| /* |
| * Copyright 2011 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "libyuv/row.h" |
| |
| #include <assert.h> |
| #include <string.h> // For memcpy and memset. |
| |
| #include "libyuv/basic_types.h" |
| #include "libyuv/convert_argb.h" // For kYuvI601Constants |
| |
| #ifdef __cplusplus |
| namespace libyuv { |
| extern "C" { |
| #endif |
| |
| #ifdef __cplusplus |
| #define STATIC_CAST(type, expr) static_cast<type>(expr) |
| #else |
| #define STATIC_CAST(type, expr) (type)(expr) |
| #endif |
| |
| // This macro controls YUV to RGB using unsigned math to extend range of |
| // YUV to RGB coefficients to 0 to 4 instead of 0 to 2 for more accuracy on B: |
| // LIBYUV_UNLIMITED_DATA |
| |
| // Macros to enable unlimited data for each colorspace |
| // LIBYUV_UNLIMITED_BT601 |
| // LIBYUV_UNLIMITED_BT709 |
| // LIBYUV_UNLIMITED_BT2020 |
| |
| // The following macro from row_win makes the C code match the row_win code, |
| // which is 7 bit fixed point for ARGBToI420: |
| #if !defined(LIBYUV_BIT_EXACT) && !defined(LIBYUV_DISABLE_X86) && \ |
| defined(_MSC_VER) && !defined(__clang__) && \ |
| (defined(_M_IX86) || defined(_M_X64)) |
| #define LIBYUV_RGB7 1 |
| #endif |
| |
| #if !defined(LIBYUV_BIT_EXACT) && (defined(__x86_64__) || defined(_M_X64) || \ |
| defined(__i386__) || defined(_M_IX86)) |
| #define LIBYUV_ARGBTOUV_PAVGB 1 |
| #define LIBYUV_RGBTOU_TRUNCATE 1 |
| #endif |
| #if defined(LIBYUV_BIT_EXACT) |
| #define LIBYUV_UNATTENUATE_DUP 1 |
| #endif |
| |
| // llvm x86 is poor at ternary operator, so use branchless min/max. |
| |
| #define USE_BRANCHLESS 1 |
| #if defined(USE_BRANCHLESS) |
| static __inline int32_t clamp0(int32_t v) { |
| return -(v >= 0) & v; |
| } |
| // TODO(fbarchard): make clamp255 preserve negative values. |
| static __inline int32_t clamp255(int32_t v) { |
| return (-(v >= 255) | v) & 255; |
| } |
| |
| static __inline int32_t clamp1023(int32_t v) { |
| return (-(v >= 1023) | v) & 1023; |
| } |
| |
| // clamp to max |
| static __inline int32_t ClampMax(int32_t v, int32_t max) { |
| return (-(v >= max) | v) & max; |
| } |
| |
| static __inline uint32_t Abs(int32_t v) { |
| int m = -(v < 0); |
| return (v + m) ^ m; |
| } |
| #else // USE_BRANCHLESS |
| static __inline int32_t clamp0(int32_t v) { |
| return (v < 0) ? 0 : v; |
| } |
| |
| static __inline int32_t clamp255(int32_t v) { |
| return (v > 255) ? 255 : v; |
| } |
| |
| static __inline int32_t clamp1023(int32_t v) { |
| return (v > 1023) ? 1023 : v; |
| } |
| |
| static __inline int32_t ClampMax(int32_t v, int32_t max) { |
| return (v > max) ? max : v; |
| } |
| |
| static __inline uint32_t Abs(int32_t v) { |
| return (v < 0) ? -v : v; |
| } |
| #endif // USE_BRANCHLESS |
| static __inline uint32_t Clamp(int32_t val) { |
| int v = clamp0(val); |
| return (uint32_t)(clamp255(v)); |
| } |
| |
| static __inline uint32_t Clamp10(int32_t val) { |
| int v = clamp0(val); |
| return (uint32_t)(clamp1023(v)); |
| } |
| |
| // Little Endian |
| #if defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \ |
| defined(_M_IX86) || defined(__arm__) || defined(_M_ARM) || \ |
| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
| #define WRITEWORD(p, v) *(uint32_t*)(p) = v |
| #else |
| static inline void WRITEWORD(uint8_t* p, uint32_t v) { |
| p[0] = (uint8_t)(v & 255); |
| p[1] = (uint8_t)((v >> 8) & 255); |
| p[2] = (uint8_t)((v >> 16) & 255); |
| p[3] = (uint8_t)((v >> 24) & 255); |
| } |
| #endif |
| |
| void RGB24ToARGBRow_C(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_rgb24[0]; |
| uint8_t g = src_rgb24[1]; |
| uint8_t r = src_rgb24[2]; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| src_rgb24 += 3; |
| } |
| } |
| |
| void RAWToARGBRow_C(const uint8_t* src_raw, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_raw[0]; |
| uint8_t g = src_raw[1]; |
| uint8_t b = src_raw[2]; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| src_raw += 3; |
| } |
| } |
| |
| void RAWToRGBARow_C(const uint8_t* src_raw, uint8_t* dst_rgba, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_raw[0]; |
| uint8_t g = src_raw[1]; |
| uint8_t b = src_raw[2]; |
| dst_rgba[0] = 255u; |
| dst_rgba[1] = b; |
| dst_rgba[2] = g; |
| dst_rgba[3] = r; |
| dst_rgba += 4; |
| src_raw += 3; |
| } |
| } |
| |
| void RAWToRGB24Row_C(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_raw[0]; |
| uint8_t g = src_raw[1]; |
| uint8_t b = src_raw[2]; |
| dst_rgb24[0] = b; |
| dst_rgb24[1] = g; |
| dst_rgb24[2] = r; |
| dst_rgb24 += 3; |
| src_raw += 3; |
| } |
| } |
| |
| void RGB565ToARGBRow_C(const uint8_t* src_rgb565, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f); |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r = STATIC_CAST(uint8_t, src_rgb565[1] >> 3); |
| dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| dst_argb[1] = STATIC_CAST(uint8_t, (g << 2) | (g >> 4)); |
| dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| src_rgb565 += 2; |
| } |
| } |
| |
| void ARGB1555ToARGBRow_C(const uint8_t* src_argb1555, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f); |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2); |
| uint8_t a = STATIC_CAST(uint8_t, src_argb1555[1] >> 7); |
| dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| dst_argb[1] = STATIC_CAST(uint8_t, (g << 3) | (g >> 2)); |
| dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_argb[3] = -a; |
| dst_argb += 4; |
| src_argb1555 += 2; |
| } |
| } |
| |
| void ARGB4444ToARGBRow_C(const uint8_t* src_argb4444, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = STATIC_CAST(uint8_t, src_argb4444[0] & 0x0f); |
| uint8_t g = STATIC_CAST(uint8_t, src_argb4444[0] >> 4); |
| uint8_t r = STATIC_CAST(uint8_t, src_argb4444[1] & 0x0f); |
| uint8_t a = STATIC_CAST(uint8_t, src_argb4444[1] >> 4); |
| dst_argb[0] = STATIC_CAST(uint8_t, (b << 4) | b); |
| dst_argb[1] = STATIC_CAST(uint8_t, (g << 4) | g); |
| dst_argb[2] = STATIC_CAST(uint8_t, (r << 4) | r); |
| dst_argb[3] = STATIC_CAST(uint8_t, (a << 4) | a); |
| dst_argb += 4; |
| src_argb4444 += 2; |
| } |
| } |
| |
| void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t ar30; |
| memcpy(&ar30, src_ar30, sizeof ar30); |
| uint32_t b = (ar30 >> 2) & 0xff; |
| uint32_t g = (ar30 >> 12) & 0xff; |
| uint32_t r = (ar30 >> 22) & 0xff; |
| uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits. |
| *(uint32_t*)(dst_argb) = b | (g << 8) | (r << 16) | (a << 24); |
| dst_argb += 4; |
| src_ar30 += 4; |
| } |
| } |
| |
| void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t ar30; |
| memcpy(&ar30, src_ar30, sizeof ar30); |
| uint32_t b = (ar30 >> 2) & 0xff; |
| uint32_t g = (ar30 >> 12) & 0xff; |
| uint32_t r = (ar30 >> 22) & 0xff; |
| uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits. |
| *(uint32_t*)(dst_abgr) = r | (g << 8) | (b << 16) | (a << 24); |
| dst_abgr += 4; |
| src_ar30 += 4; |
| } |
| } |
| |
