blob: 580191fc8e3f18c8892380528986c25a58afdc51 [file] [log] [blame]
#include "polly/Support/SCEVValidator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/RegionInfo.h"
#include <vector>
using namespace llvm;
namespace SCEVType {
/// @brief The type of a SCEV
///
/// To check for the validity of a SCEV we assign to each SCEV a type. The
/// possible types are INT, PARAM, IV and INVALID. The order of the types is
/// important. The subexpressions of SCEV with a type X can only have a type
/// that is smaller or equal than X.
enum TYPE {
// An integer value.
INT,
// An expression that is constant during the execution of the Scop,
// but that may depend on parameters unknown at compile time.
PARAM,
// An expression that may change during the execution of the SCoP.
IV,
// An invalid expression.
INVALID
};
}
/// @brief The result the validator returns for a SCEV expression.
class ValidatorResult {
/// @brief The type of the expression
SCEVType::TYPE Type;
/// @brief The set of Parameters in the expression.
std::vector<const SCEV*> Parameters;
public:
/// @brief Create an invalid result.
ValidatorResult() : Type(SCEVType::INVALID) {};
/// @brief The copy constructor
ValidatorResult(const ValidatorResult &Source) {
Type = Source.Type;
Parameters = Source.Parameters;
};
/// @brief Construct a result with a certain type and no parameters.
ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
};
/// @brief Construct a result with a certain type and a single parameter.
ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
Parameters.push_back(Expr);
};
/// @brief Is the analyzed SCEV constant during the execution of the SCoP.
bool isConstant() {
return Type == SCEVType::INT || Type == SCEVType::PARAM;
}
/// @brief Is the analyzed SCEV valid.
bool isValid() {
return Type != SCEVType::INVALID;
}
/// @brief Is the analyzed SCEV of Type IV.
bool isIV() {
return Type == SCEVType::IV;
}
/// @brief Is the analyzed SCEV of Type INT.
bool isINT() {
return Type == SCEVType::INT;
}
/// @brief Get the parameters of this validator result.
std::vector<const SCEV*> getParameters() {
return Parameters;
}
/// @brief Add the parameters of Source to this result.
void addParamsFrom(class ValidatorResult &Source) {
Parameters.insert(Parameters.end(),
Source.Parameters.begin(),
Source.Parameters.end());
}
/// @brief Merge a result.
///
/// This means to merge the parameters and to set the Type to the most
/// specific Type that matches both.
void merge(class ValidatorResult &ToMerge) {
Type = std::max(Type, ToMerge.Type);
addParamsFrom(ToMerge);
}
void print(raw_ostream &OS) {
switch (Type) {
case SCEVType::INT:
OS << "SCEVType::INT\n";
break;
case SCEVType::PARAM:
OS << "SCEVType::PARAM\n";
break;
case SCEVType::IV:
OS << "SCEVType::IV\n";
break;
case SCEVType::INVALID:
OS << "SCEVType::INVALID\n";
break;
}
}
};
raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
VR.print(OS);
return OS;
}
/// Check if a SCEV is valid in a SCoP.
struct SCEVValidator
: public SCEVVisitor<SCEVValidator, class ValidatorResult> {
private:
const Region *R;
ScalarEvolution &SE;
const Value *BaseAddress;
public:
SCEVValidator(const Region *R, ScalarEvolution &SE,
const Value *BaseAddress) : R(R), SE(SE),
BaseAddress(BaseAddress) {};
class ValidatorResult visitConstant(const SCEVConstant *Constant) {
return ValidatorResult(SCEVType::INT);
}
class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
ValidatorResult Op = visit(Expr->getOperand());
// We currently do not represent a truncate expression as an affine
// expression. If it is constant during Scop execution, we treat it as a
// parameter, otherwise we bail out.
if (Op.isConstant())
return ValidatorResult(SCEVType::PARAM, Expr);
return ValidatorResult(SCEVType::INVALID);
}
class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
ValidatorResult Op = visit(Expr->getOperand());
// We currently do not represent a zero extend expression as an affine
// expression. If it is constant during Scop execution, we treat it as a
// parameter, otherwise we bail out.
if (Op.isConstant())
return ValidatorResult(SCEVType::PARAM, Expr);
return ValidatorResult(SCEVType::INVALID);
}
class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
// We currently allow only signed SCEV expressions. In the case of a
// signed value, a sign extend is a noop.
//
// TODO: Reconsider this when we add support for unsigned values.
return visit(Expr->getOperand());
}
class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isValid())
return ValidatorResult(SCEVType::INVALID);
Return.merge(Op);
}
// TODO: Check for NSW and NUW.
return Return;
}
class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (Op.isINT())
continue;
if (!Op.isValid() || !Return.isINT())
return ValidatorResult(SCEVType::INVALID);
Return.merge(Op);
}
// TODO: Check for NSW and NUW.
return Return;
}
class ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
ValidatorResult LHS = visit(Expr->getLHS());
ValidatorResult RHS = visit(Expr->getRHS());
// We currently do not represent an unsigned division as an affine
// expression. If the division is constant during Scop execution we treat it
// as a parameter, otherwise we bail out.
if (LHS.isConstant() && RHS.isConstant())
return ValidatorResult(SCEVType::PARAM, Expr);
return ValidatorResult(SCEVType::INVALID);
}
class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
if (!Expr->isAffine())
return ValidatorResult(SCEVType::INVALID);
ValidatorResult Start = visit(Expr->getStart());
ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
if (!Start.isValid() || !Recurrence.isConstant())
return ValidatorResult(SCEVType::INVALID);
if (R->contains(Expr->getLoop())) {
if (Recurrence.isINT()) {
ValidatorResult Result(SCEVType::IV);
Result.addParamsFrom(Start);
return Result;
}
return ValidatorResult(SCEVType::INVALID);
}
if (Start.isConstant())
return ValidatorResult(SCEVType::PARAM, Expr);
return ValidatorResult(SCEVType::INVALID);
}
class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
ValidatorResult Return(SCEVType::INT, Expr);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isValid())
return ValidatorResult(SCEVType::INVALID);
Return.merge(Op);
}
return Return;
}
class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
// We do not support unsigned operations. If 'Expr' is constant during Scop
// execution we treat this as a parameter, otherwise we bail out.
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isConstant())
return ValidatorResult(SCEVType::INVALID);
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
Value *V = Expr->getValue();
// We currently only support integer types. It may be useful to support
// pointer types, e.g. to support code like:
//
// if (A)
// A[i] = 1;
//
// See test/CodeGen/20120316-InvalidCast.ll
if (!Expr->getType()->isIntegerTy())
return ValidatorResult(SCEVType::INVALID);
if (isa<UndefValue>(V))
return ValidatorResult(SCEVType::INVALID);
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue()))
if (R->contains(I))
return ValidatorResult(SCEVType::INVALID);
if (BaseAddress == V)
return ValidatorResult(SCEVType::INVALID);
return ValidatorResult(SCEVType::PARAM, Expr);
}
};
namespace polly {
bool isAffineExpr(const Region *R, const SCEV *Expr, ScalarEvolution &SE,
const Value *BaseAddress) {
if (isa<SCEVCouldNotCompute>(Expr))
return false;
SCEVValidator Validator(R, SE, BaseAddress);
ValidatorResult Result = Validator.visit(Expr);
return Result.isValid();
}
std::vector<const SCEV*> getParamsInAffineExpr(const Region *R,
const SCEV *Expr,
ScalarEvolution &SE,
const Value *BaseAddress) {
if (isa<SCEVCouldNotCompute>(Expr))
return std::vector<const SCEV*>();
SCEVValidator Validator(R, SE, BaseAddress);
ValidatorResult Result = Validator.visit(Expr);
return Result.getParameters();
}
}