ImplicitParamDecl>());
}
}
void ASTDeclReader::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
VisitDecl(D);
D->setLanguage(static_cast<LinkageSpecLanguageIDs>(Record.readInt()));
D->setExternLoc(readSourceLocation());
D->setRBraceLoc(readSourceLocation());
}
void ASTDeclReader::VisitExportDecl(ExportDecl *D) {
VisitDecl(D);
D->RBraceLoc = readSourceLocation();
}
void ASTDeclReader::VisitLabelDecl(LabelDecl *D) {
VisitNamedDecl(D);
D->setLocStart(readSourceLocation());
}
void ASTDeclReader::VisitNamespaceDecl(NamespaceDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
BitsUnpacker NamespaceDeclBits(Record.readInt());
D->setInline(NamespaceDeclBits.getNextBit());
D->setNested(NamespaceDeclBits.getNextBit());
D->LocStart = readSourceLocation();
D->RBraceLoc = readSourceLocation();
// Defer loading the anonymous namespace until we've finished merging
// this namespace; loading it might load a later declaration of the
// same namespace, and we have an invariant that older declarations
// get merged before newer ones try to merge.
GlobalDeclID AnonNamespace;
if (Redecl.getFirstID() == ThisDeclID)
AnonNamespace = readDeclID();
mergeRedeclarable(D, Redecl);
if (AnonNamespace.isValid()) {
// Each module has its own anonymous namespace, which is disjoint from
// any other module's anonymous namespaces, so don't attach the anonymous
// namespace at all.
auto *Anon = cast<NamespaceDecl>(Reader.GetDecl(AnonNamespace));
if (!Record.isModule())
D->setAnonymousNamespace(Anon);
}
}
void ASTDeclReader::VisitHLSLBufferDecl(HLSLBufferDecl *D) {
VisitNamedDecl(D);
VisitDeclContext(D);
D->IsCBuffer = Record.readBool();
D->KwLoc = readSourceLocation();
D->LBraceLoc = readSourceLocation();
D->RBraceLoc = readSourceLocation();
}
void ASTDeclReader::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->NamespaceLoc = readSourceLocation();
D->IdentLoc = readSourceLocation();
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->Namespace = readDeclAs<NamedDecl>();
mergeRedeclarable(D, Redecl);
}
void ASTDeclReader::VisitUsingDecl(UsingDecl *D) {
VisitNamedDecl(D);
D->setUsingLoc(readSourceLocation());
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->DNLoc = Record.readDeclarationNameLoc(D->getDeclName());
D->FirstUsingShadow.setPointer(readDeclAs<UsingShadowDecl>());
D->setTypename(Record.readInt());
if (auto *Pattern = readDeclAs<NamedDecl>())
Reader.getContext().setInstantiatedFromUsingDecl(D, Pattern);
mergeMergeable(D);
}
void ASTDeclReader::VisitUsingEnumDecl(UsingEnumDecl *D) {
VisitNamedDecl(D);
D->setUsingLoc(readSourceLocation());
D->setEnumLoc(readSourceLocation());
D->setEnumType(Record.readTypeSourceInfo());
D->FirstUsingShadow.setPointer(readDeclAs<UsingShadowDecl>());
if (auto *Pattern = readDeclAs<UsingEnumDecl>())
Reader.getContext().setInstantiatedFromUsingEnumDecl(D, Pattern);
mergeMergeable(D);
}
void ASTDeclReader::VisitUsingPackDecl(UsingPackDecl *D) {
VisitNamedDecl(D);
D->InstantiatedFrom = readDeclAs<NamedDecl>();
auto **Expansions = D->getTrailingObjects<NamedDecl *>();
for (unsigned I = 0; I != D->NumExpansions; ++I)
Expansions[I] = readDeclAs<NamedDecl>();
mergeMergeable(D);
}
void ASTDeclReader::VisitUsingShadowDecl(UsingShadowDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->Underlying = readDeclAs<NamedDecl>();
D->IdentifierNamespace = Record.readInt();
D->UsingOrNextShadow = readDeclAs<NamedDecl>();
auto *Pattern = readDeclAs<UsingShadowDecl>();
if (Pattern)
Reader.getContext().setInstantiatedFromUsingShadowDecl(D, Pattern);
mergeRedeclarable(D, Redecl);
}
void ASTDeclReader::VisitConstructorUsingShadowDecl(
ConstructorUsingShadowDecl *D) {
VisitUsingShadowDecl(D);
D->NominatedBaseClassShadowDecl = readDeclAs<ConstructorUsingShadowDecl>();
D->ConstructedBaseClassShadowDecl = readDeclAs<ConstructorUsingShadowDecl>();
D->IsVirtual = Record.readInt();
}
void ASTDeclReader::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
VisitNamedDecl(D);
D->UsingLoc = readSourceLocation();
D->NamespaceLoc = readSourceLocation();
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->NominatedNamespace = readDeclAs<NamedDecl>();
D->CommonAncestor = readDeclAs<DeclContext>();
}
void ASTDeclReader::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
VisitValueDecl(D);
D->setUsingLoc(readSourceLocation());
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->DNLoc = Record.readDeclarationNameLoc(D->getDeclName());
D->EllipsisLoc = readSourceLocation();
mergeMergeable(D);
}
void ASTDeclReader::VisitUnresolvedUsingTypenameDecl(
UnresolvedUsingTypenameDecl *D) {
VisitTypeDecl(D);
D->TypenameLocation = readSourceLocation();
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->EllipsisLoc = readSourceLocation();
mergeMergeable(D);
}
void ASTDeclReader::VisitUnresolvedUsingIfExistsDecl(
UnresolvedUsingIfExistsDecl *D) {
VisitNamedDecl(D);
}
void ASTDeclReader::ReadCXXDefinitionData(
struct CXXRecordDecl::DefinitionData &Data, const CXXRecordDecl *D,
Decl *LambdaContext, unsigned IndexInLambdaContext) {
BitsUnpacker CXXRecordDeclBits = Record.readInt();
#define FIELD(Name, Width, Merge) \
if (!CXXRecordDeclBits.canGetNextNBits(Width)) \
CXXRecordDeclBits.updateValue(Record.readInt()); \
Data.Name = CXXRecordDeclBits.getNextBits(Width);
#include "clang/AST/CXXRecordDeclDefinitionBits.def"
#undef FIELD
// Note: the caller has deserialized the IsLambda bit already.
Data.ODRHash = Record.readInt();
Data.HasODRHash = true;
if (Record.readInt()) {
Reader.DefinitionSource[D] =
Loc.F->Kind == ModuleKind::MK_MainFile ||
Reader.getContext().getLangOpts().BuildingPCHWithObjectFile;
}
Record.readUnresolvedSet(Data.Conversions);
Data.ComputedVisibleConversions = Record.readInt();
if (Data.ComputedVisibleConversions)
Record.readUnresolvedSet(Data.VisibleConversions);
assert(Data.Definition && "Data.Definition should be already set!");
if (!Data.IsLambda) {
assert(!LambdaContext && !IndexInLambdaContext &&
"given lambda context for non-lambda");
Data.NumBases = Record.readInt();
if (Data.NumBases)
Data.Bases = ReadGlobalOffset();
Data.NumVBases = Record.readInt();
if (Data.NumVBases)
Data.VBases = ReadGlobalOffset();
Data.FirstFriend = readDeclID().getRawValue();
} else {
using Capture = LambdaCapture;
auto &Lambda = static_cast<CXXRecordDecl::LambdaDefinitionData &>(Data);
BitsUnpacker LambdaBits(Record.readInt());
Lambda.DependencyKind = LambdaBits.getNextBits(/*Width=*/2);
Lambda.IsGenericLambda = LambdaBits.getNextBit();