| void AR30ToAB30Row_C(const uint8_t* src_ar30, uint8_t* dst_ab30, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t ar30; |
| memcpy(&ar30, src_ar30, sizeof ar30); |
| uint32_t b = ar30 & 0x3ff; |
| uint32_t ga = ar30 & 0xc00ffc00; |
| uint32_t r = (ar30 >> 20) & 0x3ff; |
| *(uint32_t*)(dst_ab30) = r | ga | (b << 20); |
| dst_ab30 += 4; |
| src_ar30 += 4; |
| } |
| } |
| |
| void ARGBToABGRRow_C(const uint8_t* src_argb, uint8_t* dst_abgr, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| uint8_t a = src_argb[3]; |
| dst_abgr[0] = r; |
| dst_abgr[1] = g; |
| dst_abgr[2] = b; |
| dst_abgr[3] = a; |
| dst_abgr += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToBGRARow_C(const uint8_t* src_argb, uint8_t* dst_bgra, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| uint8_t a = src_argb[3]; |
| dst_bgra[0] = a; |
| dst_bgra[1] = r; |
| dst_bgra[2] = g; |
| dst_bgra[3] = b; |
| dst_bgra += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToRGBARow_C(const uint8_t* src_argb, uint8_t* dst_rgba, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| uint8_t a = src_argb[3]; |
| dst_rgba[0] = a; |
| dst_rgba[1] = b; |
| dst_rgba[2] = g; |
| dst_rgba[3] = r; |
| dst_rgba += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToRGB24Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| dst_rgb[0] = b; |
| dst_rgb[1] = g; |
| dst_rgb[2] = r; |
| dst_rgb += 3; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToRAWRow_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| dst_rgb[0] = r; |
| dst_rgb[1] = g; |
| dst_rgb[2] = b; |
| dst_rgb += 3; |
| src_argb += 4; |
| } |
| } |
| |
| void RGBAToARGBRow_C(const uint8_t* src_rgba, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t a = src_rgba[0]; |
| uint8_t b = src_rgba[1]; |
| uint8_t g = src_rgba[2]; |
| uint8_t r = src_rgba[3]; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = a; |
| dst_argb += 4; |
| src_rgba += 4; |
| } |
| } |
| |
| void ARGBToRGB565Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 2; |
| uint8_t r0 = src_argb[2] >> 3; |
| uint8_t b1 = src_argb[4] >> 3; |
| uint8_t g1 = src_argb[5] >> 2; |
| uint8_t r1 = src_argb[6] >> 3; |
| WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | |
| (r1 << 27)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 2; |
| uint8_t r0 = src_argb[2] >> 3; |
| *(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| } |
| } |
| |
| // dither4 is a row of 4 values from 4x4 dither matrix. |
| // The 4x4 matrix contains values to increase RGB. When converting to |
| // fewer bits (565) this provides an ordered dither. |
| // The order in the 4x4 matrix in first byte is upper left. |
| // The 4 values are passed as an int, then referenced as an array, so |
| // endian will not affect order of the original matrix. But the dither4 |
| // will containing the first pixel in the lower byte for little endian |
| // or the upper byte for big endian. |
| void ARGBToRGB565DitherRow_C(const uint8_t* src_argb, |
| uint8_t* dst_rgb, |
| uint32_t dither4, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| int dither0 = ((const unsigned char*)(&dither4))[x & 3]; |
| int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3]; |
| uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3); |
| uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2); |
| uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3); |
| uint8_t b1 = STATIC_CAST(uint8_t, clamp255(src_argb[4] + dither1) >> 3); |
| uint8_t g1 = STATIC_CAST(uint8_t, clamp255(src_argb[5] + dither1) >> 2); |
| uint8_t r1 = STATIC_CAST(uint8_t, clamp255(src_argb[6] + dither1) >> 3); |
| *(uint16_t*)(dst_rgb + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| *(uint16_t*)(dst_rgb + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 11)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3]; |
| uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3); |
| uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2); |
| uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3); |
| *(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| } |
| } |
| |
| void ARGBToARGB1555Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 3; |
| uint8_t r0 = src_argb[2] >> 3; |
| uint8_t a0 = src_argb[3] >> 7; |
| uint8_t b1 = src_argb[4] >> 3; |
| uint8_t g1 = src_argb[5] >> 3; |
| uint8_t r1 = src_argb[6] >> 3; |
| uint8_t a1 = src_argb[7] >> 7; |
| *(uint16_t*)(dst_rgb + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15)); |
| *(uint16_t*)(dst_rgb + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 10) | (a1 << 15)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 3; |
| uint8_t r0 = src_argb[2] >> 3; |
| uint8_t a0 = src_argb[3] >> 7; |
| *(uint16_t*)(dst_rgb) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15)); |
| } |
| } |
| |
| void ARGBToARGB4444Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb[0] >> 4; |
| uint8_t g0 = src_argb[1] >> 4; |
| uint8_t r0 = src_argb[2] >> 4; |
| uint8_t a0 = src_argb[3] >> 4; |
| uint8_t b1 = src_argb[4] >> 4; |
| uint8_t g1 = src_argb[5] >> 4; |
| uint8_t r1 = src_argb[6] >> 4; |
| uint8_t a1 = src_argb[7] >> 4; |
| *(uint16_t*)(dst_rgb + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12)); |
| *(uint16_t*)(dst_rgb + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 4) | (r1 << 8) | (a1 << 12)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb[0] >> 4; |
| uint8_t g0 = src_argb[1] >> 4; |
| uint8_t r0 = src_argb[2] >> 4; |
| uint8_t a0 = src_argb[3] >> 4; |
| *(uint16_t*)(dst_rgb) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12)); |
| } |
| } |
| |
| void ABGRToAR30Row_C(const uint8_t* src_abgr, uint8_t* dst_ar30, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t r0 = (src_abgr[0] >> 6) | ((uint32_t)(src_abgr[0]) << 2); |
| uint32_t g0 = (src_abgr[1] >> 6) | ((uint32_t)(src_abgr[1]) << 2); |
| uint32_t b0 = (src_abgr[2] >> 6) | ((uint32_t)(src_abgr[2]) << 2); |
| uint32_t a0 = (src_abgr[3] >> 6); |
| *(uint32_t*)(dst_ar30) = |
| STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30)); |
| dst_ar30 += 4; |
| src_abgr += 4; |
| } |
| } |
| |
| void ARGBToAR30Row_C(const uint8_t* src_argb, uint8_t* dst_ar30, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t b0 = (src_argb[0] >> 6) | ((uint32_t)(src_argb[0]) << 2); |
| uint32_t g0 = (src_argb[1] >> 6) | ((uint32_t)(src_argb[1]) << 2); |
| uint32_t r0 = (src_argb[2] >> 6) | ((uint32_t)(src_argb[2]) << 2); |
| uint32_t a0 = (src_argb[3] >> 6); |
| *(uint32_t*)(dst_ar30) = |
| STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30)); |
| dst_ar30 += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToAR64Row_C(const uint8_t* src_argb, uint16_t* dst_ar64, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint16_t b = src_argb[0] * 0x0101; |
| uint16_t g = src_argb[1] * 0x0101; |
| uint16_t r = src_argb[2] * 0x0101; |
| uint16_t a = src_argb[3] * 0x0101; |
| dst_ar64[0] = b; |
