blob: 5c55aab51ead84128c322c04a7b2e917e1270a09 [file] [log] [blame]
/*
* Copyright 2020 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/scale_uv.h"
#include <assert.h>
#include <string.h>
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h" // For CopyUV
#include "libyuv/row.h"
#include "libyuv/scale_row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// Macros to enable specialized scalers
#ifndef HAS_SCALEUVDOWN2
#define HAS_SCALEUVDOWN2 1
#endif
#ifndef HAS_SCALEUVDOWN4BOX
#define HAS_SCALEUVDOWN4BOX 1
#endif
#ifndef HAS_SCALEUVDOWNEVEN
#define HAS_SCALEUVDOWNEVEN 1
#endif
#ifndef HAS_SCALEUVBILINEARDOWN
#define HAS_SCALEUVBILINEARDOWN 1
#endif
#ifndef HAS_SCALEUVBILINEARUP
#define HAS_SCALEUVBILINEARUP 1
#endif
#ifndef HAS_UVCOPY
#define HAS_UVCOPY 1
#endif
#ifndef HAS_SCALEPLANEVERTICAL
#define HAS_SCALEPLANEVERTICAL 1
#endif
static __inline int Abs(int v) {
return v >= 0 ? v : -v;
}
// ScaleUV, 1/2
// This is an optimized version for scaling down a UV to 1/2 of
// its original size.
#if HAS_SCALEUVDOWN2
static void ScaleUVDown2(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_uv,
uint8_t* dst_uv,
int x,
int dx,
int y,
int dy,
enum FilterMode filtering) {
int j;
int row_stride = src_stride * (dy >> 16);
void (*ScaleUVRowDown2)(const uint8_t* src_uv, ptrdiff_t src_stride,
uint8_t* dst_uv, int dst_width) =
filtering == kFilterNone
? ScaleUVRowDown2_C
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_C
: ScaleUVRowDown2Box_C);
(void)src_width;
(void)src_height;
(void)dx;
assert(dx == 65536 * 2); // Test scale factor of 2.
assert((dy & 0x1ffff) == 0); // Test vertical scale is multiple of 2.
// Advance to odd row, even column.
if (filtering == kFilterBilinear) {
src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2;
} else {
src_uv += (y >> 16) * (intptr_t)src_stride + ((x >> 16) - 1) * 2;
}
#if defined(HAS_SCALEUVROWDOWN2BOX_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && filtering) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_SSSE3;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_SSSE3;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2BOX_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && filtering) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_AVX2;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_AVX2;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2BOX_NEON)
if (TestCpuFlag(kCpuHasNEON) && filtering) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_NEON;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleUVRowDown2 =
filtering == kFilterNone
? ScaleUVRowDown2_Any_NEON
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_NEON
: ScaleUVRowDown2Box_Any_NEON);
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVRowDown2 =
filtering == kFilterNone
? ScaleUVRowDown2_NEON
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_NEON
: ScaleUVRowDown2Box_NEON);
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2_RVV)
if (TestCpuFlag(kCpuHasRVV)) {
ScaleUVRowDown2 =
filtering == kFilterNone
? ScaleUVRowDown2_RVV
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_RVV
: ScaleUVRowDown2Box_RVV);
}
#endif
// This code is not enabled. Only box filter is available at this time.
#if defined(HAS_SCALEUVROWDOWN2_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleUVRowDown2 =
filtering == kFilterNone
? ScaleUVRowDown2_Any_SSSE3
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_SSSE3
: ScaleUVRowDown2Box_Any_SSSE3);
if (IS_ALIGNED(dst_width, 2)) {
ScaleUVRowDown2 =
filtering == kFilterNone
? ScaleUVRowDown2_SSSE3
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_SSSE3
: ScaleUVRowDown2Box_SSSE3);
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
ScaleUVRowDown2 =
filtering == kFilterNone
? ScaleUVRowDown2_Any_MSA
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_MSA
: ScaleUVRowDown2Box_Any_MSA);
if (IS_ALIGNED(dst_width, 2)) {
ScaleUVRowDown2 =
filtering == kFilterNone
? ScaleUVRowDown2_MSA
: (filtering == kFilterLinear ? ScaleUVRowDown2Linear_MSA
: ScaleUVRowDown2Box_MSA);
}
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (j = 0; j < dst_height; ++j) {
ScaleUVRowDown2(src_uv, src_stride, dst_uv, dst_width);
src_uv += row_stride;
dst_uv += dst_stride;
}
}
#endif // HAS_SCALEUVDOWN2
// ScaleUV, 1/4
// This is an optimized version for scaling down a UV to 1/4 of
// its original size.
#if HAS_SCALEUVDOWN4BOX
static int ScaleUVDown4Box(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_uv,
uint8_t* dst_uv,
int x,
int dx,
int y,
int dy) {
int j;
// Allocate 2 rows of UV.
const int row_size = (dst_width * 2 * 2 + 15) & ~15;
align_buffer_64(row, row_size * 2);
if (!row)
return 1;
int row_stride = src_stride * (dy >> 16);
void (*ScaleUVRowDown2)(const uint8_t* src_uv, ptrdiff_t src_stride,
uint8_t* dst_uv, int dst_width) =
ScaleUVRowDown2Box_C;
// Advance to odd row, even column.
src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2;
(void)src_width;
(void)src_height;
(void)dx;
assert(dx == 65536 * 4); // Test scale factor of 4.
assert((dy & 0x3ffff) == 0); // Test vertical scale is multiple of 4.
#if defined(HAS_SCALEUVROWDOWN2BOX_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_SSSE3;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_SSSE3;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2BOX_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_AVX2;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_AVX2;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2BOX_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_NEON;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWN2BOX_RVV)
if (TestCpuFlag(kCpuHasRVV)) {
ScaleUVRowDown2 = ScaleUVRowDown2Box_RVV;
}
#endif
for (j = 0; j < dst_height; ++j) {
ScaleUVRowDown2(src_uv, src_stride, row, dst_width * 2);
ScaleUVRowDown2(src_uv + src_stride * 2, src_stride, row + row_size,
dst_width * 2);
ScaleUVRowDown2(row, row_size, dst_uv, dst_width);
src_uv += row_stride;
dst_uv += dst_stride;
}
free_aligned_buffer_64(row);
return 0;
}
#endif // HAS_SCALEUVDOWN4BOX
// ScaleUV Even
// This is an optimized version for scaling down a UV to even
// multiple of its original size.
#if HAS_SCALEUVDOWNEVEN
static void ScaleUVDownEven(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_uv,
uint8_t* dst_uv,
int x,
int dx,
int y,
int dy,
enum FilterMode filtering) {
int j;
int col_step = dx >> 16;
ptrdiff_t row_stride = (ptrdiff_t)((dy >> 16) * (intptr_t)src_stride);
void (*ScaleUVRowDownEven)(const uint8_t* src_uv, ptrdiff_t src_stride,
int src_step, uint8_t* dst_uv, int dst_width) =
filtering ? ScaleUVRowDownEvenBox_C : ScaleUVRowDownEven_C;
(void)src_width;
(void)src_height;
assert(IS_ALIGNED(src_width, 2));
assert(IS_ALIGNED(src_height, 2));
src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2;
#if defined(HAS_SCALEUVROWDOWNEVEN_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleUVRowDownEven = filtering ? ScaleUVRowDownEvenBox_Any_SSSE3
: ScaleUVRowDownEven_Any_SSSE3;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVRowDownEven =
filtering ? ScaleUVRowDownEvenBox_SSE2 : ScaleUVRowDownEven_SSSE3;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWNEVEN_NEON)
if (TestCpuFlag(kCpuHasNEON) && !filtering) {
ScaleUVRowDownEven = ScaleUVRowDownEven_Any_NEON;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVRowDownEven = ScaleUVRowDownEven_NEON;
}
}
#endif // TODO(fbarchard): Enable Box filter
#if defined(HAS_SCALEUVROWDOWNEVENBOX_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleUVRowDownEven = filtering ? ScaleUVRowDownEvenBox_Any_NEON
: ScaleUVRowDownEven_Any_NEON;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVRowDownEven =
filtering ? ScaleUVRowDownEvenBox_NEON : ScaleUVRowDownEven_NEON;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWNEVEN_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
ScaleUVRowDownEven =
filtering ? ScaleUVRowDownEvenBox_Any_MSA : ScaleUVRowDownEven_Any_MSA;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVRowDownEven =
filtering ? ScaleUVRowDownEvenBox_MSA : ScaleUVRowDownEven_MSA;
}
}
#endif
#if defined(HAS_SCALEUVROWDOWNEVEN_RVV) || defined(HAS_SCALEUVROWDOWN4_RVV)
if (TestCpuFlag(kCpuHasRVV) && !filtering) {
#if defined(HAS_SCALEUVROWDOWNEVEN_RVV)
ScaleUVRowDownEven = ScaleUVRowDownEven_RVV;
#endif
#if defined(HAS_SCALEUVROWDOWN4_RVV)
if (col_step == 4) {
ScaleUVRowDownEven = ScaleUVRowDown4_RVV;
}
#endif
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (j = 0; j < dst_height; ++j) {
ScaleUVRowDownEven(src_uv, src_stride, col_step, dst_uv, dst_width);
src_uv += row_stride;
dst_uv += dst_stride;
}
}
#endif
// Scale UV down with bilinear interpolation.
#if HAS_SCALEUVBILINEARDOWN
static int ScaleUVBilinearDown(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_uv,
uint8_t* dst_uv,
int x,
int dx,
int y,
int dy,
enum FilterMode filtering) {
int j;
void (*InterpolateRow)(uint8_t* dst_uv, const uint8_t* src_uv,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
void (*ScaleUVFilterCols)(uint8_t* dst_uv, const uint8_t* src_uv,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleUVFilterCols64_C : ScaleUVFilterCols_C;
int64_t xlast = x + (int64_t)(dst_width - 1) * dx;
int64_t xl = (dx >= 0) ? x : xlast;
int64_t xr = (dx >= 0) ? xlast : x;
int clip_src_width;
xl = (xl >> 16) & ~3; // Left edge aligned.
xr = (xr >> 16) + 1; // Right most pixel used. Bilinear uses 2 pixels.
xr = (xr + 1 + 3) & ~3; // 1 beyond 4 pixel aligned right most pixel.
if (xr > src_width) {
xr = src_width;
}
clip_src_width = (int)(xr - xl) * 2; // Width aligned to 2.
src_uv += xl * 2;
x -= (int)(xl << 16);
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(clip_src_width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(clip_src_width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(clip_src_width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
InterpolateRow = InterpolateRow_Any_MSA;
if (IS_ALIGNED(clip_src_width, 32)) {
InterpolateRow = InterpolateRow_MSA;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_LSX)
if (TestCpuFlag(kCpuHasLSX)) {
InterpolateRow = InterpolateRow_Any_LSX;
if (IS_ALIGNED(clip_src_width, 32)) {
InterpolateRow = InterpolateRow_LSX;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_RVV)
if (TestCpuFlag(kCpuHasRVV)) {
InterpolateRow = InterpolateRow_RVV;
}
#endif
#if defined(HAS_SCALEUVFILTERCOLS_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleUVFilterCols = ScaleUVFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEUVFILTERCOLS_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleUVFilterCols = ScaleUVFilterCols_Any_NEON;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVFilterCols = ScaleUVFilterCols_NEON;
}
}
#endif
#if defined(HAS_SCALEUVFILTERCOLS_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
ScaleUVFilterCols = ScaleUVFilterCols_Any_MSA;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVFilterCols = ScaleUVFilterCols_MSA;
}
}
#endif
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row of UV.
{
const int max_y = (src_height - 1) << 16;
align_buffer_64(row, clip_src_width * 2);
if (!row)
return 1;
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint8_t* src = src_uv + yi * (intptr_t)src_stride;
if (filtering == kFilterLinear) {
ScaleUVFilterCols(dst_uv, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(row, src, src_stride, clip_src_width, yf);
ScaleUVFilterCols(dst_uv, row, dst_width, x, dx);
}
dst_uv += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
}
return 0;
}
#endif
// Scale UV up with bilinear interpolation.
#if HAS_SCALEUVBILINEARUP
static int ScaleUVBilinearUp(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_uv,
uint8_t* dst_uv,
int x,
int dx,
int y,
int dy,
enum FilterMode filtering) {
int j;
void (*InterpolateRow)(uint8_t* dst_uv, const uint8_t* src_uv,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
void (*ScaleUVFilterCols)(uint8_t* dst_uv, const uint8_t* src_uv,
int dst_width, int x, int dx) =
filtering ? ScaleUVFilterCols_C : ScaleUVCols_C;
const int max_y = (src_height - 1) << 16;
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(dst_width, 8)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
InterpolateRow = InterpolateRow_Any_MSA;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_MSA;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_LSX)
if (TestCpuFlag(kCpuHasLSX)) {
InterpolateRow = InterpolateRow_Any_LSX;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_LSX;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_RVV)
if (TestCpuFlag(kCpuHasRVV)) {
InterpolateRow = InterpolateRow_RVV;
}
#endif
if (src_width >= 32768) {
ScaleUVFilterCols = filtering ? ScaleUVFilterCols64_C : ScaleUVCols64_C;
}
#if defined(HAS_SCALEUVFILTERCOLS_SSSE3)
if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleUVFilterCols = ScaleUVFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEUVFILTERCOLS_NEON)
if (filtering && TestCpuFlag(kCpuHasNEON)) {
ScaleUVFilterCols = ScaleUVFilterCols_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVFilterCols = ScaleUVFilterCols_NEON;
}
}
#endif
#if defined(HAS_SCALEUVFILTERCOLS_MSA)
if (filtering && TestCpuFlag(kCpuHasMSA)) {
ScaleUVFilterCols = ScaleUVFilterCols_Any_MSA;
if (IS_ALIGNED(dst_width, 16)) {
ScaleUVFilterCols = ScaleUVFilterCols_MSA;
}
}
#endif
#if defined(HAS_SCALEUVCOLS_SSSE3)
if (!filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleUVFilterCols = ScaleUVCols_SSSE3;
}
#endif
#if defined(HAS_SCALEUVCOLS_NEON)
if (!filtering && TestCpuFlag(kCpuHasNEON)) {
ScaleUVFilterCols = ScaleUVCols_Any_NEON;
if (IS_ALIGNED(dst_width, 16)) {
ScaleUVFilterCols = ScaleUVCols_NEON;
}
}
#endif
#if defined(HAS_SCALEUVCOLS_MSA)
if (!filtering && TestCpuFlag(kCpuHasMSA)) {
ScaleUVFilterCols = ScaleUVCols_Any_MSA;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVFilterCols = ScaleUVCols_MSA;
}
}
#endif
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleUVFilterCols = ScaleUVColsUp2_C;
#if defined(HAS_SCALEUVCOLSUP2_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(dst_width, 8)) {
ScaleUVFilterCols = ScaleUVColsUp2_SSSE3;
}
#endif
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint8_t* src = src_uv + yi * (intptr_t)src_stride;
// Allocate 2 rows of UV.
const int row_size = (dst_width * 2 + 15) & ~15;
align_buffer_64(row, row_size * 2);
if (!row)
return 1;
uint8_t* rowptr = row;
int rowstride = row_size;
int lasty = yi;
ScaleUVFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleUVFilterCols(rowptr + rowstride, src, dst_width, x, dx);
if (src_height > 2) {
src += src_stride;
}
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_uv + yi * (intptr_t)src_stride;
}
if (yi != lasty) {
ScaleUVFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
if ((y + 65536) < max_y) {
src += src_stride;
}
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_uv, rowptr, 0, dst_width * 2, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_uv, rowptr, rowstride, dst_width * 2, yf);
}
dst_uv += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
return 0;
}
#endif // HAS_SCALEUVBILINEARUP
// Scale UV, horizontally up by 2 times.
// Uses linear filter horizontally, nearest vertically.
// This is an optimized version for scaling up a plane to 2 times of
// its original width, using linear interpolation.
// This is used to scale U and V planes of NV16 to NV24.
static void ScaleUVLinearUp2(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_uv,
uint8_t* dst_uv) {
void (*ScaleRowUp)(const uint8_t* src_uv, uint8_t* dst_uv, int dst_width) =
ScaleUVRowUp2_Linear_Any_C;
int i;
int y;
int dy;
// This function can only scale up by 2 times horizontally.
(void)src_width;
assert(src_width == ((dst_width + 1) / 2));
#ifdef HAS_SCALEUVROWUP2_LINEAR_SSSE3
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowUp = ScaleUVRowUp2_Linear_Any_SSSE3;
}
#endif
#ifdef HAS_SCALEUVROWUP2_LINEAR_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowUp = ScaleUVRowUp2_Linear_Any_AVX2;
}
#endif
#ifdef HAS_SCALEUVROWUP2_LINEAR_NEON
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowUp = ScaleUVRowUp2_Linear_Any_NEON;
}
#endif
#ifdef HAS_SCALEUVROWUP2_LINEAR_RVV
if (TestCpuFlag(kCpuHasRVV)) {
ScaleRowUp = ScaleUVRowUp2_Linear_RVV;
}
#endif
if (dst_height == 1) {
ScaleRowUp(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride, dst_uv,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_uv + (y >> 16) * (intptr_t)src_stride, dst_uv, dst_width);
dst_uv += dst_stride;
y += dy;
}
}
}
// Scale plane, up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original size, using bilinear interpolation.
// This is used to scale U and V planes of NV12 to NV24.
static void ScaleUVBilinearUp2(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
void (*Scale2RowUp)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleUVRowUp2_Bilinear_Any_C;
int x;
// This function can only scale up by 2 times.
(void)src_width;
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
#ifdef HAS_SCALEUVROWUP2_BILINEAR_SSSE3
if (TestCpuFlag(kCpuHasSSSE3)) {
Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_SSSE3;
}
#endif
#ifdef HAS_SCALEUVROWUP2_BILINEAR_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_AVX2;
}
#endif
#ifdef HAS_SCALEUVROWUP2_BILINEAR_NEON
if (TestCpuFlag(kCpuHasNEON)) {
Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_NEON;
}
#endif
#ifdef HAS_SCALEUVROWUP2_BILINEAR_RVV
if (TestCpuFlag(kCpuHasRVV)) {
Scale2RowUp = ScaleUVRowUp2_Bilinear_RVV;
}
#endif
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
// TODO(fbarchard): Test performance of writing one row of destination at a
// time.
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
// Scale 16 bit UV, horizontally up by 2 times.
// Uses linear filter horizontally, nearest vertically.
// This is an optimized version for scaling up a plane to 2 times of
// its original width, using linear interpolation.
// This is used to scale U and V planes of P210 to P410.
static void ScaleUVLinearUp2_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_uv,
uint16_t* dst_uv) {
void (*ScaleRowUp)(const uint16_t* src_uv, uint16_t* dst_uv, int dst_width) =
ScaleUVRowUp2_Linear_16_Any_C;
int i;
int y;
int dy;
// This function can only scale up by 2 times horizontally.
(void)src_width;
assert(src_width == ((dst_width + 1) / 2));
#ifdef HAS_SCALEUVROWUP2_LINEAR_16_SSE41
if (TestCpuFlag(kCpuHasSSE41)) {
ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_SSE41;
}
#endif
#ifdef HAS_SCALEUVROWUP2_LINEAR_16_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_AVX2;
}
#endif
#ifdef HAS_SCALEUVROWUP2_LINEAR_16_NEON
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_NEON;
}
#endif
if (dst_height == 1) {
ScaleRowUp(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride, dst_uv,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_uv + (y >> 16) * (intptr_t)src_stride, dst_uv, dst_width);
dst_uv += dst_stride;
y += dy;
}
}
}
// Scale 16 bit UV, up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original size, using bilinear interpolation.
// This is used to scale U and V planes of P010 to P410.
static void ScaleUVBilinearUp2_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleUVRowUp2_Bilinear_16_Any_C;
int x;
// This function can only scale up by 2 times.
(void)src_width;
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
#ifdef HAS_SCALEUVROWUP2_BILINEAR_16_SSE41
if (TestCpuFlag(kCpuHasSSE41)) {
Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_SSE41;
}
#endif
#ifdef HAS_SCALEUVROWUP2_BILINEAR_16_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_AVX2;
}
#endif
#ifdef HAS_SCALEUVROWUP2_BILINEAR_16_NEON
if (TestCpuFlag(kCpuHasNEON)) {
Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_NEON;
}
#endif
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
// TODO(fbarchard): Test performance of writing one row of destination at a
// time.
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
// Scale UV to/from any dimensions, without interpolation.
// Fixed point math is used for performance: The upper 16 bits
// of x and dx is the integer part of the source position and
// the lower 16 bits are the fixed decimal part.
static void ScaleUVSimple(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_uv,
uint8_t* dst_uv,
int x,
int dx,
int y,
int dy) {
int j;
void (*ScaleUVCols)(uint8_t* dst_uv, const uint8_t* src_uv, int dst_width,
int x, int dx) =
(src_width >= 32768) ? ScaleUVCols64_C : ScaleUVCols_C;
(void)src_height;
#if defined(HAS_SCALEUVCOLS_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleUVCols = ScaleUVCols_SSSE3;
}
#endif
#if defined(HAS_SCALEUVCOLS_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleUVCols = ScaleUVCols_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleUVCols = ScaleUVCols_NEON;
}
}
#endif
#if defined(HAS_SCALEUVCOLS_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
ScaleUVCols = ScaleUVCols_Any_MSA;
if (IS_ALIGNED(dst_width, 4)) {
ScaleUVCols = ScaleUVCols_MSA;
}
}
#endif
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleUVCols = ScaleUVColsUp2_C;
#if defined(HAS_SCALEUVCOLSUP2_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(dst_width, 8)) {
ScaleUVCols = ScaleUVColsUp2_SSSE3;
}
#endif
}
for (j = 0; j < dst_height; ++j) {
ScaleUVCols(dst_uv, src_uv + (y >> 16) * (intptr_t)src_stride, dst_width, x,
dx);
dst_uv += dst_stride;
y += dy;
}
}
// Copy UV with optional flipping
#if HAS_UVCOPY
static int UVCopy(const uint8_t* src_uv,
int src_stride_uv,
uint8_t* dst_uv,
int dst_stride_uv,
int width,
int height) {
if (!src_uv || !dst_uv || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uv = src_uv + (height - 1) * (intptr_t)src_stride_uv;
src_stride_uv = -src_stride_uv;
}
CopyPlane(src_uv, src_stride_uv, dst_uv, dst_stride_uv, width * 2, height);
return 0;
}
static int UVCopy_16(const uint16_t* src_uv,
int src_stride_uv,
uint16_t* dst_uv,
int dst_stride_uv,
int width,
int height) {
if (!src_uv || !dst_uv || width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uv = src_uv + (height - 1) * (intptr_t)src_stride_uv;
src_stride_uv = -src_stride_uv;
}
CopyPlane_16(src_uv, src_stride_uv, dst_uv, dst_stride_uv, width * 2, height);
return 0;
}
#endif // HAS_UVCOPY
// Scale a UV plane (from NV12)
// This function in turn calls a scaling function
// suitable for handling the desired resolutions.
static int ScaleUV(const uint8_t* src,
int src_stride,
int src_width,
int src_height,
uint8_t* dst,
int dst_stride,
int dst_width,
int dst_height,
int clip_x,
int clip_y,
int clip_width,
int clip_height,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// UV does not support box filter yet, but allow the user to pass it.
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative src_height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * (intptr_t)src_stride;
src_stride = -src_stride;
}
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (clip_x) {
int64_t clipf = (int64_t)(clip_x)*dx;
x += (clipf & 0xffff);
src += (clipf >> 16) * 2;
dst += clip_x * 2;
}
if (clip_y) {
int64_t clipf = (int64_t)(clip_y)*dy;
y += (clipf & 0xffff);
src += (clipf >> 16) * (intptr_t)src_stride;
dst += clip_y * dst_stride;
}
// Special case for integer step values.
if (((dx | dy) & 0xffff) == 0) {
if (!dx || !dy) { // 1 pixel wide and/or tall.
filtering = kFilterNone;
} else {
// Optimized even scale down. ie 2, 4, 6, 8, 10x.
if (!(dx & 0x10000) && !(dy & 0x10000)) {
#if HAS_SCALEUVDOWN2
if (dx == 0x20000 && dy == 0x20000) {
// Optimized 1/2 downsample.
ScaleUVDown2(src_width, src_height, clip_width, clip_height,
src_stride, dst_stride, src, dst, x, dx, y, dy,
filtering);
return 0;
}
#endif
#if HAS_SCALEUVDOWN4BOX
if (dx == 0x40000 && dy == 0x40000 && filtering == kFilterBox) {
// Optimized 1/4 box downsample.
return ScaleUVDown4Box(src_width, src_height, clip_width, clip_height,
src_stride, dst_stride, src, dst, x, dx, y,
dy);
}
#endif
#if HAS_SCALEUVDOWNEVEN
ScaleUVDownEven(src_width, src_height, clip_width, clip_height,
src_stride, dst_stride, src, dst, x, dx, y, dy,
filtering);
return 0;
#endif
}
// Optimized odd scale down. ie 3, 5, 7, 9x.
if ((dx & 0x10000) && (dy & 0x10000)) {
filtering = kFilterNone;
#ifdef HAS_UVCOPY
if (dx == 0x10000 && dy == 0x10000) {
// Straight copy.
UVCopy(src + (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2,
src_stride, dst, dst_stride, clip_width, clip_height);
return 0;
}
#endif
}
}
}
// HAS_SCALEPLANEVERTICAL
if (dx == 0x10000 && (x & 0xffff) == 0) {
// Arbitrary scale vertically, but unscaled horizontally.
ScalePlaneVertical(src_height, clip_width, clip_height, src_stride,
dst_stride, src, dst, x, y, dy, /*bpp=*/2, filtering);
return 0;
}
if ((filtering == kFilterLinear) && ((dst_width + 1) / 2 == src_width)) {
ScaleUVLinearUp2(src_width, src_height, clip_width, clip_height, src_stride,
dst_stride, src, dst);
return 0;
}
if ((clip_height + 1) / 2 == src_height &&
(clip_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScaleUVBilinearUp2(src_width, src_height, clip_width, clip_height,
src_stride, dst_stride, src, dst);
return 0;
}
#if HAS_SCALEUVBILINEARUP
if (filtering && dy < 65536) {
return ScaleUVBilinearUp(src_width, src_height, clip_width, clip_height,
src_stride, dst_stride, src, dst, x, dx, y, dy,
filtering);
}
#endif
#if HAS_SCALEUVBILINEARDOWN
if (filtering) {
return ScaleUVBilinearDown(src_width, src_height, clip_width, clip_height,
src_stride, dst_stride, src, dst, x, dx, y, dy,
filtering);
}
#endif
ScaleUVSimple(src_width, src_height, clip_width, clip_height, src_stride,
dst_stride, src, dst, x, dx, y, dy);
return 0;
}
// Scale an UV image.
LIBYUV_API
int UVScale(const uint8_t* src_uv,
int src_stride_uv,
int src_width,
int src_height,
uint8_t* dst_uv,
int dst_stride_uv,
int dst_width,
int dst_height,
enum FilterMode filtering) {
if (!src_uv || src_width <= 0 || src_height == 0 || src_width > 32768 ||
src_height > 32768 || !dst_uv || dst_width <= 0 || dst_height <= 0) {
return -1;
}
return ScaleUV(src_uv, src_stride_uv, src_width, src_height, dst_uv,
dst_stride_uv, dst_width, dst_height, 0, 0, dst_width,
dst_height, filtering);
}
// Scale a 16 bit UV image.
// This function is currently incomplete, it can't handle all cases.
LIBYUV_API
int UVScale_16(const uint16_t* src_uv,
int src_stride_uv,
int src_width,
int src_height,
uint16_t* dst_uv,
int dst_stride_uv,
int dst_width,
int dst_height,
enum FilterMode filtering) {
int dy = 0;
if (!src_uv || src_width <= 0 || src_height == 0 || src_width > 32768 ||
src_height > 32768 || !dst_uv || dst_width <= 0 || dst_height <= 0) {
return -1;
}
// UV does not support box filter yet, but allow the user to pass it.
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative src_height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src_uv = src_uv + (src_height - 1) * (intptr_t)src_stride_uv;
src_stride_uv = -src_stride_uv;
}
src_width = Abs(src_width);
#ifdef HAS_UVCOPY
if (!filtering && src_width == dst_width && (src_height % dst_height == 0)) {
if (dst_height == 1) {
UVCopy_16(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride_uv,
src_stride_uv, dst_uv, dst_stride_uv, dst_width, dst_height);
} else {
dy = src_height / dst_height;
UVCopy_16(src_uv + ((dy - 1) / 2) * (intptr_t)src_stride_uv,
(int)(dy * (intptr_t)src_stride_uv), dst_uv, dst_stride_uv,
dst_width, dst_height);
}
return 0;
}
#endif
if ((filtering == kFilterLinear) && ((dst_width + 1) / 2 == src_width)) {
ScaleUVLinearUp2_16(src_width, src_height, dst_width, dst_height,
src_stride_uv, dst_stride_uv, src_uv, dst_uv);
return 0;
}
if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScaleUVBilinearUp2_16(src_width, src_height, dst_width, dst_height,
src_stride_uv, dst_stride_uv, src_uv, dst_uv);
return 0;
}
return -1;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif