| /* |
| * Copyright 2015 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <stdlib.h> |
| |
| #include "../unit_test/unit_test.h" |
| #include "libyuv/basic_types.h" |
| #include "libyuv/convert.h" |
| #include "libyuv/convert_argb.h" |
| #include "libyuv/convert_from.h" |
| #include "libyuv/convert_from_argb.h" |
| #include "libyuv/cpu_id.h" |
| |
| namespace libyuv { |
| |
| // TODO(fbarchard): clang x86 has a higher accuracy YUV to RGB. |
| // Port to Visual C and other CPUs |
| #if !defined(LIBYUV_BIT_EXACT) && !defined(LIBYUV_DISABLE_X86) && \ |
| (defined(__x86_64__) || defined(__i386__)) |
| #define ERROR_FULL 5 |
| #define ERROR_J420 4 |
| #else |
| #define ERROR_FULL 6 |
| #define ERROR_J420 6 |
| #endif |
| #define ERROR_R 1 |
| #define ERROR_G 1 |
| #ifdef LIBYUV_UNLIMITED_DATA |
| #define ERROR_B 1 |
| #else |
| #define ERROR_B 18 |
| #endif |
| |
| #define TESTCS(TESTNAME, YUVTOARGB, ARGBTOYUV, HS1, HS, HN, DIFF) \ |
| TEST_F(LibYUVColorTest, TESTNAME) { \ |
| const int kPixels = benchmark_width_ * benchmark_height_; \ |
| const int kHalfPixels = \ |
| ((benchmark_width_ + 1) / 2) * ((benchmark_height_ + HS1) / HS); \ |
| align_buffer_page_end(orig_y, kPixels); \ |
| align_buffer_page_end(orig_u, kHalfPixels); \ |
| align_buffer_page_end(orig_v, kHalfPixels); \ |
| align_buffer_page_end(orig_pixels, kPixels * 4); \ |
| align_buffer_page_end(temp_y, kPixels); \ |
| align_buffer_page_end(temp_u, kHalfPixels); \ |
| align_buffer_page_end(temp_v, kHalfPixels); \ |
| align_buffer_page_end(dst_pixels_opt, kPixels * 4); \ |
| align_buffer_page_end(dst_pixels_c, kPixels * 4); \ |
| \ |
| MemRandomize(orig_pixels, kPixels * 4); \ |
| MemRandomize(orig_y, kPixels); \ |
| MemRandomize(orig_u, kHalfPixels); \ |
| MemRandomize(orig_v, kHalfPixels); \ |
| MemRandomize(temp_y, kPixels); \ |
| MemRandomize(temp_u, kHalfPixels); \ |
| MemRandomize(temp_v, kHalfPixels); \ |
| MemRandomize(dst_pixels_opt, kPixels * 4); \ |
| MemRandomize(dst_pixels_c, kPixels * 4); \ |
| \ |
| /* The test is overall for color conversion matrix being reversible, so */ \ |
| /* this initializes the pixel with 2x2 blocks to eliminate subsampling. */ \ |
| uint8_t* p = orig_y; \ |
| for (int y = 0; y < benchmark_height_ - HS1; y += HS) { \ |
| for (int x = 0; x < benchmark_width_ - 1; x += 2) { \ |
| uint8_t r = static_cast<uint8_t>(fastrand()); \ |
| p[0] = r; \ |
| p[1] = r; \ |
| p[HN] = r; \ |
| p[HN + 1] = r; \ |
| p += 2; \ |
| } \ |
| if (benchmark_width_ & 1) { \ |
| uint8_t r = static_cast<uint8_t>(fastrand()); \ |
| p[0] = r; \ |
| p[HN] = r; \ |
| p += 1; \ |
| } \ |
| p += HN; \ |
| } \ |
| if ((benchmark_height_ & 1) && HS == 2) { \ |
| for (int x = 0; x < benchmark_width_ - 1; x += 2) { \ |
| uint8_t r = static_cast<uint8_t>(fastrand()); \ |
| p[0] = r; \ |
| p[1] = r; \ |
| p += 2; \ |
| } \ |
| if (benchmark_width_ & 1) { \ |
| uint8_t r = static_cast<uint8_t>(fastrand()); \ |
| p[0] = r; \ |
| p += 1; \ |
| } \ |
| } \ |
| /* Start with YUV converted to ARGB. */ \ |
| YUVTOARGB(orig_y, benchmark_width_, orig_u, (benchmark_width_ + 1) / 2, \ |
| orig_v, (benchmark_width_ + 1) / 2, orig_pixels, \ |
| benchmark_width_ * 4, benchmark_width_, benchmark_height_); \ |
| \ |
| ARGBTOYUV(orig_pixels, benchmark_width_ * 4, temp_y, benchmark_width_, \ |
| temp_u, (benchmark_width_ + 1) / 2, temp_v, \ |
| (benchmark_width_ + 1) / 2, benchmark_width_, \ |
| benchmark_height_); \ |
| \ |
| MaskCpuFlags(disable_cpu_flags_); \ |
| YUVTOARGB(temp_y, benchmark_width_, temp_u, (benchmark_width_ + 1) / 2, \ |
| temp_v, (benchmark_width_ + 1) / 2, dst_pixels_c, \ |
| benchmark_width_ * 4, benchmark_width_, benchmark_height_); \ |
| MaskCpuFlags(benchmark_cpu_info_); \ |
| \ |
| for (int i = 0; i < benchmark_iterations_; ++i) { \ |
| YUVTOARGB(temp_y, benchmark_width_, temp_u, (benchmark_width_ + 1) / 2, \ |
| temp_v, (benchmark_width_ + 1) / 2, dst_pixels_opt, \ |
| benchmark_width_ * 4, benchmark_width_, benchmark_height_); \ |
| } \ |
| /* Test C and SIMD match. */ \ |
| for (int i = 0; i < kPixels * 4; ++i) { \ |
| EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); \ |
| } \ |
| /* Test SIMD is close to original. */ \ |
| for (int i = 0; i < kPixels * 4; ++i) { \ |
| EXPECT_NEAR(static_cast<int>(orig_pixels[i]), \ |
| static_cast<int>(dst_pixels_opt[i]), DIFF); \ |
| } \ |
| \ |
| free_aligned_buffer_page_end(orig_pixels); \ |
| free_aligned_buffer_page_end(orig_y); \ |
| free_aligned_buffer_page_end(orig_u); \ |
| free_aligned_buffer_page_end(orig_v); \ |
| free_aligned_buffer_page_end(temp_y); \ |
| free_aligned_buffer_page_end(temp_u); \ |
| free_aligned_buffer_page_end(temp_v); \ |
| free_aligned_buffer_page_end(dst_pixels_opt); \ |
| free_aligned_buffer_page_end(dst_pixels_c); \ |
| } |
| |
| TESTCS(TestI420, I420ToARGB, ARGBToI420, 1, 2, benchmark_width_, ERROR_FULL) |
| TESTCS(TestI422, I422ToARGB, ARGBToI422, 0, 1, 0, ERROR_FULL) |
| TESTCS(TestJ420, J420ToARGB, ARGBToJ420, 1, 2, benchmark_width_, ERROR_J420) |
| TESTCS(TestJ422, J422ToARGB, ARGBToJ422, 0, 1, 0, ERROR_J420) |
| |
| static void YUVToRGB(int y, int u, int v, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_u[8]); |
| SIMD_ALIGNED(uint8_t orig_v[8]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| memset(orig_u, u, kHalfPixels); |
| memset(orig_v, v, kHalfPixels); |
| |
| /* YUV converted to ARGB. */ |
| I422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, |
| orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| static void YUVJToRGB(int y, int u, int v, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_u[8]); |
| SIMD_ALIGNED(uint8_t orig_v[8]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| memset(orig_u, u, kHalfPixels); |
| memset(orig_v, v, kHalfPixels); |
| |
| /* YUV converted to ARGB. */ |
| J422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, |
| orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| static void YUVHToRGB(int y, int u, int v, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_u[8]); |
| SIMD_ALIGNED(uint8_t orig_v[8]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| memset(orig_u, u, kHalfPixels); |
| memset(orig_v, v, kHalfPixels); |
| |
| /* YUV converted to ARGB. */ |
| H422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, |
| orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| #define F422ToARGB(a, b, c, d, e, f, g, h, i, j) \ |
| I422ToARGBMatrix(a, b, c, d, e, f, g, h, &kYuvF709Constants, i, j) |
| |
| static void YUVFToRGB(int y, int u, int v, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_u[8]); |
| SIMD_ALIGNED(uint8_t orig_v[8]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| memset(orig_u, u, kHalfPixels); |
| memset(orig_v, v, kHalfPixels); |
| |
| /* YUV converted to ARGB. */ |
| F422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, |
| orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| static void YUVUToRGB(int y, int u, int v, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_u[8]); |
| SIMD_ALIGNED(uint8_t orig_v[8]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| memset(orig_u, u, kHalfPixels); |
| memset(orig_v, v, kHalfPixels); |
| |
| /* YUV converted to ARGB. */ |
| U422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, |
| orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| #define V422ToARGB(a, b, c, d, e, f, g, h, i, j) \ |
| I422ToARGBMatrix(a, b, c, d, e, f, g, h, &kYuvV2020Constants, i, j) |
| |
| static void YUVVToRGB(int y, int u, int v, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_u[8]); |
| SIMD_ALIGNED(uint8_t orig_v[8]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| memset(orig_u, u, kHalfPixels); |
| memset(orig_v, v, kHalfPixels); |
| |
| /* YUV converted to ARGB. */ |
| V422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, |
| orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| static void YToRGB(int y, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| |
| /* YUV converted to ARGB. */ |
| I400ToARGB(orig_y, kWidth, orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| static void YJToRGB(int y, int* r, int* g, int* b) { |
| const int kWidth = 16; |
| const int kHeight = 1; |
| const int kPixels = kWidth * kHeight; |
| |
| SIMD_ALIGNED(uint8_t orig_y[16]); |
| SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); |
| memset(orig_y, y, kPixels); |
| |
| /* YUV converted to ARGB. */ |
| J400ToARGB(orig_y, kWidth, orig_pixels, kWidth * 4, kWidth, kHeight); |
| |
| *b = orig_pixels[0]; |
| *g = orig_pixels[1]; |
| *r = orig_pixels[2]; |
| } |
| |
| // Pick a method for clamping. |
| // #define CLAMPMETHOD_IF 1 |
| // #define CLAMPMETHOD_TABLE 1 |
| #define CLAMPMETHOD_TERNARY 1 |
| // #define CLAMPMETHOD_MASK 1 |
| |
| // Pick a method for rounding. |
| #define ROUND(f) static_cast<int>(f + 0.5f) |
| // #define ROUND(f) lrintf(f) |
| // #define ROUND(f) static_cast<int>(round(f)) |
| // #define ROUND(f) _mm_cvt_ss2si(_mm_load_ss(&f)) |
| |
| #if defined(CLAMPMETHOD_IF) |
| static int RoundToByte(float f) { |
| int i = ROUND(f); |
| if (i < 0) { |
| i = 0; |
| } |
| if (i > 255) { |
| i = 255; |
| } |
| return i; |
| } |
| #elif defined(CLAMPMETHOD_TABLE) |
| static const unsigned char clamptable[811] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, |
| 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, |
| 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, |
| 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, |
| 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, |
| 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, |
| 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, |
| 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, |
| 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, |
| 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, |
| 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, |
| 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, |
| 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, |
| 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, |
| 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, |
| 249, 250, 251, 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255}; |
| |
| static int RoundToByte(float f) { |
| return clamptable[ROUND(f) + 276]; |
| } |
| #elif defined(CLAMPMETHOD_TERNARY) |
| static int RoundToByte(float f) { |
| int i = ROUND(f); |
| return (i < 0) ? 0 : ((i > 255) ? 255 : i); |
| } |
| #elif defined(CLAMPMETHOD_MASK) |
| static int RoundToByte(float f) { |
| int i = ROUND(f); |
| i = ((-(i) >> 31) & (i)); // clamp to 0. |
| return (((255 - (i)) >> 31) | (i)) & 255; // clamp to 255. |
| } |
| #endif |
| |
| #define RANDOM256(s) ((s & 1) ? ((s >> 1) ^ 0xb8) : (s >> 1)) |
| |
| TEST_F(LibYUVColorTest, TestRoundToByte) { |
| int allb = 0; |
| int count = benchmark_width_ * benchmark_height_; |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| float f = (fastrand() & 255) * 3.14f - 260.f; |
| for (int j = 0; j < count; ++j) { |
| int b = RoundToByte(f); |
| f += 0.91f; |
| allb |= b; |
| } |
| } |
| EXPECT_GE(allb, 0); |
| EXPECT_LE(allb, 255); |
| } |
| |
| // BT.601 limited range YUV to RGB reference |
| static void YUVToRGBReference(int y, int u, int v, int* r, int* g, int* b) { |
| *r = RoundToByte((y - 16) * 1.164 - (v - 128) * -1.596); |
| *g = RoundToByte((y - 16) * 1.164 - (u - 128) * 0.391 - (v - 128) * 0.813); |
| *b = RoundToByte((y - 16) * 1.164 - (u - 128) * -2.018); |
| } |
| |
| // BT.601 full range YUV to RGB reference (aka JPEG) |
| static void YUVJToRGBReference(int y, int u, int v, int* r, int* g, int* b) { |
| *r = RoundToByte(y - (v - 128) * -1.40200); |
| *g = RoundToByte(y - (u - 128) * 0.34414 - (v - 128) * 0.71414); |
| *b = RoundToByte(y - (u - 128) * -1.77200); |
| } |
| |
| // BT.709 limited range YUV to RGB reference |
| // See also http://www.equasys.de/colorconversion.html |
| static void YUVHToRGBReference(int y, int u, int v, int* r, int* g, int* b) { |
| *r = RoundToByte((y - 16) * 1.164 - (v - 128) * -1.793); |
| *g = RoundToByte((y - 16) * 1.164 - (u - 128) * 0.213 - (v - 128) * 0.533); |
| *b = RoundToByte((y - 16) * 1.164 - (u - 128) * -2.112); |
| } |
| |
| // BT.709 full range YUV to RGB reference |
| static void YUVFToRGBReference(int y, int u, int v, int* r, int* g, int* b) { |
| *r = RoundToByte(y - (v - 128) * -1.5748); |
| *g = RoundToByte(y - (u - 128) * 0.18732 - (v - 128) * 0.46812); |
| *b = RoundToByte(y - (u - 128) * -1.8556); |
| } |
| |
| // BT.2020 limited range YUV to RGB reference |
| static void YUVUToRGBReference(int y, int u, int v, int* r, int* g, int* b) { |
| *r = RoundToByte((y - 16) * 1.164384 - (v - 128) * -1.67867); |
| *g = RoundToByte((y - 16) * 1.164384 - (u - 128) * 0.187326 - |
| (v - 128) * 0.65042); |
| *b = RoundToByte((y - 16) * 1.164384 - (u - 128) * -2.14177); |
| } |
| |
| // BT.2020 full range YUV to RGB reference |
| static void YUVVToRGBReference(int y, int u, int v, int* r, int* g, int* b) { |
| *r = RoundToByte(y + (v - 128) * 1.474600); |
| *g = RoundToByte(y - (u - 128) * 0.164553 - (v - 128) * 0.571353); |
| *b = RoundToByte(y + (u - 128) * 1.881400); |
| } |
| |
| TEST_F(LibYUVColorTest, TestYUV) { |
| int r0, g0, b0, r1, g1, b1; |
| |
| // cyan (less red) |
| YUVToRGBReference(240, 255, 0, &r0, &g0, &b0); |
| EXPECT_EQ(56, r0); |
| EXPECT_EQ(255, g0); |
| EXPECT_EQ(255, b0); |
| |
| YUVToRGB(240, 255, 0, &r1, &g1, &b1); |
| EXPECT_EQ(57, r1); |
| EXPECT_EQ(255, g1); |
| EXPECT_EQ(255, b1); |
| |
| // green (less red and blue) |
| YUVToRGBReference(240, 0, 0, &r0, &g0, &b0); |
| EXPECT_EQ(56, r0); |
| EXPECT_EQ(255, g0); |
| EXPECT_EQ(2, b0); |
| |
| YUVToRGB(240, 0, 0, &r1, &g1, &b1); |
| EXPECT_EQ(57, r1); |
| EXPECT_EQ(255, g1); |
| #ifdef LIBYUV_UNLIMITED_DATA |
| EXPECT_EQ(3, b1); |
| #else |
| EXPECT_EQ(5, b1); |
| #endif |
| |
| for (int i = 0; i < 256; ++i) { |
| YUVToRGBReference(i, 128, 128, &r0, &g0, &b0); |
| YUVToRGB(i, 128, 128, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| |
| YUVToRGBReference(i, 0, 0, &r0, &g0, &b0); |
| YUVToRGB(i, 0, 0, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| |
| YUVToRGBReference(i, 0, 255, &r0, &g0, &b0); |
| YUVToRGB(i, 0, 255, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| } |
| } |
| |
| TEST_F(LibYUVColorTest, TestGreyYUV) { |
| int r0, g0, b0, r1, g1, b1, r2, g2, b2; |
| |
| // black |
| YUVToRGBReference(16, 128, 128, &r0, &g0, &b0); |
| EXPECT_EQ(0, r0); |
| EXPECT_EQ(0, g0); |
| EXPECT_EQ(0, b0); |
| |
| YUVToRGB(16, 128, 128, &r1, &g1, &b1); |
| EXPECT_EQ(0, r1); |
| EXPECT_EQ(0, g1); |
| EXPECT_EQ(0, b1); |
| |
| // white |
| YUVToRGBReference(240, 128, 128, &r0, &g0, &b0); |
| EXPECT_EQ(255, r0); |
| EXPECT_EQ(255, g0); |
| EXPECT_EQ(255, b0); |
| |
| YUVToRGB(240, 128, 128, &r1, &g1, &b1); |
| EXPECT_EQ(255, r1); |
| EXPECT_EQ(255, g1); |
| EXPECT_EQ(255, b1); |
| |
| // grey |
| YUVToRGBReference(128, 128, 128, &r0, &g0, &b0); |
| EXPECT_EQ(130, r0); |
| EXPECT_EQ(130, g0); |
| EXPECT_EQ(130, b0); |
| |
| YUVToRGB(128, 128, 128, &r1, &g1, &b1); |
| EXPECT_EQ(130, r1); |
| EXPECT_EQ(130, g1); |
| EXPECT_EQ(130, b1); |
| |
| for (int y = 0; y < 256; ++y) { |
| YUVToRGBReference(y, 128, 128, &r0, &g0, &b0); |
| YUVToRGB(y, 128, 128, &r1, &g1, &b1); |
| YToRGB(y, &r2, &g2, &b2); |
| EXPECT_EQ(r0, r1); |
| EXPECT_EQ(g0, g1); |
| EXPECT_EQ(b0, b1); |
| EXPECT_EQ(r0, r2); |
| EXPECT_EQ(g0, g2); |
| EXPECT_EQ(b0, b2); |
| } |
| } |
| |
| static void PrintHistogram(int rh[256], int gh[256], int bh[256]) { |
| int i; |
| printf("hist "); |
| for (i = 0; i < 256; ++i) { |
| if (rh[i] || gh[i] || bh[i]) { |
| printf(" %8d", i - 128); |
| } |
| } |
| printf("\nred "); |
| for (i = 0; i < 256; ++i) { |
| if (rh[i] || gh[i] || bh[i]) { |
| printf(" %8d", rh[i]); |
| } |
| } |
| printf("\ngreen"); |
| for (i = 0; i < 256; ++i) { |
| if (rh[i] || gh[i] || bh[i]) { |
| printf(" %8d", gh[i]); |
| } |
| } |
| printf("\nblue "); |
| for (i = 0; i < 256; ++i) { |
| if (rh[i] || gh[i] || bh[i]) { |
| printf(" %8d", bh[i]); |
| } |
| } |
| printf("\n"); |
| } |
| |
| // Step by 5 on inner loop goes from 0 to 255 inclusive. |
| // Set to 1 for better converage. 3, 5 or 17 for faster testing. |
| #ifdef DISABLE_SLOW_TESTS |
| #define FASTSTEP 5 |
| #else |
| #define FASTSTEP 1 |
| #endif |
| |
| // BT.601 limited range. |
| TEST_F(LibYUVColorTest, TestFullYUV) { |
| int rh[256] = { |
| 0, |
| }; |
| int gh[256] = { |
| 0, |
| }; |
| int bh[256] = { |
| 0, |
| }; |
| for (int u = 0; u < 256; ++u) { |
| for (int v = 0; v < 256; ++v) { |
| for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { |
| int r0, g0, b0, r1, g1, b1; |
| int y = RANDOM256(y2); |
| YUVToRGBReference(y, u, v, &r0, &g0, &b0); |
| YUVToRGB(y, u, v, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| ++rh[r1 - r0 + 128]; |
| ++gh[g1 - g0 + 128]; |
| ++bh[b1 - b0 + 128]; |
| } |
| } |
| } |
| PrintHistogram(rh, gh, bh); |
| } |
| |
| // BT.601 full range. |
| TEST_F(LibYUVColorTest, TestFullYUVJ) { |
| int rh[256] = { |
| 0, |
| }; |
| int gh[256] = { |
| 0, |
| }; |
| int bh[256] = { |
| 0, |
| }; |
| for (int u = 0; u < 256; ++u) { |
| for (int v = 0; v < 256; ++v) { |
| for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { |
| int r0, g0, b0, r1, g1, b1; |
| int y = RANDOM256(y2); |
| YUVJToRGBReference(y, u, v, &r0, &g0, &b0); |
| YUVJToRGB(y, u, v, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| ++rh[r1 - r0 + 128]; |
| ++gh[g1 - g0 + 128]; |
| ++bh[b1 - b0 + 128]; |
| } |
| } |
| } |
| PrintHistogram(rh, gh, bh); |
| } |
| |
| // BT.709 limited range. |
| TEST_F(LibYUVColorTest, TestFullYUVH) { |
| int rh[256] = { |
| 0, |
| }; |
| int gh[256] = { |
| 0, |
| }; |
| int bh[256] = { |
| 0, |
| }; |
| for (int u = 0; u < 256; ++u) { |
| for (int v = 0; v < 256; ++v) { |
| for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { |
| int r0, g0, b0, r1, g1, b1; |
| int y = RANDOM256(y2); |
| YUVHToRGBReference(y, u, v, &r0, &g0, &b0); |
| YUVHToRGB(y, u, v, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| ++rh[r1 - r0 + 128]; |
| ++gh[g1 - g0 + 128]; |
| ++bh[b1 - b0 + 128]; |
| } |
| } |
| } |
| PrintHistogram(rh, gh, bh); |
| } |
| |
| // BT.709 full range. |
| TEST_F(LibYUVColorTest, TestFullYUVF) { |
| int rh[256] = { |
| 0, |
| }; |
| int gh[256] = { |
| 0, |
| }; |
| int bh[256] = { |
| 0, |
| }; |
| for (int u = 0; u < 256; ++u) { |
| for (int v = 0; v < 256; ++v) { |
| for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { |
| int r0, g0, b0, r1, g1, b1; |
| int y = RANDOM256(y2); |
| YUVFToRGBReference(y, u, v, &r0, &g0, &b0); |
| YUVFToRGB(y, u, v, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| ++rh[r1 - r0 + 128]; |
| ++gh[g1 - g0 + 128]; |
| ++bh[b1 - b0 + 128]; |
| } |
| } |
| } |
| PrintHistogram(rh, gh, bh); |
| } |
| |
| // BT.2020 limited range. |
| TEST_F(LibYUVColorTest, TestFullYUVU) { |
| int rh[256] = { |
| 0, |
| }; |
| int gh[256] = { |
| 0, |
| }; |
| int bh[256] = { |
| 0, |
| }; |
| for (int u = 0; u < 256; ++u) { |
| for (int v = 0; v < 256; ++v) { |
| for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { |
| int r0, g0, b0, r1, g1, b1; |
| int y = RANDOM256(y2); |
| YUVUToRGBReference(y, u, v, &r0, &g0, &b0); |
| YUVUToRGB(y, u, v, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, ERROR_G); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| ++rh[r1 - r0 + 128]; |
| ++gh[g1 - g0 + 128]; |
| ++bh[b1 - b0 + 128]; |
| } |
| } |
| } |
| PrintHistogram(rh, gh, bh); |
| } |
| |
| // BT.2020 full range. |
| TEST_F(LibYUVColorTest, TestFullYUVV) { |
| int rh[256] = { |
| 0, |
| }; |
| int gh[256] = { |
| 0, |
| }; |
| int bh[256] = { |
| 0, |
| }; |
| for (int u = 0; u < 256; ++u) { |
| for (int v = 0; v < 256; ++v) { |
| for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { |
| int r0, g0, b0, r1, g1, b1; |
| int y = RANDOM256(y2); |
| YUVVToRGBReference(y, u, v, &r0, &g0, &b0); |
| YUVVToRGB(y, u, v, &r1, &g1, &b1); |
| EXPECT_NEAR(r0, r1, ERROR_R); |
| EXPECT_NEAR(g0, g1, 2); |
| EXPECT_NEAR(b0, b1, ERROR_B); |
| ++rh[r1 - r0 + 128]; |
| ++gh[g1 - g0 + 128]; |
| ++bh[b1 - b0 + 128]; |
| } |
| } |
| } |
| PrintHistogram(rh, gh, bh); |
| } |
| #undef FASTSTEP |
| |
| TEST_F(LibYUVColorTest, TestGreyYUVJ) { |
| int r0, g0, b0, r1, g1, b1, r2, g2, b2; |
| |
| // black |
| YUVJToRGBReference(0, 128, 128, &r0, &g0, &b0); |
| EXPECT_EQ(0, r0); |
| EXPECT_EQ(0, g0); |
| EXPECT_EQ(0, b0); |
| |
| YUVJToRGB(0, 128, 128, &r1, &g1, &b1); |
| EXPECT_EQ(0, r1); |
| EXPECT_EQ(0, g1); |
| EXPECT_EQ(0, b1); |
| |
| // white |
| YUVJToRGBReference(255, 128, 128, &r0, &g0, &b0); |
| EXPECT_EQ(255, r0); |
| EXPECT_EQ(255, g0); |
| EXPECT_EQ(255, b0); |
| |
| YUVJToRGB(255, 128, 128, &r1, &g1, &b1); |
| EXPECT_EQ(255, r1); |
| EXPECT_EQ(255, g1); |
| EXPECT_EQ(255, b1); |
| |
| // grey |
| YUVJToRGBReference(128, 128, 128, &r0, &g0, &b0); |
| EXPECT_EQ(128, r0); |
| EXPECT_EQ(128, g0); |
| EXPECT_EQ(128, b0); |
| |
| YUVJToRGB(128, 128, 128, &r1, &g1, &b1); |
| EXPECT_EQ(128, r1); |
| EXPECT_EQ(128, g1); |
| EXPECT_EQ(128, b1); |
| |
| for (int y = 0; y < 256; ++y) { |
| YUVJToRGBReference(y, 128, 128, &r0, &g0, &b0); |
| YUVJToRGB(y, 128, 128, &r1, &g1, &b1); |
| YJToRGB(y, &r2, &g2, &b2); |
| EXPECT_EQ(r0, r1); |
| EXPECT_EQ(g0, g1); |
| EXPECT_EQ(b0, b1); |
| EXPECT_EQ(r0, r2); |
| EXPECT_EQ(g0, g2); |
| EXPECT_EQ(b0, b2); |
| } |
| } |
| |
| } // namespace libyuv |