| dst_ar64[1] = g; |
| dst_ar64[2] = r; |
| dst_ar64[3] = a; |
| dst_ar64 += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToAB64Row_C(const uint8_t* src_argb, uint16_t* dst_ab64, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint16_t b = src_argb[0] * 0x0101; |
| uint16_t g = src_argb[1] * 0x0101; |
| uint16_t r = src_argb[2] * 0x0101; |
| uint16_t a = src_argb[3] * 0x0101; |
| dst_ab64[0] = r; |
| dst_ab64[1] = g; |
| dst_ab64[2] = b; |
| dst_ab64[3] = a; |
| dst_ab64 += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void AR64ToARGBRow_C(const uint16_t* src_ar64, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_ar64[0] >> 8; |
| uint8_t g = src_ar64[1] >> 8; |
| uint8_t r = src_ar64[2] >> 8; |
| uint8_t a = src_ar64[3] >> 8; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = a; |
| dst_argb += 4; |
| src_ar64 += 4; |
| } |
| } |
| |
| void AB64ToARGBRow_C(const uint16_t* src_ab64, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_ab64[0] >> 8; |
| uint8_t g = src_ab64[1] >> 8; |
| uint8_t b = src_ab64[2] >> 8; |
| uint8_t a = src_ab64[3] >> 8; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = a; |
| dst_argb += 4; |
| src_ab64 += 4; |
| } |
| } |
| |
| void AR64ToAB64Row_C(const uint16_t* src_ar64, uint16_t* dst_ab64, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint16_t b = src_ar64[0]; |
| uint16_t g = src_ar64[1]; |
| uint16_t r = src_ar64[2]; |
| uint16_t a = src_ar64[3]; |
| dst_ab64[0] = r; |
| dst_ab64[1] = g; |
| dst_ab64[2] = b; |
| dst_ab64[3] = a; |
| dst_ab64 += 4; |
| src_ar64 += 4; |
| } |
| } |
| |
| // TODO(fbarchard): Make shuffle compatible with SIMD versions |
| void AR64ShuffleRow_C(const uint8_t* src_ar64, |
| uint8_t* dst_ar64, |
| const uint8_t* shuffler, |
| int width) { |
| const uint16_t* src_ar64_16 = (const uint16_t*)src_ar64; |
| uint16_t* dst_ar64_16 = (uint16_t*)dst_ar64; |
| int index0 = shuffler[0] / 2; |
| int index1 = shuffler[2] / 2; |
| int index2 = shuffler[4] / 2; |
| int index3 = shuffler[6] / 2; |
| // Shuffle a row of AR64. |
| int x; |
| for (x = 0; x < width / 2; ++x) { |
| // To support in-place conversion. |
| uint16_t b = src_ar64_16[index0]; |
| uint16_t g = src_ar64_16[index1]; |
| uint16_t r = src_ar64_16[index2]; |
| uint16_t a = src_ar64_16[index3]; |
| dst_ar64_16[0] = b; |
| dst_ar64_16[1] = g; |
| dst_ar64_16[2] = r; |
| dst_ar64_16[3] = a; |
| src_ar64_16 += 4; |
| dst_ar64_16 += 4; |
| } |
| } |
| |
| #ifdef LIBYUV_RGB7 |
| // Old 7 bit math for compatibility on unsupported platforms. |
| static __inline uint8_t RGBToY(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, ((33 * r + 65 * g + 13 * b) >> 7) + 16); |
| } |
| #else |
| // 8 bit |
| // Intel SSE/AVX uses the following equivalent formula |
| // 0x7e80 = (66 + 129 + 25) * -128 + 0x1000 (for +16) and 0x0080 for round. |
| // return (66 * ((int)r - 128) + 129 * ((int)g - 128) + 25 * ((int)b - 128) + |
| // 0x7e80) >> 8; |
| |
| static __inline uint8_t RGBToY(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (66 * r + 129 * g + 25 * b + 0x1080) >> 8); |
| } |
| #endif |
| |
| #define AVGB(a, b) (((a) + (b) + 1) >> 1) |
| |
| // LIBYUV_RGBTOU_TRUNCATE mimics x86 code that does not round. |
| #ifdef LIBYUV_RGBTOU_TRUNCATE |
| static __inline uint8_t RGBToU(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * b - 74 * g - 38 * r + 0x8000) >> 8); |
| } |
| static __inline uint8_t RGBToV(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * r - 94 * g - 18 * b + 0x8000) >> 8); |
| } |
| #else |
| // TODO(fbarchard): Add rounding to x86 SIMD and use this |
| static __inline uint8_t RGBToU(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * b - 74 * g - 38 * r + 0x8080) >> 8); |
| } |
| static __inline uint8_t RGBToV(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * r - 94 * g - 18 * b + 0x8080) >> 8); |
| } |
| #endif |
| |
| // LIBYUV_ARGBTOUV_PAVGB mimics x86 code that subsamples with 2 pavgb. |
| #if !defined(LIBYUV_ARGBTOUV_PAVGB) |
| static __inline int RGB2xToU(uint16_t r, uint16_t g, uint16_t b) { |
| return STATIC_CAST( |
| uint8_t, ((112 / 2) * b - (74 / 2) * g - (38 / 2) * r + 0x8080) >> 8); |
| } |
| static __inline int RGB2xToV(uint16_t r, uint16_t g, uint16_t b) { |
| return STATIC_CAST( |
| uint8_t, ((112 / 2) * r - (94 / 2) * g - (18 / 2) * b + 0x8080) >> 8); |
| } |
| #endif |
| |
| // ARGBToY_C and ARGBToUV_C |
| // Intel version mimic SSE/AVX which does 2 pavgb |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| #define MAKEROWY(NAME, R, G, B, BPP) \ |
| void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \ |
| AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \ |
| uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \ |
| AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \ |
| uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \ |
| AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \ |
| dst_u[0] = RGBToU(ar, ag, ab); \ |
| dst_v[0] = RGBToV(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \ |
| uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \ |
| uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \ |
| dst_u[0] = RGBToU(ar, ag, ab); \ |
| dst_v[0] = RGBToV(ar, ag, ab); \ |
| } \ |
| } |
| #else |
| // ARM version does sum / 2 then multiply by 2x smaller coefficients |
| #define MAKEROWY(NAME, R, G, B, BPP) \ |
| void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \ |
| src_rgb1[B + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \ |
| src_rgb1[G + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \ |
| src_rgb1[R + BPP] + 1) >> \ |
| 1; \ |
| dst_u[0] = RGB2xToU(ar, ag, ab); \ |
| dst_v[0] = RGB2xToV(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint16_t ab = src_rgb[B] + src_rgb1[B]; \ |
| uint16_t ag = src_rgb[G] + src_rgb1[G]; \ |
| uint16_t ar = src_rgb[R] + src_rgb1[R]; \ |
| dst_u[0] = RGB2xToU(ar, ag, ab); \ |
| dst_v[0] = RGB2xToV(ar, ag, ab); \ |
| } \ |
| } |
| #endif |
| |
| MAKEROWY(ARGB, 2, 1, 0, 4) |
| MAKEROWY(BGRA, 1, 2, 3, 4) |
| MAKEROWY(ABGR, 0, 1, 2, 4) |
| MAKEROWY(RGBA, 3, 2, 1, 4) |
| MAKEROWY(RGB24, 2, 1, 0, 3) |
| MAKEROWY(RAW, 0, 1, 2, 3) |
| #undef MAKEROWY |
| |
| // JPeg uses a variation on BT.601-1 full range |
| // y = 0.29900 * r + 0.58700 * g + 0.11400 * b |
| // u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center |
| // v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center |
| // BT.601 Mpeg range uses: |
| // b 0.1016 * 255 = 25.908 = 25 |
| // g 0.5078 * 255 = 129.489 = 129 |
| // r 0.2578 * 255 = 65.739 = 66 |
| // JPeg 7 bit Y (deprecated) |
| // b 0.11400 * 128 = 14.592 = 15 |
| // g 0.58700 * 128 = 75.136 = 75 |
| // r 0.29900 * 128 = 38.272 = 38 |
| // JPeg 8 bit Y: |
| // b 0.11400 * 256 = 29.184 = 29 |
| // g 0.58700 * 256 = 150.272 = 150 |
| // r 0.29900 * 256 = 76.544 = 77 |
| // JPeg 8 bit U: |
| // b 0.50000 * 255 = 127.5 = 127 |
| // g -0.33126 * 255 = -84.4713 = -84 |
