| /* |
| * Copyright 2013 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "../util/ssim.h" // NOLINT |
| |
| #include <string.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| typedef unsigned int uint32_t; // NOLINT |
| typedef unsigned short uint16_t; // NOLINT |
| |
| #if !defined(LIBYUV_DISABLE_X86) && !defined(__SSE2__) && \ |
| (defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP >= 2))) |
| #define __SSE2__ |
| #endif |
| #if !defined(LIBYUV_DISABLE_X86) && defined(__SSE2__) |
| #include <emmintrin.h> |
| #endif |
| |
| #ifdef _OPENMP |
| #include <omp.h> |
| #endif |
| |
| // SSIM |
| enum { KERNEL = 3, KERNEL_SIZE = 2 * KERNEL + 1 }; |
| |
| // Symmetric Gaussian kernel: K[i] = ~11 * exp(-0.3 * i * i) |
| // The maximum value (11 x 11) must be less than 128 to avoid sign |
| // problems during the calls to _mm_mullo_epi16(). |
| static const int K[KERNEL_SIZE] = { |
| 1, 3, 7, 11, 7, 3, 1 // ~11 * exp(-0.3 * i * i) |
| }; |
| static const double kiW[KERNEL + 1 + 1] = { |
| 1. / 1089., // 1 / sum(i:0..6, j..6) K[i]*K[j] |
| 1. / 1089., // 1 / sum(i:0..6, j..6) K[i]*K[j] |
| 1. / 1056., // 1 / sum(i:0..5, j..6) K[i]*K[j] |
| 1. / 957., // 1 / sum(i:0..4, j..6) K[i]*K[j] |
| 1. / 726., // 1 / sum(i:0..3, j..6) K[i]*K[j] |
| }; |
| |
| #if !defined(LIBYUV_DISABLE_X86) && defined(__SSE2__) |
| |
| #define PWEIGHT(A, B) static_cast<uint16_t>(K[(A)] * K[(B)]) // weight product |
| #define MAKE_WEIGHT(L) \ |
| { \ |
| { \ |
| { \ |
| PWEIGHT(L, 0) \ |
| , PWEIGHT(L, 1), PWEIGHT(L, 2), PWEIGHT(L, 3), PWEIGHT(L, 4), \ |
| PWEIGHT(L, 5), PWEIGHT(L, 6), 0 \ |
| } \ |
| } \ |
| } |
| |
| // We need this union trick to be able to initialize constant static __m128i |
| // values. We can't call _mm_set_epi16() for static compile-time initialization. |
| static const struct { |
| union { |
| uint16_t i16_[8]; |
| __m128i m_; |
| } values_; |
| } W0 = MAKE_WEIGHT(0), W1 = MAKE_WEIGHT(1), W2 = MAKE_WEIGHT(2), |
| W3 = MAKE_WEIGHT(3); |
| // ... the rest is symmetric. |
| #undef MAKE_WEIGHT |
| #undef PWEIGHT |
| #endif |
| |
| // Common final expression for SSIM, once the weighted sums are known. |
| static double FinalizeSSIM(double iw, |
| double xm, |
| double ym, |
| double xxm, |
| double xym, |
| double yym) { |
| const double iwx = xm * iw; |
| const double iwy = ym * iw; |
| double sxx = xxm * iw - iwx * iwx; |
| double syy = yym * iw - iwy * iwy; |
| // small errors are possible, due to rounding. Clamp to zero. |
| if (sxx < 0.) { |
| sxx = 0.; |
| } |
| if (syy < 0.) { |
| syy = 0.; |
| } |
| const double sxsy = sqrt(sxx * syy); |
| const double sxy = xym * iw - iwx * iwy; |
| static const double C11 = (0.01 * 0.01) * (255 * 255); |
| static const double C22 = (0.03 * 0.03) * (255 * 255); |
| static const double C33 = (0.015 * 0.015) * (255 * 255); |
| const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11); |
| const double c = (2. * sxsy + C22) / (sxx + syy + C22); |
| const double s = (sxy + C33) / (sxsy + C33); |
| return l * c * s; |
| } |
| |
| // GetSSIM() does clipping. GetSSIMFullKernel() does not |
| |
| // TODO(skal): use summed tables? |
| // Note: worst case of accumulation is a weight of 33 = 11 + 2 * (7 + 3 + 1) |
| // with a diff of 255, squared. The maximum error is thus 0x4388241, |
| // which fits into 32 bits integers. |
| double GetSSIM(const uint8_t* org, |
| const uint8_t* rec, |
| int xo, |
| int yo, |
| int W, |
| int H, |
| int stride) { |
| uint32_t ws = 0, xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; |
| org += (yo - KERNEL) * stride; |
| org += (xo - KERNEL); |
| rec += (yo - KERNEL) * stride; |
| rec += (xo - KERNEL); |
| for (int y_ = 0; y_ < KERNEL_SIZE; ++y_, org += stride, rec += stride) { |
| if (((yo - KERNEL + y_) < 0) || ((yo - KERNEL + y_) >= H)) { |
| continue; |
| } |
| const int Wy = K[y_]; |
| for (int x_ = 0; x_ < KERNEL_SIZE; ++x_) { |
| const int Wxy = Wy * K[x_]; |
| if (((xo - KERNEL + x_) >= 0) && ((xo - KERNEL + x_) < W)) { |
| const int org_x = org[x_]; |
| const int rec_x = rec[x_]; |
| ws += Wxy; |
| xm += Wxy * org_x; |
| ym += Wxy * rec_x; |
| xxm += Wxy * org_x * org_x; |
| xym += Wxy * org_x * rec_x; |
| yym += Wxy * rec_x * rec_x; |
| } |
| } |
| } |
| return FinalizeSSIM(1. / ws, xm, ym, xxm, xym, yym); |
| } |
| |
| double GetSSIMFullKernel(const uint8_t* org, |
| const uint8_t* rec, |
| int xo, |
| int yo, |
| int stride, |
| double area_weight) { |
| uint32_t xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; |
| |
| #if defined(LIBYUV_DISABLE_X86) || !defined(__SSE2__) |
| |
| org += yo * stride + xo; |
| rec += yo * stride + xo; |
| for (int y = 1; y <= KERNEL; y++) { |
| const int dy1 = y * stride; |
| const int dy2 = y * stride; |
| const int Wy = K[KERNEL + y]; |
| |
| for (int x = 1; x <= KERNEL; x++) { |
| // Compute the contributions of upper-left (ul), upper-right (ur) |
| // lower-left (ll) and lower-right (lr) points (see the diagram below). |
| // Symmetric Kernel will have same weight on those points. |
| // - - - - - - - |
| // - ul - - - ur - |
| // - - - - - - - |
| // - - - 0 - - - |
| // - - - - - - - |
| // - ll - - - lr - |
| // - - - - - - - |
| const int Wxy = Wy * K[KERNEL + x]; |
| const int ul1 = org[-dy1 - x]; |
| const int ur1 = org[-dy1 + x]; |
| const int ll1 = org[dy1 - x]; |
| const int lr1 = org[dy1 + x]; |
| |
| const int ul2 = rec[-dy2 - x]; |
| const int ur2 = rec[-dy2 + x]; |
| const int ll2 = rec[dy2 - x]; |
| const int lr2 = rec[dy2 + x]; |
| |
| xm += Wxy * (ul1 + ur1 + ll1 + lr1); |
| ym += Wxy * (ul2 + ur2 + ll2 + lr2); |
| xxm += Wxy * (ul1 * ul1 + ur1 * ur1 + ll1 * ll1 + lr1 * lr1); |
| xym += Wxy * (ul1 * ul2 + ur1 * ur2 + ll1 * ll2 + lr1 * lr2); |
| yym += Wxy * (ul2 * ul2 + ur2 * ur2 + ll2 * ll2 + lr2 * lr2); |
| } |
| |
| // Compute the contributions of up (u), down (d), left (l) and right (r) |
| // points across the main axes (see the diagram below). |
| // Symmetric Kernel will have same weight on those points. |
| // - - - - - - - |
| // - - - u - - - |
| // - - - - - - - |
| // - l - 0 - r - |
| // - - - - - - - |
| // - - - d - - - |
| // - - - - - - - |
| const int Wxy = Wy * K[KERNEL]; |
| const int u1 = org[-dy1]; |
| const int d1 = org[dy1]; |
| const int l1 = org[-y]; |
| const int r1 = org[y]; |
| |
| const int u2 = rec[-dy2]; |
| const int d2 = rec[dy2]; |
| const int l2 = rec[-y]; |
| const int r2 = rec[y]; |
| |
| xm += Wxy * (u1 + d1 + l1 + r1); |
| ym += Wxy * (u2 + d2 + l2 + r2); |
| xxm += Wxy * (u1 * u1 + d1 * d1 + l1 * l1 + r1 * r1); |
| xym += Wxy * (u1 * u2 + d1 * d2 + l1 * l2 + r1 * r2); |
| yym += Wxy * (u2 * u2 + d2 * d2 + l2 * l2 + r2 * r2); |
| } |
| |
| // Lastly the contribution of (x0, y0) point. |
| const int Wxy = K[KERNEL] * K[KERNEL]; |
| const int s1 = org[0]; |
| const int s2 = rec[0]; |
| |
| xm += Wxy * s1; |
| ym += Wxy * s2; |
| xxm += Wxy * s1 * s1; |
| xym += Wxy * s1 * s2; |
| yym += Wxy * s2 * s2; |
| |
| #else // __SSE2__ |
| |
| org += (yo - KERNEL) * stride + (xo - KERNEL); |
| rec += (yo - KERNEL) * stride + (xo - KERNEL); |
| |
| const __m128i zero = _mm_setzero_si128(); |
| __m128i x = zero; |
| __m128i y = zero; |
| __m128i xx = zero; |
| __m128i xy = zero; |
| __m128i yy = zero; |
| |
| // Read 8 pixels at line #L, and convert to 16bit, perform weighting |
| // and acccumulate. |
| #define LOAD_LINE_PAIR(L, WEIGHT) \ |
| do { \ |
| const __m128i v0 = \ |
| _mm_loadl_epi64(reinterpret_cast<const __m128i*>(org + (L)*stride)); \ |
| const __m128i v1 = \ |
| _mm_loadl_epi64(reinterpret_cast<const __m128i*>(rec + (L)*stride)); \ |
| const __m128i w0 = _mm_unpacklo_epi8(v0, zero); \ |
| const __m128i w1 = _mm_unpacklo_epi8(v1, zero); \ |
| const __m128i ww0 = _mm_mullo_epi16(w0, (WEIGHT).values_.m_); \ |
| const __m128i ww1 = _mm_mullo_epi16(w1, (WEIGHT).values_.m_); \ |
| x = _mm_add_epi32(x, _mm_unpacklo_epi16(ww0, zero)); \ |
| y = _mm_add_epi32(y, _mm_unpacklo_epi16(ww1, zero)); \ |
| x = _mm_add_epi32(x, _mm_unpackhi_epi16(ww0, zero)); \ |
| y = _mm_add_epi32(y, _mm_unpackhi_epi16(ww1, zero)); \ |
| xx = _mm_add_epi32(xx, _mm_madd_epi16(ww0, w0)); \ |
| xy = _mm_add_epi32(xy, _mm_madd_epi16(ww0, w1)); \ |
| yy = _mm_add_epi32(yy, _mm_madd_epi16(ww1, w1)); \ |
| } while (0) |
| |
| #define ADD_AND_STORE_FOUR_EPI32(M, OUT) \ |
| do { \ |
| uint32_t tmp[4]; \ |
| _mm_storeu_si128(reinterpret_cast<__m128i*>(tmp), (M)); \ |
| (OUT) = tmp[3] + tmp[2] + tmp[1] + tmp[0]; \ |
| } while (0) |
| |
| LOAD_LINE_PAIR(0, W0); |
| LOAD_LINE_PAIR(1, W1); |
| LOAD_LINE_PAIR(2, W2); |
| LOAD_LINE_PAIR(3, W3); |
| LOAD_LINE_PAIR(4, W2); |
| LOAD_LINE_PAIR(5, W1); |
| LOAD_LINE_PAIR(6, W0); |
| |
| ADD_AND_STORE_FOUR_EPI32(x, xm); |
| ADD_AND_STORE_FOUR_EPI32(y, ym); |
| ADD_AND_STORE_FOUR_EPI32(xx, xxm); |
| ADD_AND_STORE_FOUR_EPI32(xy, xym); |
| ADD_AND_STORE_FOUR_EPI32(yy, yym); |
| |
| #undef LOAD_LINE_PAIR |
| #undef ADD_AND_STORE_FOUR_EPI32 |
| #endif |
| |
| return FinalizeSSIM(area_weight, xm, ym, xxm, xym, yym); |
| } |
| |
| static int start_max(int x, int y) { |
| return (x > y) ? x : y; |
| } |
| |
| double CalcSSIM(const uint8_t* org, |
| const uint8_t* rec, |
| const int image_width, |
| const int image_height) { |
| double SSIM = 0.; |
| const int KERNEL_Y = (image_height < KERNEL) ? image_height : KERNEL; |
| const int KERNEL_X = (image_width < KERNEL) ? image_width : KERNEL; |
| const int start_x = start_max(image_width - 8 + KERNEL_X, KERNEL_X); |
| const int start_y = start_max(image_height - KERNEL_Y, KERNEL_Y); |
| const int stride = image_width; |
| |
| for (int j = 0; j < KERNEL_Y; ++j) { |
| for (int i = 0; i < image_width; ++i) { |
| SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride); |
| } |
| } |
| |
| #ifdef _OPENMP |
| #pragma omp parallel for reduction(+ : SSIM) |
| #endif |
| for (int j = KERNEL_Y; j < image_height - KERNEL_Y; ++j) { |
| for (int i = 0; i < KERNEL_X; ++i) { |
| SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride); |
| } |
| for (int i = KERNEL_X; i < start_x; ++i) { |
| SSIM += GetSSIMFullKernel(org, rec, i, j, stride, kiW[0]); |
| } |
| if (start_x < image_width) { |
| // GetSSIMFullKernel() needs to be able to read 8 pixels (in SSE2). So we |
| // copy the 8 rightmost pixels on a cache area, and pad this area with |
| // zeros which won't contribute to the overall SSIM value (but we need |
| // to pass the correct normalizing constant!). By using this cache, we can |
| // still call GetSSIMFullKernel() instead of the slower GetSSIM(). |
| // NOTE: we could use similar method for the left-most pixels too. |
| const int kScratchWidth = 8; |
| const int kScratchStride = kScratchWidth + KERNEL + 1; |
| uint8_t scratch_org[KERNEL_SIZE * kScratchStride] = {0}; |
| uint8_t scratch_rec[KERNEL_SIZE * kScratchStride] = {0}; |
| |
| for (int k = 0; k < KERNEL_SIZE; ++k) { |
| const int offset = |
| (j - KERNEL + k) * stride + image_width - kScratchWidth; |
| memcpy(scratch_org + k * kScratchStride, org + offset, kScratchWidth); |
| memcpy(scratch_rec + k * kScratchStride, rec + offset, kScratchWidth); |
| } |
| for (int k = 0; k <= KERNEL_X + 1; ++k) { |
| SSIM += GetSSIMFullKernel(scratch_org, scratch_rec, KERNEL + k, KERNEL, |
| kScratchStride, kiW[k]); |
| } |
| } |
| } |
| |
| for (int j = start_y; j < image_height; ++j) { |
| for (int i = 0; i < image_width; ++i) { |
| SSIM += GetSSIM(org, rec, i, j, image_width, image_height, stride); |
| } |
| } |
| return SSIM; |
| } |
| |
| double CalcLSSIM(double ssim) { |
| return -10.0 * log10(1.0 - ssim); |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |