| /* |
| * Copyright 2011 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include "../unit_test/unit_test.h" |
| #include "libyuv/basic_types.h" |
| #include "libyuv/compare.h" |
| #include "libyuv/cpu_id.h" |
| #include "libyuv/video_common.h" |
| |
| #ifdef ENABLE_ROW_TESTS |
| #include "libyuv/compare_row.h" /* For HammingDistance_C */ |
| #endif |
| |
| namespace libyuv { |
| |
| // hash seed of 5381 recommended. |
| static uint32_t ReferenceHashDjb2(const uint8_t* src, |
| uint64_t count, |
| uint32_t seed) { |
| uint32_t hash = seed; |
| if (count > 0) { |
| do { |
| hash = hash * 33 + *src++; |
| } while (--count); |
| } |
| return hash; |
| } |
| |
| TEST_F(LibYUVCompareTest, Djb2_Test) { |
| const int kMaxTest = benchmark_width_ * benchmark_height_; |
| align_buffer_page_end(src_a, kMaxTest); |
| align_buffer_page_end(src_b, kMaxTest); |
| |
| const char* fox = |
| "The quick brown fox jumps over the lazy dog" |
| " and feels as if he were in the seventh heaven of typography" |
| " together with Hermann Zapf"; |
| uint32_t foxhash = HashDjb2(reinterpret_cast<const uint8_t*>(fox), 131, 5381); |
| const uint32_t kExpectedFoxHash = 2611006483u; |
| EXPECT_EQ(kExpectedFoxHash, foxhash); |
| |
| for (int i = 0; i < kMaxTest; ++i) { |
| src_a[i] = (fastrand() & 0xff); |
| src_b[i] = (fastrand() & 0xff); |
| } |
| // Compare different buffers. Expect hash is different. |
| uint32_t h1 = HashDjb2(src_a, kMaxTest, 5381); |
| uint32_t h2 = HashDjb2(src_b, kMaxTest, 5381); |
| EXPECT_NE(h1, h2); |
| |
| // Make last half same. Expect hash is different. |
| memcpy(src_a + kMaxTest / 2, src_b + kMaxTest / 2, kMaxTest / 2); |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_b, kMaxTest, 5381); |
| EXPECT_NE(h1, h2); |
| |
| // Make first half same. Expect hash is different. |
| memcpy(src_a + kMaxTest / 2, src_a, kMaxTest / 2); |
| memcpy(src_b + kMaxTest / 2, src_b, kMaxTest / 2); |
| memcpy(src_a, src_b, kMaxTest / 2); |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_b, kMaxTest, 5381); |
| EXPECT_NE(h1, h2); |
| |
| // Make same. Expect hash is same. |
| memcpy(src_a, src_b, kMaxTest); |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_b, kMaxTest, 5381); |
| EXPECT_EQ(h1, h2); |
| |
| // Mask seed different. Expect hash is different. |
| memcpy(src_a, src_b, kMaxTest); |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_b, kMaxTest, 1234); |
| EXPECT_NE(h1, h2); |
| |
| // Make one byte different in middle. Expect hash is different. |
| memcpy(src_a, src_b, kMaxTest); |
| ++src_b[kMaxTest / 2]; |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_b, kMaxTest, 5381); |
| EXPECT_NE(h1, h2); |
| |
| // Make first byte different. Expect hash is different. |
| memcpy(src_a, src_b, kMaxTest); |
| ++src_b[0]; |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_b, kMaxTest, 5381); |
| EXPECT_NE(h1, h2); |
| |
| // Make last byte different. Expect hash is different. |
| memcpy(src_a, src_b, kMaxTest); |
| ++src_b[kMaxTest - 1]; |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_b, kMaxTest, 5381); |
| EXPECT_NE(h1, h2); |
| |
| // Make a zeros. Test different lengths. Expect hash is different. |
| memset(src_a, 0, kMaxTest); |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| h2 = HashDjb2(src_a, kMaxTest / 2, 5381); |
| EXPECT_NE(h1, h2); |
| |
| // Make a zeros and seed of zero. Test different lengths. Expect hash is same. |
| memset(src_a, 0, kMaxTest); |
| h1 = HashDjb2(src_a, kMaxTest, 0); |
| h2 = HashDjb2(src_a, kMaxTest / 2, 0); |
| EXPECT_EQ(h1, h2); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkDjb2_Opt) { |
| const int kMaxTest = benchmark_width_ * benchmark_height_; |
| align_buffer_page_end(src_a, kMaxTest); |
| |
| for (int i = 0; i < kMaxTest; ++i) { |
| src_a[i] = i; |
| } |
| uint32_t h2 = ReferenceHashDjb2(src_a, kMaxTest, 5381); |
| uint32_t h1; |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| h1 = HashDjb2(src_a, kMaxTest, 5381); |
| } |
| EXPECT_EQ(h1, h2); |
| free_aligned_buffer_page_end(src_a); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkDjb2_Unaligned) { |
| const int kMaxTest = benchmark_width_ * benchmark_height_; |
| align_buffer_page_end(src_a, kMaxTest + 1); |
| for (int i = 0; i < kMaxTest; ++i) { |
| src_a[i + 1] = i; |
| } |
| uint32_t h2 = ReferenceHashDjb2(src_a + 1, kMaxTest, 5381); |
| uint32_t h1; |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| h1 = HashDjb2(src_a + 1, kMaxTest, 5381); |
| } |
| EXPECT_EQ(h1, h2); |
| free_aligned_buffer_page_end(src_a); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkARGBDetect_Opt) { |
| uint32_t fourcc; |
| const int kMaxTest = benchmark_width_ * benchmark_height_ * 4; |
| align_buffer_page_end(src_a, kMaxTest); |
| for (int i = 0; i < kMaxTest; ++i) { |
| src_a[i] = 255; |
| } |
| |
| src_a[0] = 0; |
| fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, |
| benchmark_height_); |
| EXPECT_EQ(static_cast<uint32_t>(libyuv::FOURCC_BGRA), fourcc); |
| src_a[0] = 255; |
| src_a[3] = 0; |
| fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, |
| benchmark_height_); |
| EXPECT_EQ(static_cast<uint32_t>(libyuv::FOURCC_ARGB), fourcc); |
| src_a[3] = 255; |
| |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| fourcc = ARGBDetect(src_a, benchmark_width_ * 4, benchmark_width_, |
| benchmark_height_); |
| } |
| EXPECT_EQ(0u, fourcc); |
| |
| free_aligned_buffer_page_end(src_a); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkARGBDetect_Unaligned) { |
| uint32_t fourcc; |
| const int kMaxTest = benchmark_width_ * benchmark_height_ * 4 + 1; |
| align_buffer_page_end(src_a, kMaxTest); |
| for (int i = 1; i < kMaxTest; ++i) { |
| src_a[i] = 255; |
| } |
| |
| src_a[0 + 1] = 0; |
| fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, |
| benchmark_height_); |
| EXPECT_EQ(static_cast<uint32_t>(libyuv::FOURCC_BGRA), fourcc); |
| src_a[0 + 1] = 255; |
| src_a[3 + 1] = 0; |
| fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, |
| benchmark_height_); |
| EXPECT_EQ(static_cast<uint32_t>(libyuv::FOURCC_ARGB), fourcc); |
| src_a[3 + 1] = 255; |
| |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| fourcc = ARGBDetect(src_a + 1, benchmark_width_ * 4, benchmark_width_, |
| benchmark_height_); |
| } |
| EXPECT_EQ(0u, fourcc); |
| |
| free_aligned_buffer_page_end(src_a); |
| } |
| |
| #ifdef ENABLE_ROW_TESTS |
| TEST_F(LibYUVCompareTest, BenchmarkHammingDistance_Opt) { |
| const int kMaxWidth = 4096 * 3; |
| align_buffer_page_end(src_a, kMaxWidth); |
| align_buffer_page_end(src_b, kMaxWidth); |
| memset(src_a, 0, kMaxWidth); |
| memset(src_b, 0, kMaxWidth); |
| |
| // Test known value |
| memcpy(src_a, "test0123test4567", 16); |
| memcpy(src_b, "tick0123tock4567", 16); |
| uint32_t h1 = HammingDistance_C(src_a, src_b, 16); |
| EXPECT_EQ(16u, h1); |
| |
| // Test C vs OPT on random buffer |
| MemRandomize(src_a, kMaxWidth); |
| MemRandomize(src_b, kMaxWidth); |
| |
| uint32_t h0 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| |
| int count = |
| benchmark_iterations_ * |
| ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); |
| for (int i = 0; i < count; ++i) { |
| #if defined(HAS_HAMMINGDISTANCE_NEON) |
| h1 = HammingDistance_NEON(src_a, src_b, kMaxWidth); |
| #elif defined(HAS_HAMMINGDISTANCE_AVX2) |
| int has_avx2 = TestCpuFlag(kCpuHasAVX2); |
| if (has_avx2) { |
| h1 = HammingDistance_AVX2(src_a, src_b, kMaxWidth); |
| } else { |
| int has_sse42 = TestCpuFlag(kCpuHasSSE42); |
| if (has_sse42) { |
| h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); |
| } else { |
| int has_ssse3 = TestCpuFlag(kCpuHasSSSE3); |
| if (has_ssse3) { |
| h1 = HammingDistance_SSSE3(src_a, src_b, kMaxWidth); |
| } else { |
| h1 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| } |
| } |
| } |
| #elif defined(HAS_HAMMINGDISTANCE_SSE42) |
| int has_sse42 = TestCpuFlag(kCpuHasSSE42); |
| if (has_sse42) { |
| h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); |
| } else { |
| h1 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| } |
| #else |
| h1 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| #endif |
| } |
| EXPECT_EQ(h0, h1); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkHammingDistance_C) { |
| const int kMaxWidth = 4096 * 3; |
| align_buffer_page_end(src_a, kMaxWidth); |
| align_buffer_page_end(src_b, kMaxWidth); |
| memset(src_a, 0, kMaxWidth); |
| memset(src_b, 0, kMaxWidth); |
| |
| // Test known value |
| memcpy(src_a, "test0123test4567", 16); |
| memcpy(src_b, "tick0123tock4567", 16); |
| uint32_t h1 = HammingDistance_C(src_a, src_b, 16); |
| EXPECT_EQ(16u, h1); |
| |
| // Test C vs OPT on random buffer |
| MemRandomize(src_a, kMaxWidth); |
| MemRandomize(src_b, kMaxWidth); |
| |
| uint32_t h0 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| |
| int count = |
| benchmark_iterations_ * |
| ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); |
| for (int i = 0; i < count; ++i) { |
| h1 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| } |
| |
| EXPECT_EQ(h0, h1); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkHammingDistance) { |
| const int kMaxWidth = 4096 * 3; |
| align_buffer_page_end(src_a, kMaxWidth); |
| align_buffer_page_end(src_b, kMaxWidth); |
| memset(src_a, 0, kMaxWidth); |
| memset(src_b, 0, kMaxWidth); |
| |
| memcpy(src_a, "test0123test4567", 16); |
| memcpy(src_b, "tick0123tock4567", 16); |
| uint64_t h1 = ComputeHammingDistance(src_a, src_b, 16); |
| EXPECT_EQ(16u, h1); |
| |
| // Test C vs OPT on random buffer |
| MemRandomize(src_a, kMaxWidth); |
| MemRandomize(src_b, kMaxWidth); |
| |
| uint32_t h0 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| |
| int count = |
| benchmark_iterations_ * |
| ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); |
| for (int i = 0; i < count; ++i) { |
| h1 = ComputeHammingDistance(src_a, src_b, kMaxWidth); |
| } |
| |
| EXPECT_EQ(h0, h1); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| // Tests low levels match reference C for specified size. |
| // The opt implementations have size limitations |
| // For NEON the counters are 16 bit so the shorts overflow after 65536 bytes. |
| // So doing one less iteration of the loop is the maximum. |
| #if defined(HAS_HAMMINGDISTANCE_NEON) |
| static const int kMaxOptCount = 65536 - 32; // 65504 |
| #else |
| static const int kMaxOptCount = (1 << (32 - 3)) - 64; // 536870848 |
| #endif |
| |
| TEST_F(LibYUVCompareTest, TestHammingDistance_Opt) { |
| uint32_t h1 = 0; |
| const int kMaxWidth = (benchmark_width_ * benchmark_height_ + 63) & ~63; |
| align_buffer_page_end(src_a, kMaxWidth); |
| align_buffer_page_end(src_b, kMaxWidth); |
| memset(src_a, 255u, kMaxWidth); |
| memset(src_b, 0u, kMaxWidth); |
| |
| uint64_t h0 = ComputeHammingDistance(src_a, src_b, kMaxWidth); |
| EXPECT_EQ(kMaxWidth * 8ULL, h0); |
| |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| #if defined(HAS_HAMMINGDISTANCE_NEON) |
| h1 = HammingDistance_NEON(src_a, src_b, kMaxWidth); |
| #elif defined(HAS_HAMMINGDISTANCE_AVX2) |
| int has_avx2 = TestCpuFlag(kCpuHasAVX2); |
| if (has_avx2) { |
| h1 = HammingDistance_AVX2(src_a, src_b, kMaxWidth); |
| } else { |
| int has_sse42 = TestCpuFlag(kCpuHasSSE42); |
| if (has_sse42) { |
| h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); |
| } else { |
| int has_ssse3 = TestCpuFlag(kCpuHasSSSE3); |
| if (has_ssse3) { |
| h1 = HammingDistance_SSSE3(src_a, src_b, kMaxWidth); |
| } else { |
| h1 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| } |
| } |
| } |
| #elif defined(HAS_HAMMINGDISTANCE_SSE42) |
| int has_sse42 = TestCpuFlag(kCpuHasSSE42); |
| if (has_sse42) { |
| h1 = HammingDistance_SSE42(src_a, src_b, kMaxWidth); |
| } else { |
| h1 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| } |
| #else |
| h1 = HammingDistance_C(src_a, src_b, kMaxWidth); |
| #endif |
| } |
| |
| // A large count will cause the low level to potentially overflow so the |
| // result can not be expected to be correct. |
| // TODO(fbarchard): Consider expecting the low 16 bits to match. |
| if (kMaxWidth <= kMaxOptCount) { |
| EXPECT_EQ(kMaxWidth * 8U, h1); |
| } else { |
| if (kMaxWidth * 8ULL != static_cast<uint64_t>(h1)) { |
| printf( |
| "warning - HammingDistance_Opt %u does not match %llu " |
| "but length of %u is longer than guaranteed.\n", |
| h1, kMaxWidth * 8ULL, kMaxWidth); |
| } else { |
| printf( |
| "warning - HammingDistance_Opt %u matches but length of %u " |
| "is longer than guaranteed.\n", |
| h1, kMaxWidth); |
| } |
| } |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| #endif // ENABLE_ROW_TESTS |
| |
| TEST_F(LibYUVCompareTest, TestHammingDistance) { |
| align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); |
| align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); |
| memset(src_a, 255u, benchmark_width_ * benchmark_height_); |
| memset(src_b, 0, benchmark_width_ * benchmark_height_); |
| |
| uint64_t h1 = 0; |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| h1 = ComputeHammingDistance(src_a, src_b, |
| benchmark_width_ * benchmark_height_); |
| } |
| EXPECT_EQ(benchmark_width_ * benchmark_height_ * 8ULL, h1); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkSumSquareError_Opt) { |
| const int kMaxWidth = 4096 * 3; |
| align_buffer_page_end(src_a, kMaxWidth); |
| align_buffer_page_end(src_b, kMaxWidth); |
| memset(src_a, 0, kMaxWidth); |
| memset(src_b, 0, kMaxWidth); |
| |
| memcpy(src_a, "test0123test4567", 16); |
| memcpy(src_b, "tick0123tock4567", 16); |
| uint64_t h1 = ComputeSumSquareError(src_a, src_b, 16); |
| EXPECT_EQ(790u, h1); |
| |
| for (int i = 0; i < kMaxWidth; ++i) { |
| src_a[i] = i; |
| src_b[i] = i; |
| } |
| memset(src_a, 0, kMaxWidth); |
| memset(src_b, 0, kMaxWidth); |
| |
| int count = |
| benchmark_iterations_ * |
| ((benchmark_width_ * benchmark_height_ + kMaxWidth - 1) / kMaxWidth); |
| for (int i = 0; i < count; ++i) { |
| h1 = ComputeSumSquareError(src_a, src_b, kMaxWidth); |
| } |
| |
| EXPECT_EQ(0u, h1); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, SumSquareError) { |
| const int kMaxWidth = 4096 * 3; |
| align_buffer_page_end(src_a, kMaxWidth); |
| align_buffer_page_end(src_b, kMaxWidth); |
| memset(src_a, 0, kMaxWidth); |
| memset(src_b, 0, kMaxWidth); |
| |
| uint64_t err; |
| err = ComputeSumSquareError(src_a, src_b, kMaxWidth); |
| |
| EXPECT_EQ(0u, err); |
| |
| memset(src_a, 1, kMaxWidth); |
| err = ComputeSumSquareError(src_a, src_b, kMaxWidth); |
| |
| EXPECT_EQ(static_cast<int>(err), kMaxWidth); |
| |
| memset(src_a, 190, kMaxWidth); |
| memset(src_b, 193, kMaxWidth); |
| err = ComputeSumSquareError(src_a, src_b, kMaxWidth); |
| |
| EXPECT_EQ(static_cast<int>(err), kMaxWidth * 3 * 3); |
| |
| for (int i = 0; i < kMaxWidth; ++i) { |
| src_a[i] = (fastrand() & 0xff); |
| src_b[i] = (fastrand() & 0xff); |
| } |
| |
| MaskCpuFlags(disable_cpu_flags_); |
| uint64_t c_err = ComputeSumSquareError(src_a, src_b, kMaxWidth); |
| |
| MaskCpuFlags(benchmark_cpu_info_); |
| uint64_t opt_err = ComputeSumSquareError(src_a, src_b, kMaxWidth); |
| |
| EXPECT_EQ(c_err, opt_err); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkPsnr_Opt) { |
| align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); |
| align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); |
| for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { |
| src_a[i] = i; |
| src_b[i] = i; |
| } |
| |
| MaskCpuFlags(benchmark_cpu_info_); |
| |
| double opt_time = get_time(); |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| CalcFramePsnr(src_a, benchmark_width_, src_b, benchmark_width_, |
| benchmark_width_, benchmark_height_); |
| } |
| |
| opt_time = (get_time() - opt_time) / benchmark_iterations_; |
| printf("BenchmarkPsnr_Opt - %8.2f us opt\n", opt_time * 1e6); |
| |
| EXPECT_EQ(0, 0); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, BenchmarkPsnr_Unaligned) { |
| align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_ + 1); |
| align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); |
| for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { |
| src_a[i + 1] = i; |
| src_b[i] = i; |
| } |
| |
| MaskCpuFlags(benchmark_cpu_info_); |
| |
| double opt_time = get_time(); |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| CalcFramePsnr(src_a + 1, benchmark_width_, src_b, benchmark_width_, |
| benchmark_width_, benchmark_height_); |
| } |
| |
| opt_time = (get_time() - opt_time) / benchmark_iterations_; |
| printf("BenchmarkPsnr_Opt - %8.2f us opt\n", opt_time * 1e6); |
| |
| EXPECT_EQ(0, 0); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, Psnr) { |
| const int kSrcWidth = benchmark_width_; |
| const int kSrcHeight = benchmark_height_; |
| const int b = 128; |
| const int kSrcPlaneSize = (kSrcWidth + b * 2) * (kSrcHeight + b * 2); |
| const int kSrcStride = 2 * b + kSrcWidth; |
| align_buffer_page_end(src_a, kSrcPlaneSize); |
| align_buffer_page_end(src_b, kSrcPlaneSize); |
| memset(src_a, 0, kSrcPlaneSize); |
| memset(src_b, 0, kSrcPlaneSize); |
| |
| double err; |
| err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| EXPECT_EQ(err, kMaxPsnr); |
| |
| memset(src_a, 255, kSrcPlaneSize); |
| |
| err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| EXPECT_EQ(err, 0.0); |
| |
| memset(src_a, 1, kSrcPlaneSize); |
| |
| err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| EXPECT_GT(err, 48.0); |
| EXPECT_LT(err, 49.0); |
| |
| for (int i = 0; i < kSrcPlaneSize; ++i) { |
| src_a[i] = i; |
| } |
| |
| err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| EXPECT_GT(err, 2.0); |
| if (kSrcWidth * kSrcHeight >= 256) { |
| EXPECT_LT(err, 6.0); |
| } |
| |
| memset(src_a, 0, kSrcPlaneSize); |
| memset(src_b, 0, kSrcPlaneSize); |
| |
| for (int i = b; i < (kSrcHeight + b); ++i) { |
| for (int j = b; j < (kSrcWidth + b); ++j) { |
| src_a[(i * kSrcStride) + j] = (fastrand() & 0xff); |
| src_b[(i * kSrcStride) + j] = (fastrand() & 0xff); |
| } |
| } |
| |
| MaskCpuFlags(disable_cpu_flags_); |
| double c_err, opt_err; |
| |
| c_err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| MaskCpuFlags(benchmark_cpu_info_); |
| |
| opt_err = CalcFramePsnr(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| EXPECT_EQ(opt_err, c_err); |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, DISABLED_BenchmarkSsim_Opt) { |
| align_buffer_page_end(src_a, benchmark_width_ * benchmark_height_); |
| align_buffer_page_end(src_b, benchmark_width_ * benchmark_height_); |
| for (int i = 0; i < benchmark_width_ * benchmark_height_; ++i) { |
| src_a[i] = i; |
| src_b[i] = i; |
| } |
| |
| MaskCpuFlags(benchmark_cpu_info_); |
| |
| double opt_time = get_time(); |
| for (int i = 0; i < benchmark_iterations_; ++i) { |
| CalcFrameSsim(src_a, benchmark_width_, src_b, benchmark_width_, |
| benchmark_width_, benchmark_height_); |
| } |
| |
| opt_time = (get_time() - opt_time) / benchmark_iterations_; |
| printf("BenchmarkSsim_Opt - %8.2f us opt\n", opt_time * 1e6); |
| |
| EXPECT_EQ(0, 0); // Pass if we get this far. |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| TEST_F(LibYUVCompareTest, Ssim) { |
| const int kSrcWidth = benchmark_width_; |
| const int kSrcHeight = benchmark_height_; |
| const int b = 128; |
| const int kSrcPlaneSize = (kSrcWidth + b * 2) * (kSrcHeight + b * 2); |
| const int kSrcStride = 2 * b + kSrcWidth; |
| align_buffer_page_end(src_a, kSrcPlaneSize); |
| align_buffer_page_end(src_b, kSrcPlaneSize); |
| memset(src_a, 0, kSrcPlaneSize); |
| memset(src_b, 0, kSrcPlaneSize); |
| |
| if (kSrcWidth <= 8 || kSrcHeight <= 8) { |
| printf("warning - Ssim size too small. Testing function executes.\n"); |
| } |
| |
| double err; |
| err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| if (kSrcWidth > 8 && kSrcHeight > 8) { |
| EXPECT_EQ(err, 1.0); |
| } |
| |
| memset(src_a, 255, kSrcPlaneSize); |
| |
| err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| if (kSrcWidth > 8 && kSrcHeight > 8) { |
| EXPECT_LT(err, 0.0001); |
| } |
| |
| memset(src_a, 1, kSrcPlaneSize); |
| |
| err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| if (kSrcWidth > 8 && kSrcHeight > 8) { |
| EXPECT_GT(err, 0.0001); |
| EXPECT_LT(err, 0.9); |
| } |
| |
| for (int i = 0; i < kSrcPlaneSize; ++i) { |
| src_a[i] = i; |
| } |
| |
| err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| if (kSrcWidth > 8 && kSrcHeight > 8) { |
| EXPECT_GT(err, 0.0); |
| EXPECT_LT(err, 0.01); |
| } |
| |
| for (int i = b; i < (kSrcHeight + b); ++i) { |
| for (int j = b; j < (kSrcWidth + b); ++j) { |
| src_a[(i * kSrcStride) + j] = (fastrand() & 0xff); |
| src_b[(i * kSrcStride) + j] = (fastrand() & 0xff); |
| } |
| } |
| |
| MaskCpuFlags(disable_cpu_flags_); |
| double c_err, opt_err; |
| |
| c_err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| MaskCpuFlags(benchmark_cpu_info_); |
| |
| opt_err = CalcFrameSsim(src_a + kSrcStride * b + b, kSrcStride, |
| src_b + kSrcStride * b + b, kSrcStride, kSrcWidth, |
| kSrcHeight); |
| |
| if (kSrcWidth > 8 && kSrcHeight > 8) { |
| EXPECT_EQ(opt_err, c_err); |
| } |
| |
| free_aligned_buffer_page_end(src_a); |
| free_aligned_buffer_page_end(src_b); |
| } |
| |
| } // namespace libyuv |