| // r -0.16874 * 255 = -43.0287 = -43 |
| // JPeg 8 bit V: |
| // b -0.08131 * 255 = -20.73405 = -20 |
| // g -0.41869 * 255 = -106.76595 = -107 |
| // r 0.50000 * 255 = 127.5 = 127 |
| |
| #ifdef LIBYUV_RGB7 |
| // Old 7 bit math for compatibility on unsupported platforms. |
| static __inline uint8_t RGBToYJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (38 * r + 75 * g + 15 * b + 64) >> 7; |
| } |
| #else |
| // 8 bit |
| static __inline uint8_t RGBToYJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (77 * r + 150 * g + 29 * b + 128) >> 8; |
| } |
| #endif |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| static __inline uint8_t RGBToUJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (127 * b - 84 * g - 43 * r + 0x8080) >> 8; |
| } |
| static __inline uint8_t RGBToVJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (127 * r - 107 * g - 20 * b + 0x8080) >> 8; |
| } |
| #else |
| static __inline uint8_t RGB2xToUJ(uint16_t r, uint16_t g, uint16_t b) { |
| return ((127 / 2) * b - (84 / 2) * g - (43 / 2) * r + 0x8080) >> 8; |
| } |
| static __inline uint8_t RGB2xToVJ(uint16_t r, uint16_t g, uint16_t b) { |
| return ((127 / 2) * r - (107 / 2) * g - (20 / 2) * b + 0x8080) >> 8; |
| } |
| #endif |
| |
| // ARGBToYJ_C and ARGBToUVJ_C |
| // Intel version mimic SSE/AVX which does 2 pavgb |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| #define MAKEROWYJ(NAME, R, G, B, BPP) \ |
| void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \ |
| AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \ |
| uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \ |
| AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \ |
| uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \ |
| AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \ |
| dst_u[0] = RGBToUJ(ar, ag, ab); \ |
| dst_v[0] = RGBToVJ(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \ |
| uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \ |
| uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \ |
| dst_u[0] = RGBToUJ(ar, ag, ab); \ |
| dst_v[0] = RGBToVJ(ar, ag, ab); \ |
| } \ |
| } |
| #else |
| // ARM version does sum / 2 then multiply by 2x smaller coefficients |
| #define MAKEROWYJ(NAME, R, G, B, BPP) \ |
| void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \ |
| src_rgb1[B + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \ |
| src_rgb1[G + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \ |
| src_rgb1[R + BPP] + 1) >> \ |
| 1; \ |
| dst_u[0] = RGB2xToUJ(ar, ag, ab); \ |
| dst_v[0] = RGB2xToVJ(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint16_t ab = (src_rgb[B] + src_rgb1[B]); \ |
| uint16_t ag = (src_rgb[G] + src_rgb1[G]); \ |
| uint16_t ar = (src_rgb[R] + src_rgb1[R]); \ |
| dst_u[0] = RGB2xToUJ(ar, ag, ab); \ |
| dst_v[0] = RGB2xToVJ(ar, ag, ab); \ |
| } \ |
| } |
| |
| #endif |
| |
| MAKEROWYJ(ARGB, 2, 1, 0, 4) |
| MAKEROWYJ(ABGR, 0, 1, 2, 4) |
| MAKEROWYJ(RGBA, 3, 2, 1, 4) |
| MAKEROWYJ(RGB24, 2, 1, 0, 3) |
| MAKEROWYJ(RAW, 0, 1, 2, 3) |
| #undef MAKEROWYJ |
| |
| void RGB565ToYRow_C(const uint8_t* src_rgb565, uint8_t* dst_y, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_rgb565[0] & 0x1f; |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r = src_rgb565[1] >> 3; |
| b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| g = STATIC_CAST(uint8_t, (g << 2) | (g >> 4)); |
| r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_y[0] = RGBToY(r, g, b); |
| src_rgb565 += 2; |
| dst_y += 1; |
| } |
| } |
| |
| void ARGB1555ToYRow_C(const uint8_t* src_argb1555, uint8_t* dst_y, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb1555[0] & 0x1f; |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r = (src_argb1555[1] & 0x7c) >> 2; |
| b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| g = STATIC_CAST(uint8_t, (g << 3) | (g >> 2)); |
| r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_y[0] = RGBToY(r, g, b); |
| src_argb1555 += 2; |
| dst_y += 1; |
| } |
| } |
| |
| void ARGB4444ToYRow_C(const uint8_t* src_argb4444, uint8_t* dst_y, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb4444[0] & 0x0f; |
| uint8_t g = src_argb4444[0] >> 4; |
| uint8_t r = src_argb4444[1] & 0x0f; |
| b = STATIC_CAST(uint8_t, (b << 4) | b); |
| g = STATIC_CAST(uint8_t, (g << 4) | g); |
| r = STATIC_CAST(uint8_t, (r << 4) | r); |
| dst_y[0] = RGBToY(r, g, b); |
| src_argb4444 += 2; |
| dst_y += 1; |
| } |
| } |
| |
| void RGB565ToUVRow_C(const uint8_t* src_rgb565, |
| int src_stride_rgb565, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| const uint8_t* next_rgb565 = src_rgb565 + src_stride_rgb565; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3); |
| uint8_t b1 = STATIC_CAST(uint8_t, src_rgb565[2] & 0x1f); |
| uint8_t g1 = STATIC_CAST( |
| uint8_t, (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3)); |
| uint8_t r1 = STATIC_CAST(uint8_t, src_rgb565[3] >> 3); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3); |
| uint8_t b3 = STATIC_CAST(uint8_t, next_rgb565[2] & 0x1f); |
| uint8_t g3 = STATIC_CAST( |
| uint8_t, (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3)); |
| uint8_t r3 = STATIC_CAST(uint8_t, next_rgb565[3] >> 3); |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2)); |
| g1 = STATIC_CAST(uint8_t, (g1 << 2) | (g1 >> 4)); |
| r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2)); |
| g3 = STATIC_CAST(uint8_t, (g3 << 2) | (g3 >> 4)); |
| r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3)); |
| uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3)); |
| uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3)); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1; |
| uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1; |
| uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| |
| src_rgb565 += 4; |
| next_rgb565 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| if (width & 1) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3); |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(b0, b2); |
| uint8_t ag = AVGB(g0, g2); |
| uint8_t ar = AVGB(r0, r2); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = b0 + b2; |
| uint16_t g = g0 + g2; |
| uint16_t r = r0 + r2; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| } |
| } |
| |
| void ARGB1555ToUVRow_C(const uint8_t* src_argb1555, |
| int src_stride_argb1555, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| const uint8_t* next_argb1555 = src_argb1555 + src_stride_argb1555; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2); |
| uint8_t b1 = STATIC_CAST(uint8_t, src_argb1555[2] & 0x1f); |
| uint8_t g1 = STATIC_CAST( |
| uint8_t, (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3)); |
| uint8_t r1 = STATIC_CAST(uint8_t, (src_argb1555[3] & 0x7c) >> 2); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2); |
| uint8_t b3 = STATIC_CAST(uint8_t, next_argb1555[2] & 0x1f); |
