blob: ed0b951fbce1a901c8fee35e3691f14406e47591 [file] [log] [blame]
//===-- Process.cpp ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <atomic>
#include <memory>
#include <mutex>
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/Threading.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Expression/DiagnosticManager.h"
#include "lldb/Expression/DynamicCheckerFunctions.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Expression/UtilityFunction.h"
#include "lldb/Host/ConnectionFileDescriptor.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Host/OptionParser.h"
#include "lldb/Host/Pipe.h"
#include "lldb/Host/Terminal.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/OptionArgParser.h"
#include "lldb/Interpreter/OptionValueProperties.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/InstrumentationRuntime.h"
#include "lldb/Target/JITLoader.h"
#include "lldb/Target/JITLoaderList.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/MemoryHistory.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/OperatingSystem.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/StructuredDataPlugin.h"
#include "lldb/Target/SystemRuntime.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/TargetList.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/ThreadPlanBase.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Target/UnixSignals.h"
#include "lldb/Utility/Event.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/NameMatches.h"
#include "lldb/Utility/ProcessInfo.h"
#include "lldb/Utility/SelectHelper.h"
#include "lldb/Utility/State.h"
using namespace lldb;
using namespace lldb_private;
using namespace std::chrono;
// Comment out line below to disable memory caching, overriding the process
// setting target.process.disable-memory-cache
#define ENABLE_MEMORY_CACHING
#ifdef ENABLE_MEMORY_CACHING
#define DISABLE_MEM_CACHE_DEFAULT false
#else
#define DISABLE_MEM_CACHE_DEFAULT true
#endif
class ProcessOptionValueProperties : public OptionValueProperties {
public:
ProcessOptionValueProperties(ConstString name)
: OptionValueProperties(name) {}
// This constructor is used when creating ProcessOptionValueProperties when
// it is part of a new lldb_private::Process instance. It will copy all
// current global property values as needed
ProcessOptionValueProperties(ProcessProperties *global_properties)
: OptionValueProperties(*global_properties->GetValueProperties()) {}
const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
bool will_modify,
uint32_t idx) const override {
// When getting the value for a key from the process options, we will
// always try and grab the setting from the current process if there is
// one. Else we just use the one from this instance.
if (exe_ctx) {
Process *process = exe_ctx->GetProcessPtr();
if (process) {
ProcessOptionValueProperties *instance_properties =
static_cast<ProcessOptionValueProperties *>(
process->GetValueProperties().get());
if (this != instance_properties)
return instance_properties->ProtectedGetPropertyAtIndex(idx);
}
}
return ProtectedGetPropertyAtIndex(idx);
}
};
#define LLDB_PROPERTIES_process
#include "TargetProperties.inc"
enum {
#define LLDB_PROPERTIES_process
#include "TargetPropertiesEnum.inc"
};
ProcessProperties::ProcessProperties(lldb_private::Process *process)
: Properties(),
m_process(process) // Can be nullptr for global ProcessProperties
{
if (process == nullptr) {
// Global process properties, set them up one time
m_collection_sp =
std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
m_collection_sp->Initialize(g_process_properties);
m_collection_sp->AppendProperty(
ConstString("thread"), ConstString("Settings specific to threads."),
true, Thread::GetGlobalProperties()->GetValueProperties());
} else {
m_collection_sp = std::make_shared<ProcessOptionValueProperties>(
Process::GetGlobalProperties().get());
m_collection_sp->SetValueChangedCallback(
ePropertyPythonOSPluginPath,
ProcessProperties::OptionValueChangedCallback, this);
}
}
ProcessProperties::~ProcessProperties() = default;
void ProcessProperties::OptionValueChangedCallback(void *baton,
OptionValue *option_value) {
ProcessProperties *properties = (ProcessProperties *)baton;
if (properties->m_process)
properties->m_process->LoadOperatingSystemPlugin(true);
}
bool ProcessProperties::GetDisableMemoryCache() const {
const uint32_t idx = ePropertyDisableMemCache;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_process_properties[idx].default_uint_value != 0);
}
uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
const uint32_t idx = ePropertyMemCacheLineSize;
return m_collection_sp->GetPropertyAtIndexAsUInt64(
nullptr, idx, g_process_properties[idx].default_uint_value);
}
Args ProcessProperties::GetExtraStartupCommands() const {
Args args;
const uint32_t idx = ePropertyExtraStartCommand;
m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
return args;
}
void ProcessProperties::SetExtraStartupCommands(const Args &args) {
const uint32_t idx = ePropertyExtraStartCommand;
m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
}
FileSpec ProcessProperties::GetPythonOSPluginPath() const {
const uint32_t idx = ePropertyPythonOSPluginPath;
return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
}
void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
const uint32_t idx = ePropertyPythonOSPluginPath;
m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
}
bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
}
bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
}
bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
}
bool ProcessProperties::GetDetachKeepsStopped() const {
const uint32_t idx = ePropertyDetachKeepsStopped;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_process_properties[idx].default_uint_value != 0);
}
void ProcessProperties::SetDetachKeepsStopped(bool stop) {
const uint32_t idx = ePropertyDetachKeepsStopped;
m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
}
bool ProcessProperties::GetWarningsOptimization() const {
const uint32_t idx = ePropertyWarningOptimization;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_process_properties[idx].default_uint_value != 0);
}
bool ProcessProperties::GetStopOnExec() const {
const uint32_t idx = ePropertyStopOnExec;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx, g_process_properties[idx].default_uint_value != 0);
}
std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
const uint32_t idx = ePropertyUtilityExpressionTimeout;
uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
nullptr, idx, g_process_properties[idx].default_uint_value);
return std::chrono::seconds(value);
}
Status ProcessLaunchCommandOptions::SetOptionValue(
uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *execution_context) {
Status error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 's': // Stop at program entry point
launch_info.GetFlags().Set(eLaunchFlagStopAtEntry);
break;
case 'i': // STDIN for read only
{
FileAction action;
if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false))
launch_info.AppendFileAction(action);
break;
}
case 'o': // Open STDOUT for write only
{
FileAction action;
if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true))
launch_info.AppendFileAction(action);
break;
}
case 'e': // STDERR for write only
{
FileAction action;
if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true))
launch_info.AppendFileAction(action);
break;
}
case 'p': // Process plug-in name
launch_info.SetProcessPluginName(option_arg);
break;
case 'n': // Disable STDIO
{
FileAction action;
const FileSpec dev_null(FileSystem::DEV_NULL);
if (action.Open(STDIN_FILENO, dev_null, true, false))
launch_info.AppendFileAction(action);
if (action.Open(STDOUT_FILENO, dev_null, false, true))
launch_info.AppendFileAction(action);
if (action.Open(STDERR_FILENO, dev_null, false, true))
launch_info.AppendFileAction(action);
break;
}
case 'w':
launch_info.SetWorkingDirectory(FileSpec(option_arg));
break;
case 't': // Open process in new terminal window
launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY);
break;
case 'a': {
TargetSP target_sp =
execution_context ? execution_context->GetTargetSP() : TargetSP();
PlatformSP platform_sp =
target_sp ? target_sp->GetPlatform() : PlatformSP();
launch_info.GetArchitecture() =
Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg);
} break;
case 'A': // Disable ASLR.
{
bool success;
const bool disable_aslr_arg =
OptionArgParser::ToBoolean(option_arg, true, &success);
if (success)
disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo;
else
error.SetErrorStringWithFormat(
"Invalid boolean value for disable-aslr option: '%s'",
option_arg.empty() ? "<null>" : option_arg.str().c_str());
break;
}
case 'X': // shell expand args.
{
bool success;
const bool expand_args =
OptionArgParser::ToBoolean(option_arg, true, &success);
if (success)
launch_info.SetShellExpandArguments(expand_args);
else
error.SetErrorStringWithFormat(
"Invalid boolean value for shell-expand-args option: '%s'",
option_arg.empty() ? "<null>" : option_arg.str().c_str());
break;
}
case 'c':
if (!option_arg.empty())
launch_info.SetShell(FileSpec(option_arg));
else
launch_info.SetShell(HostInfo::GetDefaultShell());
break;
case 'v':
launch_info.GetEnvironment().insert(option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized short option character '%c'",
short_option);
break;
}
return error;
}
static constexpr OptionDefinition g_process_launch_options[] = {
{LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument,
nullptr, {}, 0, eArgTypeNone,
"Stop at the entry point of the program when launching a process."},
{LLDB_OPT_SET_ALL, false, "disable-aslr", 'A',
OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean,
"Set whether to disable address space layout randomization when launching "
"a process."},
{LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument,
nullptr, {}, 0, eArgTypePlugin,
"Name of the process plugin you want to use."},
{LLDB_OPT_SET_ALL, false, "working-dir", 'w',
OptionParser::eRequiredArgument, nullptr, {}, 0,
eArgTypeDirectoryName,
"Set the current working directory to <path> when running the inferior."},
{LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument,
nullptr, {}, 0, eArgTypeArchitecture,
"Set the architecture for the process to launch when ambiguous."},
{LLDB_OPT_SET_ALL, false, "environment", 'v',
OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone,
"Specify an environment variable name/value string (--environment "
"NAME=VALUE). Can be specified multiple times for subsequent environment "
"entries."},
{LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c',
OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename,
"Run the process in a shell (not supported on all platforms)."},
{LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument,
nullptr, {}, 0, eArgTypeFilename,
"Redirect stdin for the process to <filename>."},
{LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument,
nullptr, {}, 0, eArgTypeFilename,
"Redirect stdout for the process to <filename>."},
{LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument,
nullptr, {}, 0, eArgTypeFilename,
"Redirect stderr for the process to <filename>."},
{LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr,
{}, 0, eArgTypeNone,
"Start the process in a terminal (not supported on all platforms)."},
{LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr,
{}, 0, eArgTypeNone,
"Do not set up for terminal I/O to go to running process."},
{LLDB_OPT_SET_4, false, "shell-expand-args", 'X',
OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean,
"Set whether to shell expand arguments to the process when launching."},
};
llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() {
return llvm::makeArrayRef(g_process_launch_options);
}
ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
llvm::StringRef plugin_name,
ListenerSP listener_sp,
const FileSpec *crash_file_path) {
static uint32_t g_process_unique_id = 0;
ProcessSP process_sp;
ProcessCreateInstance create_callback = nullptr;
if (!plugin_name.empty()) {
ConstString const_plugin_name(plugin_name);
create_callback =
PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name);
if (create_callback) {
process_sp = create_callback(target_sp, listener_sp, crash_file_path);
if (process_sp) {
if (process_sp->CanDebug(target_sp, true)) {
process_sp->m_process_unique_id = ++g_process_unique_id;
} else
process_sp.reset();
}
}
} else {
for (uint32_t idx = 0;
(create_callback =
PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
++idx) {
process_sp = create_callback(target_sp, listener_sp, crash_file_path);
if (process_sp) {
if (process_sp->CanDebug(target_sp, false)) {
process_sp->m_process_unique_id = ++g_process_unique_id;
break;
} else
process_sp.reset();
}
}
}
return process_sp;
}
ConstString &Process::GetStaticBroadcasterClass() {
static ConstString class_name("lldb.process");
return class_name;
}
Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
: Process(target_sp, listener_sp,
UnixSignals::Create(HostInfo::GetArchitecture())) {
// This constructor just delegates to the full Process constructor,
// defaulting to using the Host's UnixSignals.
}
Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
const UnixSignalsSP &unix_signals_sp)
: ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID),
Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
Process::GetStaticBroadcasterClass().AsCString()),
m_target_wp(target_sp), m_public_state(eStateUnloaded),
m_private_state(eStateUnloaded),
m_private_state_broadcaster(nullptr,
"lldb.process.internal_state_broadcaster"),
m_private_state_control_broadcaster(
nullptr, "lldb.process.internal_state_control_broadcaster"),
m_private_state_listener_sp(
Listener::MakeListener("lldb.process.internal_state_listener")),
m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
m_thread_list(this), m_extended_thread_list(this),
m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
m_breakpoint_site_list(), m_dynamic_checkers_up(),
m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
m_memory_cache(*this), m_allocated_memory_cache(*this),
m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
m_private_run_lock(), m_finalizing(false), m_finalize_called(false),
m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
m_can_interpret_function_calls(false), m_warnings_issued(),
m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
CheckInWithManager();
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
if (!m_unix_signals_sp)
m_unix_signals_sp = std::make_shared<UnixSignals>();
SetEventName(eBroadcastBitStateChanged, "state-changed");
SetEventName(eBroadcastBitInterrupt, "interrupt");
SetEventName(eBroadcastBitSTDOUT, "stdout-available");
SetEventName(eBroadcastBitSTDERR, "stderr-available");
SetEventName(eBroadcastBitProfileData, "profile-data-available");
SetEventName(eBroadcastBitStructuredData, "structured-data-available");
m_private_state_control_broadcaster.SetEventName(
eBroadcastInternalStateControlStop, "control-stop");
m_private_state_control_broadcaster.SetEventName(
eBroadcastInternalStateControlPause, "control-pause");
m_private_state_control_broadcaster.SetEventName(
eBroadcastInternalStateControlResume, "control-resume");
m_listener_sp->StartListeningForEvents(
this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
eBroadcastBitProfileData | eBroadcastBitStructuredData);
m_private_state_listener_sp->StartListeningForEvents(
&m_private_state_broadcaster,
eBroadcastBitStateChanged | eBroadcastBitInterrupt);
m_private_state_listener_sp->StartListeningForEvents(
&m_private_state_control_broadcaster,
eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
eBroadcastInternalStateControlResume);
// We need something valid here, even if just the default UnixSignalsSP.
assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
// Allow the platform to override the default cache line size
OptionValueSP value_sp =
m_collection_sp
->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
->GetValue();
uint32_t platform_cache_line_size =
target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
value_sp->SetUInt64Value(platform_cache_line_size);
}
Process::~Process() {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
StopPrivateStateThread();
// ThreadList::Clear() will try to acquire this process's mutex, so
// explicitly clear the thread list here to ensure that the mutex is not
// destroyed before the thread list.
m_thread_list.Clear();
}
const ProcessPropertiesSP &Process::GetGlobalProperties() {
// NOTE: intentional leak so we don't crash if global destructor chain gets
// called as other threads still use the result of this function
static ProcessPropertiesSP *g_settings_sp_ptr =
new ProcessPropertiesSP(new ProcessProperties(nullptr));
return *g_settings_sp_ptr;
}
void Process::Finalize() {
m_finalizing = true;
// Destroy this process if needed
switch (GetPrivateState()) {
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateStopped:
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
Destroy(false);
break;
case eStateInvalid:
case eStateUnloaded:
case eStateDetached:
case eStateExited:
break;
}
// Clear our broadcaster before we proceed with destroying
Broadcaster::Clear();
// Do any cleanup needed prior to being destructed... Subclasses that
// override this method should call this superclass method as well.
// We need to destroy the loader before the derived Process class gets
// destroyed since it is very likely that undoing the loader will require
// access to the real process.
m_dynamic_checkers_up.reset();
m_abi_sp.reset();
m_os_up.reset();
m_system_runtime_up.reset();
m_dyld_up.reset();
m_jit_loaders_up.reset();
m_thread_list_real.Destroy();
m_thread_list.Destroy();
m_extended_thread_list.Destroy();
m_queue_list.Clear();
m_queue_list_stop_id = 0;
std::vector<Notifications> empty_notifications;
m_notifications.swap(empty_notifications);
m_image_tokens.clear();
m_memory_cache.Clear();
m_allocated_memory_cache.Clear();
{
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
m_language_runtimes.clear();
}
m_instrumentation_runtimes.clear();
m_next_event_action_up.reset();
// Clear the last natural stop ID since it has a strong reference to this
// process
m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
//#ifdef LLDB_CONFIGURATION_DEBUG
// StreamFile s(stdout, false);
// EventSP event_sp;
// while (m_private_state_listener_sp->GetNextEvent(event_sp))
// {
// event_sp->Dump (&s);
// s.EOL();
// }
//#endif
// We have to be very careful here as the m_private_state_listener might
// contain events that have ProcessSP values in them which can keep this
// process around forever. These events need to be cleared out.
m_private_state_listener_sp->Clear();
m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
m_public_run_lock.SetStopped();
m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
m_private_run_lock.SetStopped();
m_structured_data_plugin_map.clear();
m_finalize_called = true;
}
void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
m_notifications.push_back(callbacks);
if (callbacks.initialize != nullptr)
callbacks.initialize(callbacks.baton, this);
}
bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
std::vector<Notifications>::iterator pos, end = m_notifications.end();
for (pos = m_notifications.begin(); pos != end; ++pos) {
if (pos->baton == callbacks.baton &&
pos->initialize == callbacks.initialize &&
pos->process_state_changed == callbacks.process_state_changed) {
m_notifications.erase(pos);
return true;
}
}
return false;
}
void Process::SynchronouslyNotifyStateChanged(StateType state) {
std::vector<Notifications>::iterator notification_pos,
notification_end = m_notifications.end();
for (notification_pos = m_notifications.begin();
notification_pos != notification_end; ++notification_pos) {
if (notification_pos->process_state_changed)
notification_pos->process_state_changed(notification_pos->baton, this,
state);
}
}
// FIXME: We need to do some work on events before the general Listener sees
// them.
// For instance if we are continuing from a breakpoint, we need to ensure that
// we do the little "insert real insn, step & stop" trick. But we can't do
// that when the event is delivered by the broadcaster - since that is done on
// the thread that is waiting for new events, so if we needed more than one
// event for our handling, we would stall. So instead we do it when we fetch
// the event off of the queue.
//
StateType Process::GetNextEvent(EventSP &event_sp) {
StateType state = eStateInvalid;
if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
std::chrono::seconds(0)) &&
event_sp)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
return state;
}
void Process::SyncIOHandler(uint32_t iohandler_id,
const Timeout<std::micro> &timeout) {
// don't sync (potentially context switch) in case where there is no process
// IO
if (!m_process_input_reader)
return;
auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
if (Result) {
LLDB_LOG(
log,
"waited from m_iohandler_sync to change from {0}. New value is {1}.",
iohandler_id, *Result);
} else {
LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
iohandler_id);
}
}
StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
EventSP *event_sp_ptr, bool wait_always,
ListenerSP hijack_listener_sp,
Stream *stream, bool use_run_lock) {
// We can't just wait for a "stopped" event, because the stopped event may
// have restarted the target. We have to actually check each event, and in
// the case of a stopped event check the restarted flag on the event.
if (event_sp_ptr)
event_sp_ptr->reset();
StateType state = GetState();
// If we are exited or detached, we won't ever get back to any other valid
// state...
if (state == eStateDetached || state == eStateExited)
return state;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOG(log, "timeout = {0}", timeout);
if (!wait_always && StateIsStoppedState(state, true) &&
StateIsStoppedState(GetPrivateState(), true)) {
LLDB_LOGF(log,
"Process::%s returning without waiting for events; process "
"private and public states are already 'stopped'.",
__FUNCTION__);
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener_sp && use_run_lock)
m_public_run_lock.SetStopped();
return state;
}
while (state != eStateInvalid) {
EventSP event_sp;
state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
if (event_sp_ptr && event_sp)
*event_sp_ptr = event_sp;
bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
Process::HandleProcessStateChangedEvent(event_sp, stream,
pop_process_io_handler);
switch (state) {
case eStateCrashed:
case eStateDetached:
case eStateExited:
case eStateUnloaded:
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener_sp && use_run_lock)
m_public_run_lock.SetStopped();
return state;
case eStateStopped:
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
continue;
else {
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener_sp && use_run_lock)
m_public_run_lock.SetStopped();
return state;
}
default:
continue;
}
}
return state;
}
bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
Stream *stream,
bool &pop_process_io_handler) {
const bool handle_pop = pop_process_io_handler;
pop_process_io_handler = false;
ProcessSP process_sp =
Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
if (!process_sp)
return false;
StateType event_state =
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (event_state == eStateInvalid)
return false;
switch (event_state) {
case eStateInvalid:
case eStateUnloaded:
case eStateAttaching:
case eStateLaunching:
case eStateStepping:
case eStateDetached:
if (stream)
stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
StateAsCString(event_state));
if (event_state == eStateDetached)
pop_process_io_handler = true;
break;
case eStateConnected:
case eStateRunning:
// Don't be chatty when we run...
break;
case eStateExited:
if (stream)
process_sp->GetStatus(*stream);
pop_process_io_handler = true;
break;
case eStateStopped:
case eStateCrashed:
case eStateSuspended:
// Make sure the program hasn't been auto-restarted:
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
if (stream) {
size_t num_reasons =
Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
if (num_reasons > 0) {
// FIXME: Do we want to report this, or would that just be annoyingly
// chatty?
if (num_reasons == 1) {
const char *reason =
Process::ProcessEventData::GetRestartedReasonAtIndex(
event_sp.get(), 0);
stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
process_sp->GetID(),
reason ? reason : "<UNKNOWN REASON>");
} else {
stream->Printf("Process %" PRIu64
" stopped and restarted, reasons:\n",
process_sp->GetID());
for (size_t i = 0; i < num_reasons; i++) {
const char *reason =
Process::ProcessEventData::GetRestartedReasonAtIndex(
event_sp.get(), i);
stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
}
}
}
}
} else {
StopInfoSP curr_thread_stop_info_sp;
// Lock the thread list so it doesn't change on us, this is the scope for
// the locker:
{
ThreadList &thread_list = process_sp->GetThreadList();
std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
ThreadSP curr_thread(thread_list.GetSelectedThread());
ThreadSP thread;
StopReason curr_thread_stop_reason = eStopReasonInvalid;
if (curr_thread) {
curr_thread_stop_reason = curr_thread->GetStopReason();
curr_thread_stop_info_sp = curr_thread->GetStopInfo();
}
if (!curr_thread || !curr_thread->IsValid() ||
curr_thread_stop_reason == eStopReasonInvalid ||
curr_thread_stop_reason == eStopReasonNone) {
// Prefer a thread that has just completed its plan over another
// thread as current thread.
ThreadSP plan_thread;
ThreadSP other_thread;
const size_t num_threads = thread_list.GetSize();
size_t i;
for (i = 0; i < num_threads; ++i) {
thread = thread_list.GetThreadAtIndex(i);
StopReason thread_stop_reason = thread->GetStopReason();
switch (thread_stop_reason) {
case eStopReasonInvalid:
case eStopReasonNone:
break;
case eStopReasonSignal: {
// Don't select a signal thread if we weren't going to stop at
// that signal. We have to have had another reason for stopping
// here, and the user doesn't want to see this thread.
uint64_t signo = thread->GetStopInfo()->GetValue();
if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
if (!other_thread)
other_thread = thread;
}
break;
}
case eStopReasonTrace:
case eStopReasonBreakpoint:
case eStopReasonWatchpoint:
case eStopReasonException:
case eStopReasonExec:
case eStopReasonThreadExiting:
case eStopReasonInstrumentation:
if (!other_thread)
other_thread = thread;
break;
case eStopReasonPlanComplete:
if (!plan_thread)
plan_thread = thread;
break;
}
}
if (plan_thread)
thread_list.SetSelectedThreadByID(plan_thread->GetID());
else if (other_thread)
thread_list.SetSelectedThreadByID(other_thread->GetID());
else {
if (curr_thread && curr_thread->IsValid())
thread = curr_thread;
else
thread = thread_list.GetThreadAtIndex(0);
if (thread)
thread_list.SetSelectedThreadByID(thread->GetID());
}
}
}
// Drop the ThreadList mutex by here, since GetThreadStatus below might
// have to run code, e.g. for Data formatters, and if we hold the
// ThreadList mutex, then the process is going to have a hard time
// restarting the process.
if (stream) {
Debugger &debugger = process_sp->GetTarget().GetDebugger();
if (debugger.GetTargetList().GetSelectedTarget().get() ==
&process_sp->GetTarget()) {
const bool only_threads_with_stop_reason = true;
const uint32_t start_frame = 0;
const uint32_t num_frames = 1;
const uint32_t num_frames_with_source = 1;
const bool stop_format = true;
process_sp->GetStatus(*stream);
process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
start_frame, num_frames,
num_frames_with_source,
stop_format);
if (curr_thread_stop_info_sp) {
lldb::addr_t crashing_address;
ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
curr_thread_stop_info_sp, &crashing_address);
if (valobj_sp) {
const bool qualify_cxx_base_classes = false;
const ValueObject::GetExpressionPathFormat format =
ValueObject::GetExpressionPathFormat::
eGetExpressionPathFormatHonorPointers;
stream->PutCString("Likely cause: ");
valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes,
format);
stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
}
}
} else {
uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
process_sp->GetTarget().shared_from_this());
if (target_idx != UINT32_MAX)
stream->Printf("Target %d: (", target_idx);
else
stream->Printf("Target <unknown index>: (");
process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
stream->Printf(") stopped.\n");
}
}
// Pop the process IO handler
pop_process_io_handler = true;
}
break;
}
if (handle_pop && pop_process_io_handler)
process_sp->PopProcessIOHandler();
return true;
}
bool Process::HijackProcessEvents(ListenerSP listener_sp) {
if (listener_sp) {
return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
eBroadcastBitInterrupt);
} else
return false;
}
void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
StateType Process::GetStateChangedEvents(EventSP &event_sp,
const Timeout<std::micro> &timeout,
ListenerSP hijack_listener_sp) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
ListenerSP listener_sp = hijack_listener_sp;
if (!listener_sp)
listener_sp = m_listener_sp;
StateType state = eStateInvalid;
if (listener_sp->GetEventForBroadcasterWithType(
this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
timeout)) {
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
else
LLDB_LOG(log, "got no event or was interrupted.");
}
LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
return state;
}
Event *Process::PeekAtStateChangedEvents() {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
Event *event_ptr;
event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
this, eBroadcastBitStateChanged);
if (log) {
if (event_ptr) {
LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
} else {
LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
}
}
return event_ptr;
}
StateType
Process::GetStateChangedEventsPrivate(EventSP &event_sp,
const Timeout<std::micro> &timeout) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
StateType state = eStateInvalid;
if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
&m_private_state_broadcaster,
eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
timeout))
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
return state;
}
bool Process::GetEventsPrivate(EventSP &event_sp,
const Timeout<std::micro> &timeout,
bool control_only) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
if (control_only)
return m_private_state_listener_sp->GetEventForBroadcaster(
&m_private_state_control_broadcaster, event_sp, timeout);
else
return m_private_state_listener_sp->GetEvent(event_sp, timeout);
}
bool Process::IsRunning() const {
return StateIsRunningState(m_public_state.GetValue());
}
int Process::GetExitStatus() {
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
if (m_public_state.GetValue() == eStateExited)
return m_exit_status;
return -1;
}
const char *Process::GetExitDescription() {
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
return m_exit_string.c_str();
return nullptr;
}
bool Process::SetExitStatus(int status, const char *cstr) {
// Use a mutex to protect setting the exit status.
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
LIBLLDB_LOG_PROCESS));
LLDB_LOGF(
log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
// We were already in the exited state
if (m_private_state.GetValue() == eStateExited) {
LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
"state was already set to eStateExited");
return false;
}
m_exit_status = status;
if (cstr)
m_exit_string = cstr;
else
m_exit_string.clear();
// Clear the last natural stop ID since it has a strong reference to this
// process
m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
SetPrivateState(eStateExited);
// Allow subclasses to do some cleanup
DidExit();
return true;
}
bool Process::IsAlive() {
switch (m_private_state.GetValue()) {
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateStopped:
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
return true;
default:
return false;
}
}
// This static callback can be used to watch for local child processes on the
// current host. The child process exits, the process will be found in the
// global target list (we want to be completely sure that the
// lldb_private::Process doesn't go away before we can deliver the signal.
bool Process::SetProcessExitStatus(
lldb::pid_t pid, bool exited,
int signo, // Zero for no signal
int exit_status // Exit value of process if signal is zero
) {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log,
"Process::SetProcessExitStatus (pid=%" PRIu64
", exited=%i, signal=%i, exit_status=%i)\n",
pid, exited, signo, exit_status);
if (exited) {
TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
if (target_sp) {
ProcessSP process_sp(target_sp->GetProcessSP());
if (process_sp) {
const char *signal_cstr = nullptr;
if (signo)
signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
process_sp->SetExitStatus(exit_status, signal_cstr);
}
}
return true;
}
return false;
}
void Process::UpdateThreadListIfNeeded() {
const uint32_t stop_id = GetStopID();
if (m_thread_list.GetSize(false) == 0 ||
stop_id != m_thread_list.GetStopID()) {
const StateType state = GetPrivateState();
if (StateIsStoppedState(state, true)) {
std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
// m_thread_list does have its own mutex, but we need to hold onto the
// mutex between the call to UpdateThreadList(...) and the
// os->UpdateThreadList(...) so it doesn't change on us
ThreadList &old_thread_list = m_thread_list;
ThreadList real_thread_list(this);
ThreadList new_thread_list(this);
// Always update the thread list with the protocol specific thread list,
// but only update if "true" is returned
if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
// Don't call into the OperatingSystem to update the thread list if we
// are shutting down, since that may call back into the SBAPI's,
// requiring the API lock which is already held by whoever is shutting
// us down, causing a deadlock.
OperatingSystem *os = GetOperatingSystem();
if (os && !m_destroy_in_process) {
// Clear any old backing threads where memory threads might have been
// backed by actual threads from the lldb_private::Process subclass
size_t num_old_threads = old_thread_list.GetSize(false);
for (size_t i = 0; i < num_old_threads; ++i)
old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
// Turn off dynamic types to ensure we don't run any expressions.
// Objective-C can run an expression to determine if a SBValue is a
// dynamic type or not and we need to avoid this. OperatingSystem
// plug-ins can't run expressions that require running code...
Target &target = GetTarget();
const lldb::DynamicValueType saved_prefer_dynamic =
target.GetPreferDynamicValue();
if (saved_prefer_dynamic != lldb::eNoDynamicValues)
target.SetPreferDynamicValue(lldb::eNoDynamicValues);
// Now let the OperatingSystem plug-in update the thread list
os->UpdateThreadList(
old_thread_list, // Old list full of threads created by OS plug-in
real_thread_list, // The actual thread list full of threads
// created by each lldb_private::Process
// subclass
new_thread_list); // The new thread list that we will show to the
// user that gets filled in
if (saved_prefer_dynamic != lldb::eNoDynamicValues)
target.SetPreferDynamicValue(saved_prefer_dynamic);
} else {
// No OS plug-in, the new thread list is the same as the real thread
// list
new_thread_list = real_thread_list;
}
m_thread_list_real.Update(real_thread_list);
m_thread_list.Update(new_thread_list);
m_thread_list.SetStopID(stop_id);
if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
// Clear any extended threads that we may have accumulated previously
m_extended_thread_list.Clear();
m_extended_thread_stop_id = GetLastNaturalStopID();
m_queue_list.Clear();
m_queue_list_stop_id = GetLastNaturalStopID();
}
}
}
}
}
void Process::UpdateQueueListIfNeeded() {
if (m_system_runtime_up) {
if (m_queue_list.GetSize() == 0 ||
m_queue_list_stop_id != GetLastNaturalStopID()) {
const StateType state = GetPrivateState();
if (StateIsStoppedState(state, true)) {
m_system_runtime_up->PopulateQueueList(m_queue_list);
m_queue_list_stop_id = GetLastNaturalStopID();
}
}
}
}
ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
OperatingSystem *os = GetOperatingSystem();
if (os)
return os->CreateThread(tid, context);
return ThreadSP();
}
uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
return AssignIndexIDToThread(thread_id);
}
bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
return (m_thread_id_to_index_id_map.find(thread_id) !=
m_thread_id_to_index_id_map.end());
}
uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
uint32_t result = 0;
std::map<uint64_t, uint32_t>::iterator iterator =
m_thread_id_to_index_id_map.find(thread_id);
if (iterator == m_thread_id_to_index_id_map.end()) {
result = ++m_thread_index_id;
m_thread_id_to_index_id_map[thread_id] = result;
} else {
result = iterator->second;
}
return result;
}
StateType Process::GetState() {
return m_public_state.GetValue();
}
void Process::SetPublicState(StateType new_state, bool restarted) {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
StateAsCString(new_state), restarted);
const StateType old_state = m_public_state.GetValue();
m_public_state.SetValue(new_state);
// On the transition from Run to Stopped, we unlock the writer end of the run
// lock. The lock gets locked in Resume, which is the public API to tell the
// program to run.
if (!StateChangedIsExternallyHijacked()) {
if (new_state == eStateDetached) {
LLDB_LOGF(log,
"Process::SetPublicState (%s) -- unlocking run lock for detach",
StateAsCString(new_state));
m_public_run_lock.SetStopped();
} else {
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
if ((old_state_is_stopped != new_state_is_stopped)) {
if (new_state_is_stopped && !restarted) {
LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
StateAsCString(new_state));
m_public_run_lock.SetStopped();
}
}
}
}
}
Status Process::Resume() {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log, "Process::Resume -- locking run lock");
if (!m_public_run_lock.TrySetRunning()) {
Status error("Resume request failed - process still running.");
LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
return error;
}
Status error = PrivateResume();
if (!error.Success()) {
// Undo running state change
m_public_run_lock.SetStopped();
}
return error;
}
static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
Status Process::ResumeSynchronous(Stream *stream) {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
if (!m_public_run_lock.TrySetRunning()) {
Status error("Resume request failed - process still running.");
LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
return error;
}
ListenerSP listener_sp(
Listener::MakeListener(g_resume_sync_name));
HijackProcessEvents(listener_sp);
Status error = PrivateResume();
if (error.Success()) {
StateType state =
WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream);
const bool must_be_alive =
false; // eStateExited is ok, so this must be false
if (!StateIsStoppedState(state, must_be_alive))
error.SetErrorStringWithFormat(
"process not in stopped state after synchronous resume: %s",
StateAsCString(state));
} else {
// Undo running state change
m_public_run_lock.SetStopped();
}
// Undo the hijacking of process events...
RestoreProcessEvents();
return error;
}
bool Process::StateChangedIsExternallyHijacked() {
if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
const char *hijacking_name = GetHijackingListenerName();
if (hijacking_name &&
strcmp(hijacking_name, g_resume_sync_name))
return true;
}
return false;
}
bool Process::StateChangedIsHijackedForSynchronousResume() {
if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
const char *hijacking_name = GetHijackingListenerName();
if (hijacking_name &&
strcmp(hijacking_name, g_resume_sync_name) == 0)
return true;
}
return false;
}
StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
void Process::SetPrivateState(StateType new_state) {
if (m_finalize_called)
return;
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
LIBLLDB_LOG_PROCESS));
bool state_changed = false;
LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
const StateType old_state = m_private_state.GetValueNoLock();
state_changed = old_state != new_state;
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
if (old_state_is_stopped != new_state_is_stopped) {
if (new_state_is_stopped)
m_private_run_lock.SetStopped();
else
m_private_run_lock.SetRunning();
}
if (state_changed) {
m_private_state.SetValueNoLock(new_state);
EventSP event_sp(
new Event(eBroadcastBitStateChanged,
new ProcessEventData(shared_from_this(), new_state)));
if (StateIsStoppedState(new_state, false)) {
// Note, this currently assumes that all threads in the list stop when
// the process stops. In the future we will want to support a debugging
// model where some threads continue to run while others are stopped.
// When that happens we will either need a way for the thread list to
// identify which threads are stopping or create a special thread list
// containing only threads which actually stopped.
//
// The process plugin is responsible for managing the actual behavior of
// the threads and should have stopped any threads that are going to stop
// before we get here.
m_thread_list.DidStop();
m_mod_id.BumpStopID();
if (!m_mod_id.IsLastResumeForUserExpression())
m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
m_memory_cache.Clear();
LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
StateAsCString(new_state), m_mod_id.GetStopID());
}
// Use our target to get a shared pointer to ourselves...
if (m_finalize_called && !PrivateStateThreadIsValid())
BroadcastEvent(event_sp);
else
m_private_state_broadcaster.BroadcastEvent(event_sp);
} else {
LLDB_LOGF(log,
"Process::SetPrivateState (%s) state didn't change. Ignoring...",
StateAsCString(new_state));
}
}
void Process::SetRunningUserExpression(bool on) {
m_mod_id.SetRunningUserExpression(on);
}
void Process::SetRunningUtilityFunction(bool on) {
m_mod_id.SetRunningUtilityFunction(on);
}
addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
const lldb::ABISP &Process::GetABI() {
if (!m_abi_sp)
m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
return m_abi_sp;
}
std::vector<LanguageRuntime *>
Process::GetLanguageRuntimes(bool retry_if_null) {
std::vector<LanguageRuntime *> language_runtimes;
if (m_finalizing)
return language_runtimes;
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
// Before we pass off a copy of the language runtimes, we must make sure that
// our collection is properly populated. It's possible that some of the
// language runtimes were not loaded yet, either because nobody requested it
// yet or the proper condition for loading wasn't yet met (e.g. libc++.so
// hadn't been loaded).
for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type, retry_if_null))
language_runtimes.emplace_back(runtime);
}
return language_runtimes;
}
LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language,
bool retry_if_null) {
if (m_finalizing)
return nullptr;
LanguageRuntime *runtime = nullptr;
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
LanguageRuntimeCollection::iterator pos;
pos = m_language_runtimes.find(language);
if (pos == m_language_runtimes.end() || (retry_if_null && !pos->second)) {
lldb::LanguageRuntimeSP runtime_sp(
LanguageRuntime::FindPlugin(this, language));
m_language_runtimes[language] = runtime_sp;
runtime = runtime_sp.get();
} else
runtime = pos->second.get();
if (runtime)
// It's possible that a language runtime can support multiple LanguageTypes,
// for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
// eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
// primary language type and make sure that our runtime supports it.
assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
return runtime;
}
bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
if (m_finalizing)
return false;
if (in_value.IsDynamic())
return false;
LanguageType known_type = in_value.GetObjectRuntimeLanguage();
if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
LanguageRuntime *runtime = GetLanguageRuntime(known_type);
return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
}
for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
if (runtime->CouldHaveDynamicValue(in_value))
return true;
}
return false;
}
void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
m_dynamic_checkers_up.reset(dynamic_checkers);
}
BreakpointSiteList &Process::GetBreakpointSiteList() {
return m_breakpoint_site_list;
}
const BreakpointSiteList &Process::GetBreakpointSiteList() const {
return m_breakpoint_site_list;
}
void Process::DisableAllBreakpointSites() {
m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
// bp_site->SetEnabled(true);
DisableBreakpointSite(bp_site);
});
}
Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
Status error(DisableBreakpointSiteByID(break_id));
if (error.Success())
m_breakpoint_site_list.Remove(break_id);
return error;
}
Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
Status error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
if (bp_site_sp) {
if (bp_site_sp->IsEnabled())
error = DisableBreakpointSite(bp_site_sp.get());
} else {
error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
break_id);
}
return error;
}
Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
Status error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
if (bp_site_sp) {
if (!bp_site_sp->IsEnabled())
error = EnableBreakpointSite(bp_site_sp.get());
} else {
error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
break_id);
}
return error;
}
lldb::break_id_t
Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
bool use_hardware) {
addr_t load_addr = LLDB_INVALID_ADDRESS;
bool show_error = true;
switch (GetState()) {
case eStateInvalid:
case eStateUnloaded:
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateDetached:
case eStateExited:
show_error = false;
break;
case eStateStopped:
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
show_error = IsAlive();
break;
}
// Reset the IsIndirect flag here, in case the location changes from pointing
// to a indirect symbol to a regular symbol.
owner->SetIsIndirect(false);
if (owner->ShouldResolveIndirectFunctions()) {
Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
if (symbol && symbol->IsIndirect()) {
Status error;
Address symbol_address = symbol->GetAddress();
load_addr = ResolveIndirectFunction(&symbol_address, error);
if (!error.Success() && show_error) {
GetTarget().GetDebugger().GetErrorStream().Printf(
"warning: failed to resolve indirect function at 0x%" PRIx64
" for breakpoint %i.%i: %s\n",
symbol->GetLoadAddress(&GetTarget()),
owner->GetBreakpoint().GetID(), owner->GetID(),
error.AsCString() ? error.AsCString() : "unknown error");
return LLDB_INVALID_BREAK_ID;
}
Address resolved_address(load_addr);
load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
owner->SetIsIndirect(true);
} else
load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
} else
load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
if (load_addr != LLDB_INVALID_ADDRESS) {
BreakpointSiteSP bp_site_sp;
// Look up this breakpoint site. If it exists, then add this new owner,
// otherwise create a new breakpoint site and add it.
bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
if (bp_site_sp) {
bp_site_sp->AddOwner(owner);
owner->SetBreakpointSite(bp_site_sp);
return bp_site_sp->GetID();
} else {
bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
load_addr, use_hardware));
if (bp_site_sp) {
Status error = EnableBreakpointSite(bp_site_sp.get());
if (error.Success()) {
owner->SetBreakpointSite(bp_site_sp);
return m_breakpoint_site_list.Add(bp_site_sp);
} else {
if (show_error || use_hardware) {
// Report error for setting breakpoint...
GetTarget().GetDebugger().GetErrorStream().Printf(
"warning: failed to set breakpoint site at 0x%" PRIx64
" for breakpoint %i.%i: %s\n",
load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
error.AsCString() ? error.AsCString() : "unknown error");
}
}
}
}
}
// We failed to enable the breakpoint
return LLDB_INVALID_BREAK_ID;
}
void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
lldb::user_id_t owner_loc_id,
BreakpointSiteSP &bp_site_sp) {
uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
if (num_owners == 0) {
// Don't try to disable the site if we don't have a live process anymore.
if (IsAlive())
DisableBreakpointSite(bp_site_sp.get());
m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
}
}
size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
uint8_t *buf) const {
size_t bytes_removed = 0;
BreakpointSiteList bp_sites_in_range;
if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
bp_sites_in_range)) {
bp_sites_in_range.ForEach([bp_addr, size,
buf](BreakpointSite *bp_site) -> void {
if (bp_site->GetType() == BreakpointSite::eSoftware) {
addr_t intersect_addr;
size_t intersect_size;
size_t opcode_offset;
if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
&intersect_size, &opcode_offset)) {
assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
assert(bp_addr < intersect_addr + intersect_size &&
intersect_addr + intersect_size <= bp_addr + size);
assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
size_t buf_offset = intersect_addr - bp_addr;
::memcpy(buf + buf_offset,
bp_site->GetSavedOpcodeBytes() + opcode_offset,
intersect_size);
}
}
});
}
return bytes_removed;
}
size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
PlatformSP platform_sp(GetTarget().GetPlatform());
if (platform_sp)
return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
return 0;
}
Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
Status error;
assert(bp_site != nullptr);
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
const addr_t bp_addr = bp_site->GetLoadAddress();
LLDB_LOGF(
log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
bp_site->GetID(), (uint64_t)bp_addr);
if (bp_site->IsEnabled()) {
LLDB_LOGF(
log,
"Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- already enabled",
bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
if (bp_addr == LLDB_INVALID_ADDRESS) {
error.SetErrorString("BreakpointSite contains an invalid load address.");
return error;
}
// Ask the lldb::Process subclass to fill in the correct software breakpoint
// trap for the breakpoint site
const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
if (bp_opcode_size == 0) {
error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
"returned zero, unable to get breakpoint "
"trap for address 0x%" PRIx64,
bp_addr);
} else {
const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
if (bp_opcode_bytes == nullptr) {
error.SetErrorString(
"BreakpointSite doesn't contain a valid breakpoint trap opcode.");
return error;
}
// Save the original opcode by reading it
if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
error) == bp_opcode_size) {
// Write a software breakpoint in place of the original opcode
if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
bp_opcode_size) {
uint8_t verify_bp_opcode_bytes[64];
if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
error) == bp_opcode_size) {
if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
bp_opcode_size) == 0) {
bp_site->SetEnabled(true);
bp_site->SetType(BreakpointSite::eSoftware);
LLDB_LOGF(log,
"Process::EnableSoftwareBreakpoint (site_id = %d) "
"addr = 0x%" PRIx64 " -- SUCCESS",
bp_site->GetID(), (uint64_t)bp_addr);
} else
error.SetErrorString(
"failed to verify the breakpoint trap in memory.");
} else
error.SetErrorString(
"Unable to read memory to verify breakpoint trap.");
} else
error.SetErrorString("Unable to write breakpoint trap to memory.");
} else
error.SetErrorString("Unable to read memory at breakpoint address.");
}
if (log && error.Fail())
LLDB_LOGF(
log,
"Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- FAILED: %s",
bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
return error;
}
Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
Status error;
assert(bp_site != nullptr);
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
addr_t bp_addr = bp_site->GetLoadAddress();
lldb::user_id_t breakID = bp_site->GetID();
LLDB_LOGF(log,
"Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
") addr = 0x%" PRIx64,
breakID, (uint64_t)bp_addr);
if (bp_site->IsHardware()) {
error.SetErrorString("Breakpoint site is a hardware breakpoint.");
} else if (bp_site->IsEnabled()) {
const size_t break_op_size = bp_site->GetByteSize();
const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
if (break_op_size > 0) {
// Clear a software breakpoint instruction
uint8_t curr_break_op[8];
assert(break_op_size <= sizeof(curr_break_op));
bool break_op_found = false;
// Read the breakpoint opcode
if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
break_op_size) {
bool verify = false;
// Make sure the breakpoint opcode exists at this address
if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
break_op_found = true;
// We found a valid breakpoint opcode at this address, now restore
// the saved opcode.
if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
break_op_size, error) == break_op_size) {
verify = true;
} else
error.SetErrorString(
"Memory write failed when restoring original opcode.");
} else {
error.SetErrorString(
"Original breakpoint trap is no longer in memory.");
// Set verify to true and so we can check if the original opcode has
// already been restored
verify = true;
}
if (verify) {
uint8_t verify_opcode[8];
assert(break_op_size < sizeof(verify_opcode));
// Verify that our original opcode made it back to the inferior
if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
break_op_size) {
// compare the memory we just read with the original opcode
if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
break_op_size) == 0) {
// SUCCESS
bp_site->SetEnabled(false);
LLDB_LOGF(log,
"Process::DisableSoftwareBreakpoint (site_id = %d) "
"addr = 0x%" PRIx64 " -- SUCCESS",
bp_site->GetID(), (uint64_t)bp_addr);
return error;
} else {
if (break_op_found)
error.SetErrorString("Failed to restore original opcode.");
}
} else
error.SetErrorString("Failed to read memory to verify that "
"breakpoint trap was restored.");
}
} else
error.SetErrorString(
"Unable to read memory that should contain the breakpoint trap.");
}
} else {
LLDB_LOGF(
log,
"Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- already disabled",
bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
LLDB_LOGF(
log,
"Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
" -- FAILED: %s",
bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
return error;
}
// Uncomment to verify memory caching works after making changes to caching
// code
//#define VERIFY_MEMORY_READS
size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
error.Clear();
if (!GetDisableMemoryCache()) {
#if defined(VERIFY_MEMORY_READS)
// Memory caching is enabled, with debug verification
if (buf && size) {
// Uncomment the line below to make sure memory caching is working.
// I ran this through the test suite and got no assertions, so I am
// pretty confident this is working well. If any changes are made to
// memory caching, uncomment the line below and test your changes!
// Verify all memory reads by using the cache first, then redundantly
// reading the same memory from the inferior and comparing to make sure
// everything is exactly the same.
std::string verify_buf(size, '\0');
assert(verify_buf.size() == size);
const size_t cache_bytes_read =
m_memory_cache.Read(this, addr, buf, size, error);
Status verify_error;
const size_t verify_bytes_read =
ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
verify_buf.size(), verify_error);
assert(cache_bytes_read == verify_bytes_read);
assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
assert(verify_error.Success() == error.Success());
return cache_bytes_read;
}
return 0;
#else // !defined(VERIFY_MEMORY_READS)
// Memory caching is enabled, without debug verification
return m_memory_cache.Read(addr, buf, size, error);
#endif // defined (VERIFY_MEMORY_READS)
} else {
// Memory caching is disabled
return ReadMemoryFromInferior(addr, buf, size, error);
}
}
size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
Status &error) {
char buf[256];
out_str.clear();
addr_t curr_addr = addr;
while (true) {
size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
if (length == 0)
break;
out_str.append(buf, length);
// If we got "length - 1" bytes, we didn't get the whole C string, we need
// to read some more characters
if (length == sizeof(buf) - 1)
curr_addr += length;
else
break;
}
return out_str.size();
}
size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
Status &error, size_t type_width) {
size_t total_bytes_read = 0;
if (dst && max_bytes && type_width && max_bytes >= type_width) {
// Ensure a null terminator independent of the number of bytes that is
// read.
memset(dst, 0, max_bytes);
size_t bytes_left = max_bytes - type_width;
const char terminator[4] = {'\0', '\0', '\0', '\0'};
assert(sizeof(terminator) >= type_width && "Attempting to validate a "
"string with more than 4 bytes "
"per character!");
addr_t curr_addr = addr;
const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
char *curr_dst = dst;
error.Clear();
while (bytes_left > 0 && error.Success()) {
addr_t cache_line_bytes_left =
cache_line_size - (curr_addr % cache_line_size);
addr_t bytes_to_read =
std::min<addr_t>(bytes_left, cache_line_bytes_left);
size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
if (bytes_read == 0)
break;
// Search for a null terminator of correct size and alignment in
// bytes_read
size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
for (size_t i = aligned_start;
i + type_width <= total_bytes_read + bytes_read; i += type_width)
if (::memcmp(&dst[i], terminator, type_width) == 0) {
error.Clear();
return i;
}
total_bytes_read += bytes_read;
curr_dst += bytes_read;
curr_addr += bytes_read;
bytes_left -= bytes_read;
}
} else {
if (max_bytes)
error.SetErrorString("invalid arguments");
}
return total_bytes_read;
}
// Deprecated in favor of ReadStringFromMemory which has wchar support and
// correct code to find null terminators.
size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
size_t dst_max_len,
Status &result_error) {
size_t total_cstr_len = 0;
if (dst && dst_max_len) {
result_error.Clear();
// NULL out everything just to be safe
memset(dst, 0, dst_max_len);
Status error;
addr_t curr_addr = addr;
const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
size_t bytes_left = dst_max_len - 1;
char *curr_dst = dst;
while (bytes_left > 0) {
addr_t cache_line_bytes_left =
cache_line_size - (curr_addr % cache_line_size);
addr_t bytes_to_read =
std::min<addr_t>(bytes_left, cache_line_bytes_left);
size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
if (bytes_read == 0) {
result_error = error;
dst[total_cstr_len] = '\0';
break;
}
const size_t len = strlen(curr_dst);
total_cstr_len += len;
if (len < bytes_to_read)
break;
curr_dst += bytes_read;
curr_addr += bytes_read;
bytes_left -= bytes_read;
}
} else {
if (dst == nullptr)
result_error.SetErrorString("invalid arguments");
else
result_error.Clear();
}
return total_cstr_len;
}
size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
Status &error) {
if (buf == nullptr || size == 0)
return 0;
size_t bytes_read = 0;
uint8_t *bytes = (uint8_t *)buf;
while (bytes_read < size) {
const size_t curr_size = size - bytes_read;
const size_t curr_bytes_read =
DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
bytes_read += curr_bytes_read;
if (curr_bytes_read == curr_size || curr_bytes_read == 0)
break;
}
// Replace any software breakpoint opcodes that fall into this range back
// into "buf" before we return
if (bytes_read > 0)
RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
return bytes_read;
}
uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
size_t integer_byte_size,
uint64_t fail_value,
Status &error) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
error))
return scalar.ULongLong(fail_value);
return fail_value;
}
int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
size_t integer_byte_size,
int64_t fail_value,
Status &error) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
error))
return scalar.SLongLong(fail_value);
return fail_value;
}
addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
error))
return scalar.ULongLong(LLDB_INVALID_ADDRESS);
return LLDB_INVALID_ADDRESS;
}
bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
Status &error) {
Scalar scalar;
const uint32_t addr_byte_size = GetAddressByteSize();
if (addr_byte_size <= 4)
scalar = (uint32_t)ptr_value;
else
scalar = ptr_value;
return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
addr_byte_size;
}
size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
Status &error) {
size_t bytes_written = 0;
const uint8_t *bytes = (const uint8_t *)buf;
while (bytes_written < size) {
const size_t curr_size = size - bytes_written;
const size_t curr_bytes_written = DoWriteMemory(
addr + bytes_written, bytes + bytes_written, curr_size, error);
bytes_written += curr_bytes_written;
if (curr_bytes_written == curr_size || curr_bytes_written == 0)
break;
}
return bytes_written;
}
size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
Status &error) {
#if defined(ENABLE_MEMORY_CACHING)
m_memory_cache.Flush(addr, size);
#endif
if (buf == nullptr || size == 0)
return 0;
m_mod_id.BumpMemoryID();
// We need to write any data that would go where any current software traps
// (enabled software breakpoints) any software traps (breakpoints) that we
// may have placed in our tasks memory.
BreakpointSiteList bp_sites_in_range;
if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
return WriteMemoryPrivate(addr, buf, size, error);
// No breakpoint sites overlap
if (bp_sites_in_range.IsEmpty())
return WriteMemoryPrivate(addr, buf, size, error);
const uint8_t *ubuf = (const uint8_t *)buf;
uint64_t bytes_written = 0;
bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
&error](BreakpointSite *bp) -> void {
if (error.Fail())
return;
addr_t intersect_addr;
size_t intersect_size;
size_t opcode_offset;
const bool intersects = bp->IntersectsRange(
addr, size, &intersect_addr, &intersect_size, &opcode_offset);
UNUSED_IF_ASSERT_DISABLED(intersects);
assert(intersects);
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size &&
intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp->GetByteSize());
// Check for bytes before this breakpoint
const addr_t curr_addr = addr + bytes_written;
if (intersect_addr > curr_addr) {
// There are some bytes before this breakpoint that we need to just
// write to memory
size_t curr_size = intersect_addr - curr_addr;
size_t curr_bytes_written =
WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
bytes_written += curr_bytes_written;
if (curr_bytes_written != curr_size) {
// We weren't able to write all of the requested bytes, we are
// done looping and will return the number of bytes that we have
// written so far.
if (error.Success())
error.SetErrorToGenericError();
}
}
// Now write any bytes that would cover up any software breakpoints
// directly into the breakpoint opcode buffer
::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
intersect_size);
bytes_written += intersect_size;
});
// Write any remaining bytes after the last breakpoint if we have any left
if (bytes_written < size)
bytes_written +=
WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
size - bytes_written, error);
return bytes_written;
}
size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
size_t byte_size, Status &error) {
if (byte_size == UINT32_MAX)
byte_size = scalar.GetByteSize();
if (byte_size > 0) {
uint8_t buf[32];
const size_t mem_size =
scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
if (mem_size > 0)
return WriteMemory(addr, buf, mem_size, error);
else
error.SetErrorString("failed to get scalar as memory data");
} else {
error.SetErrorString("invalid scalar value");
}
return 0;
}
size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
bool is_signed, Scalar &scalar,
Status &error) {
uint64_t uval = 0;
if (byte_size == 0) {
error.SetErrorString("byte size is zero");
} else if (byte_size & (byte_size - 1)) {
error.SetErrorStringWithFormat("byte size %u is not a power of 2",
byte_size);
} else if (byte_size <= sizeof(uval)) {
const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
if (bytes_read == byte_size) {
DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
GetAddressByteSize());
lldb::offset_t offset = 0;
if (byte_size <= 4)
scalar = data.GetMaxU32(&offset, byte_size);
else
scalar = data.GetMaxU64(&offset, byte_size);
if (is_signed)
scalar.SignExtend(byte_size * 8);
return bytes_read;
}
} else {
error.SetErrorStringWithFormat(
"byte size of %u is too large for integer scalar type", byte_size);
}
return 0;
}
Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
Status error;
for (const auto &Entry : entries) {
WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
error);
if (!error.Success())
break;
}
return error;
}
#define USE_ALLOCATE_MEMORY_CACHE 1
addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
Status &error) {
if (GetPrivateState() != eStateStopped) {
error.SetErrorToGenericError();
return LLDB_INVALID_ADDRESS;
}
#if defined(USE_ALLOCATE_MEMORY_CACHE)
return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
#else
addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log,
"Process::AllocateMemory(size=%" PRIu64
", permissions=%s) => 0x%16.16" PRIx64
" (m_stop_id = %u m_memory_id = %u)",
(uint64_t)size, GetPermissionsAsCString(permissions),
(uint64_t)allocated_addr, m_mod_id.GetStopID(),
m_mod_id.GetMemoryID());
return allocated_addr;
#endif
}
addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
Status &error) {
addr_t return_addr = AllocateMemory(size, permissions, error);
if (error.Success()) {
std::string buffer(size, 0);
WriteMemory(return_addr, buffer.c_str(), size, error);
}
return return_addr;
}
bool Process::CanJIT() {
if (m_can_jit == eCanJITDontKnow) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
Status err;
uint64_t allocated_memory = AllocateMemory(
8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
err);
if (err.Success()) {
m_can_jit = eCanJITYes;
LLDB_LOGF(log,
"Process::%s pid %" PRIu64
" allocation test passed, CanJIT () is true",
__FUNCTION__, GetID());
} else {
m_can_jit = eCanJITNo;
LLDB_LOGF(log,
"Process::%s pid %" PRIu64
" allocation test failed, CanJIT () is false: %s",
__FUNCTION__, GetID(), err.AsCString());
}
DeallocateMemory(allocated_memory);
}
return m_can_jit == eCanJITYes;
}
void Process::SetCanJIT(bool can_jit) {
m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
}
void Process::SetCanRunCode(bool can_run_code) {
SetCanJIT(can_run_code);
m_can_interpret_function_calls = can_run_code;
}
Status Process::DeallocateMemory(addr_t ptr) {
Status error;
#if defined(USE_ALLOCATE_MEMORY_CACHE)
if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
error.SetErrorStringWithFormat(
"deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
}
#else
error = DoDeallocateMemory(ptr);
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log,
"Process::DeallocateMemory(addr=0x%16.16" PRIx64
") => err = %s (m_stop_id = %u, m_memory_id = %u)",
ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
m_mod_id.GetMemoryID());
#endif
return error;
}
ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
lldb::addr_t header_addr,
size_t size_to_read) {
Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
if (log) {
LLDB_LOGF(log,
"Process::ReadModuleFromMemory reading %s binary from memory",
file_spec.GetPath().c_str());
}
ModuleSP module_sp(new Module(file_spec, ArchSpec()));
if (module_sp) {
Status error;
ObjectFile *objfile = module_sp->GetMemoryObjectFile(
shared_from_this(), header_addr, error, size_to_read);
if (objfile)
return module_sp;
}
return ModuleSP();
}
bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
uint32_t &permissions) {
MemoryRegionInfo range_info;
permissions = 0;
Status error(GetMemoryRegionInfo(load_addr, range_info));
if (!error.Success())
return false;
if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
return false;
}
if (range_info.GetReadable() == MemoryRegionInfo::eYes)
permissions |= lldb::ePermissionsReadable;
if (range_info.GetWritable() == MemoryRegionInfo::eYes)
permissions |= lldb::ePermissionsWritable;
if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
permissions |= lldb::ePermissionsExecutable;
return true;
}
Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
Status error;
error.SetErrorString("watchpoints are not supported");
return error;
}
Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
Status error;
error.SetErrorString("watchpoints are not supported");
return error;
}
StateType
Process::WaitForProcessStopPrivate(EventSP &event_sp,
const Timeout<std::micro> &timeout) {
StateType state;
while (true) {
event_sp.reset();
state = GetStateChangedEventsPrivate(event_sp, timeout);
if (StateIsStoppedState(state, false))
break;
// If state is invalid, then we timed out
if (state == eStateInvalid)
break;
if (event_sp)
HandlePrivateEvent(event_sp);
}
return state;
}
void Process::LoadOperatingSystemPlugin(bool flush) {
if (flush)
m_thread_list.Clear();
m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
if (flush)
Flush();
}
Status Process::Launch(ProcessLaunchInfo &launch_info) {
Status error;
m_abi_sp.reset();
m_dyld_up.reset();
m_jit_loaders_up.reset();
m_system_runtime_up.reset();
m_os_up.reset();
m_process_input_reader.reset();
Module *exe_module = GetTarget().GetExecutableModulePointer();
if (!exe_module) {
error.SetErrorString("executable module does not exist");
return error;
}
char local_exec_file_path[PATH_MAX];
char platform_exec_file_path[PATH_MAX];
exe_module->GetFileSpec().GetPath(local_exec_file_path,
sizeof(local_exec_file_path));
exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
sizeof(platform_exec_file_path));
if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
// Install anything that might need to be installed prior to launching.
// For host systems, this will do nothing, but if we are connected to a
// remote platform it will install any needed binaries
error = GetTarget().Install(&launch_info);
if (error.Fail())
return error;
if (PrivateStateThreadIsValid())
PausePrivateStateThread();
error = WillLaunch(exe_module);
if (error.Success()) {
const bool restarted = false;
SetPublicState(eStateLaunching, restarted);
m_should_detach = false;
if (m_public_run_lock.TrySetRunning()) {
// Now launch using these arguments.
error = DoLaunch(exe_module, launch_info);
} else {
// This shouldn't happen
error.SetErrorString("failed to acquire process run lock");
}
if (error.Fail()) {
if (GetID() != LLDB_INVALID_PROCESS_ID) {
SetID(LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == nullptr)
error_string = "launch failed";
SetExitStatus(-1, error_string);
}
} else {
EventSP event_sp;
// Now wait for the process to launch and return control to us, and then
// call DidLaunch:
StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
if (state == eStateInvalid || !event_sp) {
// We were able to launch the process, but we failed to catch the
// initial stop.
error.SetErrorString("failed to catch stop after launch");
SetExitStatus(0, "failed to catch stop after launch");
Destroy(false);
} else if (state == eStateStopped || state == eStateCrashed) {
DidLaunch();
DynamicLoader *dyld = GetDynamicLoader();
if (dyld)
dyld->DidLaunch();
GetJITLoaders().DidLaunch();
SystemRuntime *system_runtime = GetSystemRuntime();
if (system_runtime)
system_runtime->DidLaunch();
if (!m_os_up)
LoadOperatingSystemPlugin(false);
// We successfully launched the process and stopped, now it the
// right time to set up signal filters before resuming.
UpdateAutomaticSignalFiltering();
// Note, the stop event was consumed above, but not handled. This
// was done to give DidLaunch a chance to run. The target is either
// stopped or crashed. Directly set the state. This is done to
// prevent a stop message with a bunch of spurious output on thread
// status, as well as not pop a ProcessIOHandler.
SetPublicState(state, false);
if (PrivateStateThreadIsValid())
ResumePrivateStateThread();
else
StartPrivateStateThread();
// Target was stopped at entry as was intended. Need to notify the
// listeners about it.
if (state == eStateStopped &&
launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
HandlePrivateEvent(event_sp);
} else if (state == eStateExited) {
// We exited while trying to launch somehow. Don't call DidLaunch
// as that's not likely to work, and return an invalid pid.
HandlePrivateEvent(event_sp);
}
}
}
} else {
error.SetErrorStringWithFormat("file doesn't exist: '%s'",
local_exec_file_path);
}
return error;
}
Status Process::LoadCore() {
Status error = DoLoadCore();
if (error.Success()) {
ListenerSP listener_sp(
Listener::MakeListener("lldb.process.load_core_listener"));
HijackProcessEvents(listener_sp);
if (PrivateStateThreadIsValid())
ResumePrivateStateThread();
else
StartPrivateStateThread();
DynamicLoader *dyld = GetDynamicLoader();
if (dyld)
dyld->DidAttach();
GetJITLoaders().DidAttach();
SystemRuntime *system_runtime = GetSystemRuntime();
if (system_runtime)
system_runtime->DidAttach();
if (!m_os_up)
LoadOperatingSystemPlugin(false);
// We successfully loaded a core file, now pretend we stopped so we can
// show all of the threads in the core file and explore the crashed state.