Lambda.CaptureDefault = LambdaBits.getNextBits(/*Width=*/2);
Lambda.NumCaptures = LambdaBits.getNextBits(/*Width=*/15);
Lambda.HasKnownInternalLinkage = LambdaBits.getNextBit();
Lambda.NumExplicitCaptures = Record.readInt();
Lambda.ManglingNumber = Record.readInt();
if (unsigned DeviceManglingNumber = Record.readInt())
Reader.getContext().DeviceLambdaManglingNumbers[D] = DeviceManglingNumber;
Lambda.IndexInContext = IndexInLambdaContext;
Lambda.ContextDecl = LambdaContext;
Capture *ToCapture = nullptr;
if (Lambda.NumCaptures) {
ToCapture = (Capture *)Reader.getContext().Allocate(sizeof(Capture) *
Lambda.NumCaptures);
Lambda.AddCaptureList(Reader.getContext(), ToCapture);
}
Lambda.MethodTyInfo = readTypeSourceInfo();
for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
SourceLocation Loc = readSourceLocation();
BitsUnpacker CaptureBits(Record.readInt());
bool IsImplicit = CaptureBits.getNextBit();
auto Kind =
static_cast<LambdaCaptureKind>(CaptureBits.getNextBits(/*Width=*/3));
switch (Kind) {
case LCK_StarThis:
case LCK_This:
case LCK_VLAType:
new (ToCapture)
Capture(Loc, IsImplicit, Kind, nullptr, SourceLocation());
ToCapture++;
break;
case LCK_ByCopy:
case LCK_ByRef:
auto *Var = readDeclAs<ValueDecl>();
SourceLocation EllipsisLoc = readSourceLocation();
new (ToCapture) Capture(Loc, IsImplicit, Kind, Var, EllipsisLoc);
ToCapture++;
break;
}
}
}
}
void ASTDeclMerger::MergeDefinitionData(
CXXRecordDecl *D, struct CXXRecordDecl::DefinitionData &&MergeDD) {
assert(D->DefinitionData &&
"merging class definition into non-definition");
auto &DD = *D->DefinitionData;
if (DD.Definition != MergeDD.Definition) {
// Track that we merged the definitions.
Reader.MergedDeclContexts.insert(std::make_pair(MergeDD.Definition,
DD.Definition));
Reader.PendingDefinitions.erase(MergeDD.Definition);
MergeDD.Definition->demoteThisDefinitionToDeclaration();
Reader.mergeDefinitionVisibility(DD.Definition, MergeDD.Definition);
assert(!Reader.Lookups.contains(MergeDD.Definition) &&
"already loaded pending lookups for merged definition");
}
auto PFDI = Reader.PendingFakeDefinitionData.find(&DD);
if (PFDI != Reader.PendingFakeDefinitionData.end() &&
PFDI->second == ASTReader::PendingFakeDefinitionKind::Fake) {
// We faked up this definition data because we found a class for which we'd
// not yet loaded the definition. Replace it with the real thing now.
assert(!DD.IsLambda && !MergeDD.IsLambda && "faked up lambda definition?");
PFDI->second = ASTReader::PendingFakeDefinitionKind::FakeLoaded;
// Don't change which declaration is the definition; that is required
// to be invariant once we select it.
auto *Def = DD.Definition;
DD = std::move(MergeDD);
DD.Definition = Def;
return;
}
bool DetectedOdrViolation = false;
#define FIELD(Name, Width, Merge) Merge(Name)
#define MERGE_OR(Field) DD.Field |= MergeDD.Field;
#define NO_MERGE(Field) \
DetectedOdrViolation |= DD.Field != MergeDD.Field; \
MERGE_OR(Field)
#include "clang/AST/CXXRecordDeclDefinitionBits.def"
NO_MERGE(IsLambda)
#undef NO_MERGE
#undef MERGE_OR
if (DD.NumBases != MergeDD.NumBases || DD.NumVBases != MergeDD.NumVBases)
DetectedOdrViolation = true;
// FIXME: Issue a diagnostic if the base classes don't match when we come
// to lazily load them.
// FIXME: Issue a diagnostic if the list of conversion functions doesn't
// match when we come to lazily load them.
if (MergeDD.ComputedVisibleConversions && !DD.ComputedVisibleConversions) {
DD.VisibleConversions = std::move(MergeDD.VisibleConversions);
DD.ComputedVisibleConversions = true;
}
// FIXME: Issue a diagnostic if FirstFriend doesn't match when we come to
// lazily load it.
if (DD.IsLambda) {
auto &Lambda1 = static_cast<CXXRecordDecl::LambdaDefinitionData &>(DD);
auto &Lambda2 = static_cast<CXXRecordDecl::LambdaDefinitionData &>(MergeDD);
DetectedOdrViolation |= Lambda1.DependencyKind != Lambda2.DependencyKind;
DetectedOdrViolation |= Lambda1.IsGenericLambda != Lambda2.IsGenericLambda;
DetectedOdrViolation |= Lambda1.CaptureDefault != Lambda2.CaptureDefault;
DetectedOdrViolation |= Lambda1.NumCaptures != Lambda2.NumCaptures;
DetectedOdrViolation |=
Lambda1.NumExplicitCaptures != Lambda2.NumExplicitCaptures;
DetectedOdrViolation |=
Lambda1.HasKnownInternalLinkage != Lambda2.HasKnownInternalLinkage;
DetectedOdrViolation |= Lambda1.ManglingNumber != Lambda2.ManglingNumber;
if (Lambda1.NumCaptures && Lambda1.NumCaptures == Lambda2.NumCaptures) {
for (unsigned I = 0, N = Lambda1.NumCaptures; I != N; ++I) {
LambdaCapture &Cap1 = Lambda1.Captures.front()[I];
LambdaCapture &Cap2 = Lambda2.Captures.front()[I];
DetectedOdrViolation |= Cap1.getCaptureKind() != Cap2.getCaptureKind();
}
Lambda1.AddCaptureList(Reader.getContext(), Lambda2.Captures.front());
}
}
// We don't want to check ODR for decls in the global module fragment.
if (shouldSkipCheckingODR(MergeDD.Definition) || shouldSkipCheckingODR(D))
return;
if (D->getODRHash() != MergeDD.ODRHash) {
DetectedOdrViolation = true;
}
if (DetectedOdrViolation)
Reader.PendingOdrMergeFailures[DD.Definition].push_back(
{MergeDD.Definition, &MergeDD});
}
void ASTDeclReader::ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update,
Decl *LambdaContext,
unsigned IndexInLambdaContext) {
struct CXXRecordDecl::DefinitionData *DD;
ASTContext &C = Reader.getContext();
// Determine whether this is a lambda closure type, so that we can
// allocate the appropriate DefinitionData structure.
bool IsLambda = Record.readInt();
assert(!(IsLambda && Update) &&
"lambda definition should not be added by update record");
if (IsLambda)
DD = new (C) CXXRecordDecl::LambdaDefinitionData(
D, nullptr, CXXRecordDecl::LDK_Unknown, false, LCD_None);
else
DD = new (C) struct CXXRecordDecl::DefinitionData(D);
CXXRecordDecl *Canon = D->getCanonicalDecl();
// Set decl definition data before reading it, so that during deserialization
// when we read CXXRecordDecl, it already has definition data and we don't
// set fake one.
if (!Canon->DefinitionData)
Canon->DefinitionData = DD;
D->DefinitionData = Canon->DefinitionData;
ReadCXXDefinitionData(*DD, D, LambdaContext, IndexInLambdaContext);
// Mark this declaration as being a definition.
D->setCompleteDefinition(true);
// We might already have a different definition for this record. This can
// happen either because we're reading an update record, or because we've
// already done some merging. Either way, just merge into it.
if (Canon->DefinitionData != DD) {
MergeImpl.MergeDefinitionData(Canon, std::move(*DD));
return;
}
// If this is not the first declaration or is an update record, we can have
// other redeclarations already. Make a note that we need to propagate the
// DefinitionData pointer onto them.
if (Update || Canon != D)
Reader.PendingDefinitions.insert(D);
}
RedeclarableResult ASTDeclReader::VisitCXXRecordDeclImpl(CXXRecordDecl *D) {
RedeclarableResult Redecl = VisitRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
enum CXXRecKind {
CXXRecNotTemplate = 0,
CXXRecTemplate,
CXXRecMemberSpecialization,
CXXLambda
};
Decl *LambdaContext = nullptr;
unsigned IndexInLambdaContext = 0;
switch ((CXXRecKind)Record.readInt()) {
case CXXRecNotTemplate:
// Merged when we merge the folding set entry in the primary template.
if (!isa<ClassTemplateSpecializationDecl>(D))
mergeRedeclarable(D, Redecl);
break;
case CXXRecTemplate: {
// Merged when we merge the template.
auto *Template = readDeclAs<ClassTemplateDecl>();
D->TemplateOrInstantiation = Template;
if (!Template->getTemplatedDecl()) {
// We've not actually loaded the ClassTemplateDecl yet, because we're
// currently being loaded as its pattern. Rely on it to set up our
// TypeForDecl (see VisitClassTemplateDecl).
//
// Beware: we do not yet know our canonical declaration, and may still
// get merged once the surrounding class template has got off the ground.
DeferredTypeID = 0;
}
break;
}
case CXXRecMemberSpecialization: {
auto *RD = readDeclAs<CXXRecordDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
MemberSpecializationInfo *MSI = new (C) MemberSpecializationInfo(RD, TSK);
MSI->setPointOfInstantiation(POI);
D->TemplateOrInstantiation = MSI;
mergeRedeclarable(D, Redecl);
break;
}
case CXXLambda: {
LambdaContext = readDecl();
if (LambdaContext)
IndexInLambdaContext = Record.readInt();
if (LambdaContext)
MergeImpl.mergeLambda(D, Redecl, *LambdaContext, IndexInLambdaContext);
else
// If we don't have a mangling context, treat this like any other
// declaration.
mergeRedeclarable(D, Redecl);
break;
}
}
bool WasDefinition = Record.readInt();
if (WasDefinition)
ReadCXXRecordDefinition(D, /*Update=*/false, LambdaContext,
IndexInLambdaContext);
else
// Propagate DefinitionData pointer from the canonical declaration.
D->DefinitionData = D->getCanonicalDecl()->DefinitionData;
// Lazily load the key function to avoid deserializing every method so we can
// compute it.
if (WasDefinition) {
GlobalDeclID KeyFn = readDeclID();
if (KeyFn.isValid() && D->isCompleteDefinition())
// FIXME: This is wrong for the ARM ABI, where some other module may have
// made this function no longer be a key function. We need an update
// record or similar for that case.
C.KeyFunctions[D] = KeyFn.getRawValue();
}
return Redecl;
}
void ASTDeclReader::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
D->setExplicitSpecifier(Record.readExplicitSpec());
D->Ctor = readDeclAs<CXXConstructorDecl>();
VisitFunctionDecl(D);
D->setDeductionCandidateKind(
static_cast<DeductionCandidate>(Record.readInt()));
}
void ASTDeclReader::VisitCXXMethodDecl(CXXMethodDecl *D) {
VisitFunctionDecl(D);
unsigned NumOverridenMethods = Record.readInt();
if (D->isCanonicalDecl()) {
while (NumOverridenMethods--) {
// Avoid invariant checking of CXXMethodDecl::addOverriddenMethod,
// MD may be initializing.
if (auto *MD = readDeclAs<CXXMethodDecl>())
Reader.getContext().addOverriddenMethod(D, MD->getCanonicalDecl());
}
} else {
// We don't care about which declarations this used to override; we get
// the relevant information from the canonical declaration.
Record.skipInts(NumOverridenMethods);
}
}
void ASTDeclReader::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
// We need the inherited constructor information to merge the declaration,
// so we have to read it before we call VisitCXXMethodDecl.
D->setExplicitSpecifier(Record.readExplicitSpec());
if (D->isInheritingConstructor()) {
auto *Shadow = readDeclAs<ConstructorUsingShadowDecl>();
auto *Ctor = readDeclAs<CXXConstructorDecl>();
*D->getTrailingObjects<InheritedConstructor>() =
InheritedConstructor(Shadow, Ctor);
}
VisitCXXMethodDecl(D);
}
void ASTDeclReader::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
VisitCXXMethodDecl(D);
if (auto *OperatorDelete = readDeclAs<FunctionDecl>()) {
CXXDestructorDecl *Canon = D->getCanonicalDecl();
auto *ThisArg = Record.readExpr();
// FIXME: Check consistency if we have an old and new operator delete.
if (!Canon->OperatorDelete) {
Canon->OperatorDelete = OperatorDelete;
Canon->OperatorDeleteThisArg = ThisArg;
}
}
}
void ASTDeclReader::VisitCXXConversionDecl(CXXConversionDecl *D) {
D->setExplicitSpecifier(Record.readExplicitSpec());
VisitCXXMethodDecl(D);
}
void ASTDeclReader::VisitImportDecl(ImportDecl *D) {
VisitDecl(D);
D->ImportedModule = readModule();
D->setImportComplete(Record.readInt());
auto *StoredLocs = D->getTrailingObjects<SourceLocation>();
for (unsigned I = 0, N = Record.back(); I != N; ++I)
StoredLocs[I] = readSourceLocation();
Record.skipInts(1); // The number of stored source locations.
}
void ASTDeclReader::VisitAccessSpecDecl(AccessSpecDecl *D) {
VisitDecl(D);
D->setColonLoc(readSourceLocation());
}
void ASTDeclReader::VisitFriendDecl(FriendDecl *D) {
VisitDecl(D);
if (Record.readInt()) // hasFriendDecl
D->Friend = readDeclAs<NamedDecl>();
else
D->Friend = readTypeSourceInfo();
for (unsigned i = 0; i != D->NumTPLists; ++i)
D->getTrailingObjects<TemplateParameterList *>()[i] =
Record.readTemplateParameterList();
D->NextFriend = readDeclID().getRawValue();
D->UnsupportedFriend = (Record.readInt() != 0);
D->FriendLoc = readSourceLocation();
D->EllipsisLoc = readSourceLocation();
}
void ASTDeclReader::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
VisitDecl(D);
unsigned NumParams = Record.readInt();
D->NumParams = NumParams;
D->Params = new (Reader.getContext()) TemplateParameterList *[NumParams];
for (unsigned i = 0; i != NumParams; ++i)
D->Params[i] = Record.readTemplateParameterList();
if (Record.readInt()) // HasFriendDecl
D->Friend = readDeclAs<NamedDecl>();
else
D->Friend = readTypeSourceInfo();
D->FriendLoc = readSourceLocation();
}
void ASTDeclReader::VisitTemplateDecl(TemplateDecl *D) {
VisitNamedDecl(D);
assert(!D->TemplateParams && "TemplateParams already set!");
D->TemplateParams = Record.readTemplateParameterList();
D->init(readDeclAs<NamedDecl>());
}
void ASTDeclReader::VisitConceptDecl(ConceptDecl *D) {
VisitTemplateDecl(D);
D->ConstraintExpr = Record.readExpr();
mergeMergeable(D);
}
void ASTDeclReader::VisitImplicitConceptSpecializationDecl(
ImplicitConceptSpecializationDecl *D) {
// The size of the template list was read during creation of the Decl, so we
// don't have to re-read it here.
VisitDecl(D);
llvm::SmallVector<TemplateArgument, 4> Args;
for (unsigned I = 0; I < D->NumTemplateArgs; ++I)
Args.push_back(Record.readTemplateArgument(/*Canonicalize=*/true));
D->setTemplateArguments(Args);
}
void ASTDeclReader::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
}
RedeclarableResult
ASTDeclReader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
// Make sure we've allocated the Common pointer first. We do this before
// VisitTemplateDecl so that getCommonPtr() can be used during initialization.
RedeclarableTemplateDecl *CanonD = D->getCanonicalDecl();
if (!CanonD->Common) {
CanonD->Common = CanonD->newCommon(Reader.getContext());
Reader.PendingDefinitions.insert(CanonD);
}
D->Common = CanonD->Common;
// If this is the first declaration of the template, fill in the information
// for the 'common' pointer.
if (ThisDeclID == Redecl.getFirstID()) {
if (auto *RTD = readDeclAs<RedeclarableTemplateDecl>()) {
assert(RTD->getKind() == D->getKind() &&
"InstantiatedFromMemberTemplate kind mismatch");
D->setInstantiatedFromMemberTemplate(RTD);
if (Record.readInt())
D->setMemberSpecialization();
}
}
VisitTemplateDecl(D);
D->IdentifierNamespace = Record.readInt();
return Redecl;
}
void ASTDeclReader::VisitClassTemplateDecl(ClassTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
mergeRedeclarableTemplate(D, Redecl);
if (ThisDeclID == Redecl.getFirstID()) {
// This ClassTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<GlobalDeclID, 32> SpecIDs;
readDeclIDList(SpecIDs);
ASTDeclReader::AddLazySpecializations(D, SpecIDs);
}
if (D->getTemplatedDecl()->TemplateOrInstantiation) {
// We were loaded before our templated declaration was. We've not set up
// its corresponding type yet (see VisitCXXRecordDeclImpl), so reconstruct
// it now.
Reader.getContext().getInjectedClassNameType(
D->getTemplatedDecl(), D->getInjectedClassNameSpecialization());
}
}
void ASTDeclReader::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
llvm_unreachable("BuiltinTemplates are not serialized");
}
/// TODO: Unify with ClassTemplateDecl version?
/// May require unifying ClassTemplateDecl and
/// VarTemplateDecl beyond TemplateDecl...
void ASTDeclReader::VisitVarTemplateDecl(VarTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
mergeRedeclarableTemplate(D, Redecl);
if (ThisDeclID == Redecl.getFirstID()) {
// This VarTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<GlobalDeclID, 32> SpecIDs;
readDeclIDList(SpecIDs);
ASTDeclReader::AddLazySpecializations(D, SpecIDs);
}
}
RedeclarableResult ASTDeclReader::VisitClassTemplateSpecializationDeclImpl(
ClassTemplateSpecializationDecl *D) {
RedeclarableResult Redecl = VisitCXXRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
if (Decl *InstD = readDecl()) {
if (auto *CTD = dyn_cast<ClassTemplateDecl>(InstD)) {
D->SpecializedTemplate = CTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs);
TemplateArgumentList *ArgList
= TemplateArgumentList::CreateCopy(C, TemplArgs);
auto *PS =
new (C) ClassTemplateSpecializationDecl::
SpecializedPartialSpecialization();
PS->PartialSpecialization
= cast<ClassTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true);
D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs);
D->PointOfInstantiation = readSourceLocation();
D->SpecializationKind = (TemplateSpecializationKind)Record.readInt();
bool writtenAsCanonicalDecl = Record.readInt();
if (writtenAsCanonicalDecl) {
auto *CanonPattern = readDeclAs<ClassTemplateDecl>();
if (D->isCanonicalDecl()) { // It's kept in the folding set.
// Set this as, or find, the canonical declaration for this specialization
ClassTemplateSpecializationDecl *CanonSpec;
if (auto *Partial = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
CanonSpec = CanonPattern->getCommonPtr()->PartialSpecializations
.GetOrInsertNode(Partial);
} else {
CanonSpec =
CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
}
// If there was already a canonical specialization, merge into it.
if (CanonSpec != D) {
MergeImpl.mergeRedeclarable<TagDecl>(D, CanonSpec, Redecl);
// This declaration might be a definition. Merge with any existing
// definition.
if (auto *DDD = D->DefinitionData) {
if (CanonSpec->DefinitionData)
MergeImpl.MergeDefinitionData(CanonSpec, std::move(*DDD));
else
CanonSpec->DefinitionData = D->DefinitionData;
}
D->DefinitionData = CanonSpec->DefinitionData;
}
}
}
// extern/template keyword locations for explicit instantiations
if (Record.readBool()) {
auto *ExplicitInfo = new (C) ExplicitInstantiationInfo;
ExplicitInfo->ExternKeywordLoc = readSourceLocation();
ExplicitInfo->TemplateKeywordLoc = readSourceLocation();
D->ExplicitInfo = ExplicitInfo;
}
if (Record.readBool())
D->setTemplateArgsAsWritten(Record.readASTTemplateArgumentListInfo());
return Redecl;
}
void ASTDeclReader::VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
// We need to read the template params first because redeclarable is going to
// need them for profiling
TemplateParameterList *Params = Record.readTemplateParameterList();
D->TemplateParams = Params;
RedeclarableResult Redecl = VisitClassTemplateSpecializationDeclImpl(D);
// These are read/set from/to the first declaration.
if (ThisDeclID == Redecl.getFirstID()) {
D->InstantiatedFromMember.setPointer(
readDeclAs<ClassTemplatePartialSpecializationDecl>());
D->InstantiatedFromMember.setInt(Record.readInt());
}
}
void ASTDeclReader::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This FunctionTemplateDecl owns a CommonPtr; read it.
SmallVector<GlobalDeclID, 32> SpecIDs;
readDeclIDList(SpecIDs);
ASTDeclReader::AddLazySpecializations(D, SpecIDs);
}
}
/// TODO: Unify with ClassTemplateSpecializationDecl version?
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
/// VarTemplate(Partial)SpecializationDecl with a new data
/// structure Template(Partial)SpecializationDecl, and
/// using Template(Partial)SpecializationDecl as input type.
RedeclarableResult ASTDeclReader::VisitVarTemplateSpecializationDeclImpl(
VarTemplateSpecializationDecl *D) {
ASTContext &C = Reader.getContext();
if (Decl *InstD = readDecl()) {
if (auto *VTD = dyn_cast<VarTemplateDecl>(InstD)) {
D->SpecializedTemplate = VTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs);
TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy(
C, TemplArgs);
auto *PS =
new (C)
VarTemplateSpecializationDecl::SpecializedPartialSpecialization();
PS->PartialSpecialization =
cast<VarTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
// extern/template keyword locations for explicit instantiations
if (Record.readBool()) {
auto *ExplicitInfo = new (C) ExplicitInstantiationInfo;
ExplicitInfo->ExternKeywordLoc = readSourceLocation();
ExplicitInfo->TemplateKeywordLoc = readSourceLocation();
D->ExplicitInfo = ExplicitInfo;
}
if (Record.readBool())
D->setTemplateArgsAsWritten(Record.readASTTemplateArgumentListInfo());
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true);
D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs);
D->PointOfInstantiation = readSourceLocation();
D->SpecializationKind = (TemplateSpecializationKind)Record.readInt();
D->IsCompleteDefinition = Record.readInt();
RedeclarableResult Redecl = VisitVarDeclImpl(D);
bool writtenAsCanonicalDecl = Record.readInt();
if (writtenAsCanonicalDecl) {
auto *CanonPattern = readDeclAs<VarTemplateDecl>();
if (D->isCanonicalDecl()) { // It's kept in the folding set.
VarTemplateSpecializationDecl *CanonSpec;
if (auto *Partial = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) {