| uint8_t g3 = STATIC_CAST( |
| uint8_t, (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3)); |
| uint8_t r3 = STATIC_CAST(uint8_t, (next_argb1555[3] & 0x7c) >> 2); |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2)); |
| g1 = STATIC_CAST(uint8_t, (g1 << 3) | (g1 >> 2)); |
| r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2)); |
| g3 = STATIC_CAST(uint8_t, (g3 << 3) | (g3 >> 2)); |
| r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3)); |
| uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3)); |
| uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3)); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1; |
| uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1; |
| uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| |
| src_argb1555 += 4; |
| next_argb1555 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| if (width & 1) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2); |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(b0, b2); |
| uint8_t ag = AVGB(g0, g2); |
| uint8_t ar = AVGB(r0, r2); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = b0 + b2; |
| uint16_t g = g0 + g2; |
| uint16_t r = r0 + r2; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| } |
| } |
| |
| void ARGB4444ToUVRow_C(const uint8_t* src_argb4444, |
| int src_stride_argb4444, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| const uint8_t* next_argb4444 = src_argb4444 + src_stride_argb4444; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb4444[0] & 0x0f; |
| uint8_t g0 = src_argb4444[0] >> 4; |
| uint8_t r0 = src_argb4444[1] & 0x0f; |
| uint8_t b1 = src_argb4444[2] & 0x0f; |
| uint8_t g1 = src_argb4444[2] >> 4; |
| uint8_t r1 = src_argb4444[3] & 0x0f; |
| uint8_t b2 = next_argb4444[0] & 0x0f; |
| uint8_t g2 = next_argb4444[0] >> 4; |
| uint8_t r2 = next_argb4444[1] & 0x0f; |
| uint8_t b3 = next_argb4444[2] & 0x0f; |
| uint8_t g3 = next_argb4444[2] >> 4; |
| uint8_t r3 = next_argb4444[3] & 0x0f; |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0); |
| g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0); |
| r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0); |
| b1 = STATIC_CAST(uint8_t, (b1 << 4) | b1); |
| g1 = STATIC_CAST(uint8_t, (g1 << 4) | g1); |
| r1 = STATIC_CAST(uint8_t, (r1 << 4) | r1); |
| b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2); |
| g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2); |
| r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2); |
| b3 = STATIC_CAST(uint8_t, (b3 << 4) | b3); |
| g3 = STATIC_CAST(uint8_t, (g3 << 4) | g3); |
| r3 = STATIC_CAST(uint8_t, (r3 << 4) | r3); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3)); |
| uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3)); |
| uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3)); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1; |
| uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1; |
| uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| |
| src_argb4444 += 4; |
| next_argb4444 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb4444[0] & 0x0f; |
| uint8_t g0 = src_argb4444[0] >> 4; |
| uint8_t r0 = src_argb4444[1] & 0x0f; |
| uint8_t b2 = next_argb4444[0] & 0x0f; |
| uint8_t g2 = next_argb4444[0] >> 4; |
| uint8_t r2 = next_argb4444[1] & 0x0f; |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0); |
| g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0); |
| r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0); |
| b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2); |
| g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2); |
| r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(b0, b2); |
| uint8_t ag = AVGB(g0, g2); |
| uint8_t ar = AVGB(r0, r2); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = b0 + b2; |
| uint16_t g = g0 + g2; |
| uint16_t r = r0 + r2; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| } |
| } |
| |
| void ARGBToUV444Row_C(const uint8_t* src_argb, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t ab = src_argb[0]; |
| uint8_t ag = src_argb[1]; |
| uint8_t ar = src_argb[2]; |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| src_argb += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| } |
| |
| void ARGBGrayRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]); |
| dst_argb[2] = dst_argb[1] = dst_argb[0] = y; |
| dst_argb[3] = src_argb[3]; |
| dst_argb += 4; |
| src_argb += 4; |
| } |
| } |
| |
| // Convert a row of image to Sepia tone. |
| void ARGBSepiaRow_C(uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| int sb = (b * 17 + g * 68 + r * 35) >> 7; |
| int sg = (b * 22 + g * 88 + r * 45) >> 7; |
| int sr = (b * 24 + g * 98 + r * 50) >> 7; |
| // b does not over flow. a is preserved from original. |
| dst_argb[0] = STATIC_CAST(uint8_t, sb); |
| dst_argb[1] = STATIC_CAST(uint8_t, clamp255(sg)); |
| dst_argb[2] = STATIC_CAST(uint8_t, clamp255(sr)); |
| dst_argb += 4; |
| } |
| } |
| |
| // Apply color matrix to a row of image. Matrix is signed. |
| // TODO(fbarchard): Consider adding rounding (+32). |
| void ARGBColorMatrixRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| const int8_t* matrix_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = src_argb[0]; |
| int g = src_argb[1]; |
| int r = src_argb[2]; |
| int a = src_argb[3]; |
| int sb = (b * matrix_argb[0] + g * matrix_argb[1] + r * matrix_argb[2] + |
| a * matrix_argb[3]) >> |
| 6; |
| int sg = (b * matrix_argb[4] + g * matrix_argb[5] + r * matrix_argb[6] + |
| a * matrix_argb[7]) >> |
| 6; |
| int sr = (b * matrix_argb[8] + g * matrix_argb[9] + r * matrix_argb[10] + |
| a * matrix_argb[11]) >> |
| 6; |
| int sa = (b * matrix_argb[12] + g * matrix_argb[13] + r * matrix_argb[14] + |
| a * matrix_argb[15]) >> |
| 6; |
| dst_argb[0] = STATIC_CAST(uint8_t, Clamp(sb)); |
| dst_argb[1] = STATIC_CAST(uint8_t, Clamp(sg)); |
| dst_argb[2] = STATIC_CAST(uint8_t, Clamp(sr)); |
| dst_argb[3] = STATIC_CAST(uint8_t, Clamp(sa)); |
| src_argb += 4; |
| dst_argb += 4; |
| } |
| } |
| |
| // Apply color table to a row of image. |
| void ARGBColorTableRow_C(uint8_t* dst_argb, |
| const uint8_t* table_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| int a = dst_argb[3]; |
| dst_argb[0] = table_argb[b * 4 + 0]; |
| dst_argb[1] = table_argb[g * 4 + 1]; |
| dst_argb[2] = table_argb[r * 4 + 2]; |
| dst_argb[3] = table_argb[a * 4 + 3]; |
| dst_argb += 4; |
| } |
| } |
| |
| // Apply color table to a row of image. |
| void RGBColorTableRow_C(uint8_t* dst_argb, |
| const uint8_t* table_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| dst_argb[0] = table_argb[b * 4 + 0]; |
| dst_argb[1] = table_argb[g * 4 + 1]; |
| dst_argb[2] = table_argb[r * 4 + 2]; |
| dst_argb += 4; |
| } |
| } |
| |
| void ARGBQuantizeRow_C(uint8_t* dst_argb, |
| int scale, |
| int interval_size, |
| int interval_offset, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| dst_argb[0] = STATIC_CAST( |
| uint8_t, (b * scale >> 16) * interval_size + interval_offset); |
| dst_argb[1] = STATIC_CAST( |
| uint8_t, (g * scale >> 16) * interval_size + interval_offset); |
| dst_argb[2] = STATIC_CAST( |
| uint8_t, (r * scale >> 16) * interval_size + interval_offset); |
| dst_argb += 4; |
| } |
| } |
| |
| #define REPEAT8(v) (v) | ((v) << 8) |
| #define SHADE(f, v) v* f >> 24 |
| |
| void ARGBShadeRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| int width, |
| uint32_t value) { |
| const uint32_t b_scale = REPEAT8(value & 0xff); |
| const uint32_t g_scale = REPEAT8((value >> 8) & 0xff); |
| const uint32_t r_scale = REPEAT8((value >> 16) & 0xff); |
| const uint32_t a_scale = REPEAT8(value >> 24); |
| |
| int i; |
| for (i = 0; i < width; ++i) { |
| const uint32_t b = REPEAT8(src_argb[0]); |
| const uint32_t g = REPEAT8(src_argb[1]); |
| const uint32_t r = REPEAT8(src_argb[2]); |
| const uint32_t a = REPEAT8(src_argb[3]); |
| dst_argb[0] = SHADE(b, b_scale); |
| dst_argb[1] = SHADE(g, g_scale); |
| dst_argb[2] = SHADE(r, r_scale); |
| dst_argb[3] = SHADE(a, a_scale); |
| src_argb += 4; |
| dst_argb += 4; |
| } |
| } |
| #undef REPEAT8 |
| #undef SHADE |
| |
| void ARGBMultiplyRow_C(const uint8_t* src_argb, |
| const uint8_t* src_argb1, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| const uint32_t b = src_argb[0]; |
| const uint32_t g = src_argb[1]; |
| const uint32_t r = src_argb[2]; |
| const uint32_t a = src_argb[3]; |
| const uint32_t b_scale = src_argb1[0]; |
| const uint32_t g_scale = src_argb1[1]; |
| const uint32_t r_scale = src_argb1[2]; |
| const uint32_t a_scale = src_argb1[3]; |
| dst_argb[0] = STATIC_CAST(uint8_t, (b * b_scale + 128) >> 8); |
| dst_argb[1] = STATIC_CAST(uint8_t, (g * g_scale + 128) >> 8); |
| dst_argb[2] = STATIC_CAST(uint8_t, (r * r_scale + 128) >> 8); |
| dst_argb[3] = STATIC_CAST(uint8_t, (a * a_scale + 128) >> 8); |
| src_argb += 4; |
| src_argb1 += 4; |
| dst_argb += 4; |
| } |
| } |
| |
| #define SHADE(f, v) clamp255(v + f) |
| |
| void ARGBAddRow_C(const uint8_t* src_argb, |
| const uint8_t* src_argb1, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| const int b = src_argb[0]; |
| const int g = src_argb[1]; |
| const int r = src_argb[2]; |
| const int a = src_argb[3]; |
| const int b_add = src_argb1[0]; |
| const int g_add = src_argb1[1]; |
| const int r_add = src_argb1[2]; |
| const int a_add = src_argb1[3]; |
| dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_add)); |
| dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_add)); |
| dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_add)); |
| dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_add)); |
| src_argb += 4; |
| src_argb1 += 4; |
| dst_argb += 4; |
| } |
| } |
| #undef SHADE |
| |
| #define SHADE(f, v) clamp0(f - v) |
| |
| void ARGBSubtractRow_C(const uint8_t* src_argb, |
| const uint8_t* src_argb1, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| const int b = src_argb[0]; |
| const int g = src_argb[1]; |
| const int r = src_argb[2]; |
| const int a = src_argb[3]; |
| const int b_sub = src_argb1[0]; |
| const int g_sub = src_argb1[1]; |
| const int r_sub = src_argb1[2]; |
| const int a_sub = src_argb1[3]; |
| dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_sub)); |
| dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_sub)); |
| dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_sub)); |
| dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_sub)); |
| src_argb += 4; |
| src_argb1 += 4; |
| dst_argb += 4; |
| } |
| } |
| #undef SHADE |
| |
| // Sobel functions which mimics SSSE3. |
| void SobelXRow_C(const uint8_t* src_y0, |
| const uint8_t* src_y1, |
| const uint8_t* src_y2, |
| uint8_t* dst_sobelx, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int a = src_y0[i]; |
| int b = src_y1[i]; |
| int c = src_y2[i]; |
| int a_sub = src_y0[i + 2]; |
| int b_sub = src_y1[i + 2]; |
| int c_sub = src_y2[i + 2]; |
| int a_diff = a - a_sub; |
| int b_diff = b - b_sub; |
| int c_diff = c - c_sub; |
| int sobel = Abs(a_diff + b_diff * 2 + c_diff); |
| dst_sobelx[i] = (uint8_t)(clamp255(sobel)); |
| } |
| } |
| |
| void SobelYRow_C(const uint8_t* src_y0, |
| const uint8_t* src_y1, |
| uint8_t* dst_sobely, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int a = src_y0[i + 0]; |
| int b = src_y0[i + 1]; |
| int c = src_y0[i + 2]; |
| int a_sub = src_y1[i + 0]; |
| int b_sub = src_y1[i + 1]; |
| int c_sub = src_y1[i + 2]; |
| int a_diff = a - a_sub; |
| int b_diff = b - b_sub; |
| int c_diff = c - c_sub; |
| int sobel = Abs(a_diff + b_diff * 2 + c_diff); |
| dst_sobely[i] = (uint8_t)(clamp255(sobel)); |
| } |
| } |
| |
| void SobelRow_C(const uint8_t* src_sobelx, |
| const uint8_t* src_sobely, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int r = src_sobelx[i]; |
| int b = src_sobely[i]; |
| int s = clamp255(r + b); |
| dst_argb[0] = (uint8_t)(s); |
| dst_argb[1] = (uint8_t)(s); |
| dst_argb[2] = (uint8_t)(s); |
| dst_argb[3] = (uint8_t)(255u); |
| dst_argb += 4; |
| } |
| } |
| |
| void SobelToPlaneRow_C(const uint8_t* src_sobelx, |
| const uint8_t* src_sobely, |
| uint8_t* dst_y, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int r = src_sobelx[i]; |
| int b = src_sobely[i]; |
| int s = clamp255(r + b); |
| dst_y[i] = (uint8_t)(s); |
| } |
| } |
| |
| void SobelXYRow_C(const uint8_t* src_sobelx, |
| const uint8_t* src_sobely, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int r = src_sobelx[i]; |
| int b = src_sobely[i]; |
| int g = clamp255(r + b); |
| dst_argb[0] = (uint8_t)(b); |
| dst_argb[1] = (uint8_t)(g); |
| dst_argb[2] = (uint8_t)(r); |
| dst_argb[3] = (uint8_t)(255u); |
| dst_argb += 4; |
| } |
| } |
| |
| void J400ToARGBRow_C(const uint8_t* src_y, uint8_t* dst_argb, int width) { |
| // Copy a Y to RGB. |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t y = src_y[0]; |
| dst_argb[2] = dst_argb[1] = dst_argb[0] = y; |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| ++src_y; |
| } |
| } |
| |
| // Macros to create SIMD specific yuv to rgb conversion constants. |
| |
| // clang-format off |
| |
| #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) |
| // Bias values include subtract 128 from U and V, bias from Y and rounding. |
| // For B and R bias is negative. For G bias is positive. |
| #define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \ |
| {{UB, VR, UG, VG, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, \ |
| {YG, (UB * 128 - YB), (UG * 128 + VG * 128 + YB), (VR * 128 - YB), YB, 0, \ |
| 0, 0}} |
| #else |
| #define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \ |
| {{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, \ |
| UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, \ |
| {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, \ |
| UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, \ |
| {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, \ |
| 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, \ |
| {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}, \ |
| {YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB}} |
| #endif |
| |
| // clang-format on |
| |
| #define MAKEYUVCONSTANTS(name, YG, YB, UB, UG, VG, VR) \ |
| const struct YuvConstants SIMD_ALIGNED(kYuv##name##Constants) = \ |
| YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR); \ |
| const struct YuvConstants SIMD_ALIGNED(kYvu##name##Constants) = \ |
| YUVCONSTANTSBODY(YG, YB, VR, VG, UG, UB); |
| |
| // TODO(fbarchard): Generate SIMD structures from float matrix. |
| |
| // BT.601 limited range YUV to RGB reference |
| // R = (Y - 16) * 1.164 + V * 1.596 |
| // G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813 |
| // B = (Y - 16) * 1.164 + U * 2.018 |
| // KR = 0.299; KB = 0.114 |
| |
| // U and V contributions to R,G,B. |
| #if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT601) |
| #define UB 129 /* round(2.018 * 64) */ |
| #else |
| #define UB 128 /* max(128, round(2.018 * 64)) */ |
| #endif |
| #define UG 25 /* round(0.391 * 64) */ |
| #define VG 52 /* round(0.813 * 64) */ |
| #define VR 102 /* round(1.596 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ |
| #define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(I601, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.601 full range YUV to RGB reference (aka JPEG) |
| // * R = Y + V * 1.40200 |
| // * G = Y - U * 0.34414 - V * 0.71414 |
| // * B = Y + U * 1.77200 |
| // KR = 0.299; KB = 0.114 |
| |
| // U and V contributions to R,G,B. |
| #define UB 113 /* round(1.77200 * 64) */ |
| #define UG 22 /* round(0.34414 * 64) */ |
| #define VG 46 /* round(0.71414 * 64) */ |
| #define VR 90 /* round(1.40200 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */ |
| #define YB 32 /* 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(JPEG, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.709 limited range YUV to RGB reference |
| // R = (Y - 16) * 1.164 + V * 1.793 |
| // G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533 |
| // B = (Y - 16) * 1.164 + U * 2.112 |
| // KR = 0.2126, KB = 0.0722 |
| |
| // U and V contributions to R,G,B. |
| #if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT709) |
| #define UB 135 /* round(2.112 * 64) */ |
| #else |
| #define UB 128 /* max(128, round(2.112 * 64)) */ |
| #endif |
| #define UG 14 /* round(0.213 * 64) */ |
| #define VG 34 /* round(0.533 * 64) */ |
| #define VR 115 /* round(1.793 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ |
| #define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(H709, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.709 full range YUV to RGB reference |
| // R = Y + V * 1.5748 |
| // G = Y - U * 0.18732 - V * 0.46812 |
| // B = Y + U * 1.8556 |
| // KR = 0.2126, KB = 0.0722 |
| |
| // U and V contributions to R,G,B. |
| #define UB 119 /* round(1.8556 * 64) */ |
| #define UG 12 /* round(0.18732 * 64) */ |
| #define VG 30 /* round(0.46812 * 64) */ |
| #define VR 101 /* round(1.5748 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. (same as jpeg) |
| #define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */ |
| #define YB 32 /* 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(F709, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.2020 limited range YUV to RGB reference |
| // R = (Y - 16) * 1.164384 + V * 1.67867 |
| // G = (Y - 16) * 1.164384 - U * 0.187326 - V * 0.65042 |
| // B = (Y - 16) * 1.164384 + U * 2.14177 |
| // KR = 0.2627; KB = 0.0593 |
| |
| // U and V contributions to R,G,B. |
| #if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT2020) |
| #define UB 137 /* round(2.142 * 64) */ |
| #else |
| #define UB 128 /* max(128, round(2.142 * 64)) */ |
| #endif |
| #define UG 12 /* round(0.187326 * 64) */ |
| #define VG 42 /* round(0.65042 * 64) */ |
| #define VR 107 /* round(1.67867 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 19003 /* round(1.164384 * 64 * 256 * 256 / 257) */ |
| #define YB -1160 /* 1.164384 * 64 * -16 + 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(2020, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.2020 full range YUV to RGB reference |
| // R = Y + V * 1.474600 |
| // G = Y - U * 0.164553 - V * 0.571353 |
| // B = Y + U * 1.881400 |
| // KR = 0.2627; KB = 0.0593 |
| |
| #define UB 120 /* round(1.881400 * 64) */ |
| #define UG 11 /* round(0.164553 * 64) */ |
| #define VG 37 /* round(0.571353 * 64) */ |
| #define VR 94 /* round(1.474600 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. (same as jpeg) |
| #define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */ |
| #define YB 32 /* 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(V2020, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| #undef BB |
| #undef BG |
| #undef BR |
| |
| #undef MAKEYUVCONSTANTS |
| |
| #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) |
| #define LOAD_YUV_CONSTANTS \ |
| int ub = yuvconstants->kUVCoeff[0]; \ |
| int vr = yuvconstants->kUVCoeff[1]; \ |
| int ug = yuvconstants->kUVCoeff[2]; \ |
| int vg = yuvconstants->kUVCoeff[3]; \ |
| int yg = yuvconstants->kRGBCoeffBias[0]; \ |
| int bb = yuvconstants->kRGBCoeffBias[1]; \ |
| int bg = yuvconstants->kRGBCoeffBias[2]; \ |
| int br = yuvconstants->kRGBCoeffBias[3] |
| |
| #define CALC_RGB16 \ |
| int32_t y1 = (uint32_t)(y32 * yg) >> 16; \ |
| int b16 = y1 + (u * ub) - bb; \ |
| int g16 = y1 + bg - (u * ug + v * vg); \ |
| int r16 = y1 + (v * vr) - br |
| #else |
| #define LOAD_YUV_CONSTANTS \ |
| int ub = yuvconstants->kUVToB[0]; \ |
| int ug = yuvconstants->kUVToG[0]; \ |
| int vg = yuvconstants->kUVToG[1]; \ |
| int vr = yuvconstants->kUVToR[1]; \ |
| int yg = yuvconstants->kYToRgb[0]; \ |
| int yb = yuvconstants->kYBiasToRgb[0] |
| |
| #define CALC_RGB16 \ |
| int32_t y1 = ((uint32_t)(y32 * yg) >> 16) + yb; \ |
| int8_t ui = (int8_t)u; \ |
| int8_t vi = (int8_t)v; \ |
| ui -= 0x80; \ |
| vi -= 0x80; \ |
| int b16 = y1 + (ui * ub); \ |
| int g16 = y1 - (ui * ug + vi * vg); \ |
| int r16 = y1 + (vi * vr) |
| #endif |
| |
| // C reference code that mimics the YUV assembly. |
| // Reads 8 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel(uint8_t y, |
| uint8_t u, |
| uint8_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y * 0x0101; |
| CALC_RGB16; |
| *b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6)); |
| } |
| |
| // Reads 8 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel8_16(uint8_t y, |
| uint8_t u, |
| uint8_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y * 0x0101; |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 10 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel10_16(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = (y << 6) | (y >> 4); |
| u = STATIC_CAST(uint8_t, clamp255(u >> 2)); |
| v = STATIC_CAST(uint8_t, clamp255(v >> 2)); |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 12 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel12_16(int16_t y, |
| int16_t u, |
| int16_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = (y << 4) | (y >> 8); |
| u = STATIC_CAST(uint8_t, clamp255(u >> 4)); |
| v = STATIC_CAST(uint8_t, clamp255(v >> 4)); |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV 10 bit assembly. |
| // Reads 10 bit YUV and clamps down to 8 bit RGB. |
| static __inline void YuvPixel10(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| int b16; |
| int g16; |
| int r16; |
| YuvPixel10_16(y, u, v, &b16, &g16, &r16, yuvconstants); |
| *b = STATIC_CAST(uint8_t, Clamp(b16 >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp(g16 >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp(r16 >> 6)); |
| } |
| |
| // C reference code that mimics the YUV 12 bit assembly. |
| // Reads 12 bit YUV and clamps down to 8 bit RGB. |
| static __inline void YuvPixel12(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| int b16; |
| int g16; |
| int r16; |
| YuvPixel12_16(y, u, v, &b16, &g16, &r16, yuvconstants); |
| *b = STATIC_CAST(uint8_t, Clamp(b16 >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp(g16 >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp(r16 >> 6)); |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 16 bit YUV and leaves result as 8 bit. |
| static __inline void YuvPixel16_8(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y; |
| u = STATIC_CAST(uint16_t, clamp255(u >> 8)); |
| v = STATIC_CAST(uint16_t, clamp255(v >> 8)); |
| CALC_RGB16; |
| *b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6)); |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 16 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel16_16(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y; |
| u = STATIC_CAST(uint16_t, clamp255(u >> 8)); |
| v = STATIC_CAST(uint16_t, clamp255(v >> 8)); |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV assembly. |
| // Reads 8 bit YUV and leaves result as 8 bit. |
| static __inline void YPixel(uint8_t y, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) |
| int yg = yuvconstants->kRGBCoeffBias[0]; |
| int ygb = yuvconstants->kRGBCoeffBias[4]; |
| #else |
| int ygb = yuvconstants->kYBiasToRgb[0]; |
| int yg = yuvconstants->kYToRgb[0]; |
| #endif |
| uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16; |
| uint8_t b8 = STATIC_CAST(uint8_t, Clamp(((int32_t)(y1) + ygb) >> 6)); |
| *b = b8; |
| *g = b8; |
| *r = b8; |
| } |
| |
| void I444ToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 4; // Advance 1 pixel. |
| } |
| } |
| |
| void I444ToRGB24Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 3; // Advance 1 pixel. |
| } |
| } |
| |
| // Also used for 420 |
| void I422ToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| // 10 bit YUV to ARGB |
| void I210ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| void I410ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 4; // Advance 1 pixels. |
| } |
| } |
| |
| void I210AlphaToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| const uint16_t* src_a, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2)); |
| YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = STATIC_CAST(uint8_t, clamp255(src_a[1] >> 2)); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| src_a += 2; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2)); |
| } |
| } |
| |
| void I410AlphaToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| const uint16_t* src_a, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2)); |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| src_a += 1; |
| rgb_buf += 4; // Advance 1 pixels. |
| } |
| } |
| |
| // 12 bit YUV to ARGB |
| void I212ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel12(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| static void StoreAR30(uint8_t* rgb_buf, int b, int g, int r) { |
| uint32_t ar30; |
| b = b >> 4; // convert 8 bit 10.6 to 10 bit. |
| g = g >> 4; |
| r = r >> 4; |
| b = Clamp10(b); |
| g = Clamp10(g); |
| r = Clamp10(r); |
| ar30 = b | ((uint32_t)g << 10) | ((uint32_t)r << 20) | 0xc0000000; |
| (*(uint32_t*)rgb_buf) = ar30; |
| } |
| |
| // 10 bit YUV to 10 bit AR30 |
| void I210ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| YuvPixel10_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf + 4, b, g, r); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| } |
| } |
| |
| // 12 bit YUV to 10 bit AR30 |
| void I212ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| YuvPixel12_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf + 4, b, g, r); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| } |
| } |
| |
| void I410ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width; ++x) { |
| YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 4; // Advance 1 pixel. |
| } |
| } |
| |
| // P210 has 10 bits in msb of 16 bit NV12 style layout. |
| void P210ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_argb, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1, |
| dst_argb + 2, yuvconstants); |
| dst_argb[3] = 255; |
| YuvPixel16_8(src_y[1], src_uv[0], src_uv[1], dst_argb + 4, dst_argb + 5, |
| dst_argb + 6, yuvconstants); |
| dst_argb[7] = 255; |
| src_y += 2; |
| src_uv += 2; |
| dst_argb += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1, |
| dst_argb + 2, yuvconstants); |
| dst_argb[3] = 255; |
| } |
| } |
| |
| void P410ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_argb, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1, |
| dst_argb + 2, yuvconstants); |
| dst_argb[3] = 255; |
| src_y += 1; |
| src_uv += 2; |
| dst_argb += 4; // Advance 1 pixels. |
| } |
| } |
| |
| void P210ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_ar30, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30, b, g, r); |
| YuvPixel16_16(src_y[1], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30 + 4, b, g, r); |
| src_y += 2; |
| src_uv += 2; |
| dst_ar30 += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30, b, g, r); |
| } |
| } |
| |
| void P410ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_ar30, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width; ++x) { |
| YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30, b, g, r); |
| src_y += 1; |
| src_uv += 2; |
| dst_ar30 += 4; // Advance 1 pixel. |
| } |
| } |
| |
| // 8 bit YUV to 10 bit AR30 |
| // Uses same code as 10 bit YUV bit shifts the 8 bit values up to 10 bits. |
| void I422ToAR30Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| YuvPixel8_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf + 4, b, g, r); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| } |
| } |
| |
| void I444AlphaToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| const uint8_t* src_a, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) |