| /* |
| * Copyright 2011 The LibYuv Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "libyuv/row.h" |
| |
| #include <assert.h> |
| #include <string.h> // For memcpy and memset. |
| |
| #include "libyuv/basic_types.h" |
| #include "libyuv/convert_argb.h" // For kYuvI601Constants |
| |
| #ifdef __cplusplus |
| namespace libyuv { |
| extern "C" { |
| #endif |
| |
| #ifdef __cplusplus |
| #define STATIC_CAST(type, expr) static_cast<type>(expr) |
| #else |
| #define STATIC_CAST(type, expr) (type)(expr) |
| #endif |
| |
| // This macro controls YUV to RGB using unsigned math to extend range of |
| // YUV to RGB coefficients to 0 to 4 instead of 0 to 2 for more accuracy on B: |
| // LIBYUV_UNLIMITED_DATA |
| |
| // Macros to enable unlimited data for each colorspace |
| // LIBYUV_UNLIMITED_BT601 |
| // LIBYUV_UNLIMITED_BT709 |
| // LIBYUV_UNLIMITED_BT2020 |
| |
| // The following macro from row_win makes the C code match the row_win code, |
| // which is 7 bit fixed point for ARGBToI420: |
| #if !defined(LIBYUV_BIT_EXACT) && !defined(LIBYUV_DISABLE_X86) && \ |
| defined(_MSC_VER) && !defined(__clang__) && \ |
| (defined(_M_IX86) || defined(_M_X64)) |
| #define LIBYUV_RGB7 1 |
| #endif |
| |
| #if !defined(LIBYUV_BIT_EXACT) && (defined(__x86_64__) || defined(_M_X64) || \ |
| defined(__i386__) || defined(_M_IX86)) |
| #define LIBYUV_ARGBTOUV_PAVGB 1 |
| #define LIBYUV_RGBTOU_TRUNCATE 1 |
| #endif |
| #if defined(LIBYUV_BIT_EXACT) |
| #define LIBYUV_UNATTENUATE_DUP 1 |
| #endif |
| |
| // llvm x86 is poor at ternary operator, so use branchless min/max. |
| |
| #define USE_BRANCHLESS 1 |
| #if defined(USE_BRANCHLESS) |
| static __inline int32_t clamp0(int32_t v) { |
| return -(v >= 0) & v; |
| } |
| // TODO(fbarchard): make clamp255 preserve negative values. |
| static __inline int32_t clamp255(int32_t v) { |
| return (-(v >= 255) | v) & 255; |
| } |
| |
| static __inline int32_t clamp1023(int32_t v) { |
| return (-(v >= 1023) | v) & 1023; |
| } |
| |
| // clamp to max |
| static __inline int32_t ClampMax(int32_t v, int32_t max) { |
| return (-(v >= max) | v) & max; |
| } |
| |
| static __inline uint32_t Abs(int32_t v) { |
| int m = -(v < 0); |
| return (v + m) ^ m; |
| } |
| #else // USE_BRANCHLESS |
| static __inline int32_t clamp0(int32_t v) { |
| return (v < 0) ? 0 : v; |
| } |
| |
| static __inline int32_t clamp255(int32_t v) { |
| return (v > 255) ? 255 : v; |
| } |
| |
| static __inline int32_t clamp1023(int32_t v) { |
| return (v > 1023) ? 1023 : v; |
| } |
| |
| static __inline int32_t ClampMax(int32_t v, int32_t max) { |
| return (v > max) ? max : v; |
| } |
| |
| static __inline uint32_t Abs(int32_t v) { |
| return (v < 0) ? -v : v; |
| } |
| #endif // USE_BRANCHLESS |
| static __inline uint32_t Clamp(int32_t val) { |
| int v = clamp0(val); |
| return (uint32_t)(clamp255(v)); |
| } |
| |
| static __inline uint32_t Clamp10(int32_t val) { |
| int v = clamp0(val); |
| return (uint32_t)(clamp1023(v)); |
| } |
| |
| // Little Endian |
| #if defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \ |
| defined(_M_IX86) || defined(__arm__) || defined(_M_ARM) || \ |
| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
| #define WRITEWORD(p, v) *(uint32_t*)(p) = v |
| #else |
| static inline void WRITEWORD(uint8_t* p, uint32_t v) { |
| p[0] = (uint8_t)(v & 255); |
| p[1] = (uint8_t)((v >> 8) & 255); |
| p[2] = (uint8_t)((v >> 16) & 255); |
| p[3] = (uint8_t)((v >> 24) & 255); |
| } |
| #endif |
| |
| void RGB24ToARGBRow_C(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_rgb24[0]; |
| uint8_t g = src_rgb24[1]; |
| uint8_t r = src_rgb24[2]; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| src_rgb24 += 3; |
| } |
| } |
| |
| void RAWToARGBRow_C(const uint8_t* src_raw, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_raw[0]; |
| uint8_t g = src_raw[1]; |
| uint8_t b = src_raw[2]; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| src_raw += 3; |
| } |
| } |
| |
| void RAWToRGBARow_C(const uint8_t* src_raw, uint8_t* dst_rgba, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_raw[0]; |
| uint8_t g = src_raw[1]; |
| uint8_t b = src_raw[2]; |
| dst_rgba[0] = 255u; |
| dst_rgba[1] = b; |
| dst_rgba[2] = g; |
| dst_rgba[3] = r; |
| dst_rgba += 4; |
| src_raw += 3; |
| } |
| } |
| |
| void RAWToRGB24Row_C(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_raw[0]; |
| uint8_t g = src_raw[1]; |
| uint8_t b = src_raw[2]; |
| dst_rgb24[0] = b; |
| dst_rgb24[1] = g; |
| dst_rgb24[2] = r; |
| dst_rgb24 += 3; |
| src_raw += 3; |
| } |
| } |
| |
| void RGB565ToARGBRow_C(const uint8_t* src_rgb565, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f); |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r = STATIC_CAST(uint8_t, src_rgb565[1] >> 3); |
| dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| dst_argb[1] = STATIC_CAST(uint8_t, (g << 2) | (g >> 4)); |
| dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| src_rgb565 += 2; |
| } |
| } |
| |
| void ARGB1555ToARGBRow_C(const uint8_t* src_argb1555, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f); |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2); |
| uint8_t a = STATIC_CAST(uint8_t, src_argb1555[1] >> 7); |
| dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| dst_argb[1] = STATIC_CAST(uint8_t, (g << 3) | (g >> 2)); |
| dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_argb[3] = -a; |
| dst_argb += 4; |
| src_argb1555 += 2; |
| } |
| } |
| |
| void ARGB4444ToARGBRow_C(const uint8_t* src_argb4444, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = STATIC_CAST(uint8_t, src_argb4444[0] & 0x0f); |
| uint8_t g = STATIC_CAST(uint8_t, src_argb4444[0] >> 4); |
| uint8_t r = STATIC_CAST(uint8_t, src_argb4444[1] & 0x0f); |
| uint8_t a = STATIC_CAST(uint8_t, src_argb4444[1] >> 4); |
| dst_argb[0] = STATIC_CAST(uint8_t, (b << 4) | b); |
| dst_argb[1] = STATIC_CAST(uint8_t, (g << 4) | g); |
| dst_argb[2] = STATIC_CAST(uint8_t, (r << 4) | r); |
| dst_argb[3] = STATIC_CAST(uint8_t, (a << 4) | a); |
| dst_argb += 4; |
| src_argb4444 += 2; |
| } |
| } |
| |
| void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t ar30; |
| memcpy(&ar30, src_ar30, sizeof ar30); |
| uint32_t b = (ar30 >> 2) & 0xff; |
| uint32_t g = (ar30 >> 12) & 0xff; |
| uint32_t r = (ar30 >> 22) & 0xff; |
| uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits. |
| *(uint32_t*)(dst_argb) = b | (g << 8) | (r << 16) | (a << 24); |
| dst_argb += 4; |
| src_ar30 += 4; |
| } |
| } |
| |
| void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t ar30; |
| memcpy(&ar30, src_ar30, sizeof ar30); |
| uint32_t b = (ar30 >> 2) & 0xff; |
| uint32_t g = (ar30 >> 12) & 0xff; |
| uint32_t r = (ar30 >> 22) & 0xff; |
| uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits. |
| *(uint32_t*)(dst_abgr) = r | (g << 8) | (b << 16) | (a << 24); |
| dst_abgr += 4; |
| src_ar30 += 4; |
| } |
| } |
| |
| void AR30ToAB30Row_C(const uint8_t* src_ar30, uint8_t* dst_ab30, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t ar30; |
| memcpy(&ar30, src_ar30, sizeof ar30); |
| uint32_t b = ar30 & 0x3ff; |
| uint32_t ga = ar30 & 0xc00ffc00; |
| uint32_t r = (ar30 >> 20) & 0x3ff; |
| *(uint32_t*)(dst_ab30) = r | ga | (b << 20); |
| dst_ab30 += 4; |
| src_ar30 += 4; |
| } |
| } |
| |
| void ARGBToABGRRow_C(const uint8_t* src_argb, uint8_t* dst_abgr, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| uint8_t a = src_argb[3]; |
| dst_abgr[0] = r; |
| dst_abgr[1] = g; |
| dst_abgr[2] = b; |
| dst_abgr[3] = a; |
| dst_abgr += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToBGRARow_C(const uint8_t* src_argb, uint8_t* dst_bgra, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| uint8_t a = src_argb[3]; |
| dst_bgra[0] = a; |
| dst_bgra[1] = r; |
| dst_bgra[2] = g; |
| dst_bgra[3] = b; |
| dst_bgra += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToRGBARow_C(const uint8_t* src_argb, uint8_t* dst_rgba, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| uint8_t a = src_argb[3]; |
| dst_rgba[0] = a; |
| dst_rgba[1] = b; |
| dst_rgba[2] = g; |
| dst_rgba[3] = r; |
| dst_rgba += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToRGB24Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| dst_rgb[0] = b; |
| dst_rgb[1] = g; |
| dst_rgb[2] = r; |
| dst_rgb += 3; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToRAWRow_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb[0]; |
| uint8_t g = src_argb[1]; |
| uint8_t r = src_argb[2]; |
| dst_rgb[0] = r; |
| dst_rgb[1] = g; |
| dst_rgb[2] = b; |
| dst_rgb += 3; |
| src_argb += 4; |
| } |
| } |
| |
| void RGBAToARGBRow_C(const uint8_t* src_rgba, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t a = src_rgba[0]; |
| uint8_t b = src_rgba[1]; |
| uint8_t g = src_rgba[2]; |
| uint8_t r = src_rgba[3]; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = a; |
| dst_argb += 4; |
| src_rgba += 4; |
| } |
| } |
| |
| void ARGBToRGB565Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 2; |
| uint8_t r0 = src_argb[2] >> 3; |
| uint8_t b1 = src_argb[4] >> 3; |
| uint8_t g1 = src_argb[5] >> 2; |
| uint8_t r1 = src_argb[6] >> 3; |
| WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | |
| (r1 << 27)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 2; |
| uint8_t r0 = src_argb[2] >> 3; |
| *(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| } |
| } |
| |
| // dither4 is a row of 4 values from 4x4 dither matrix. |
| // The 4x4 matrix contains values to increase RGB. When converting to |
| // fewer bits (565) this provides an ordered dither. |
| // The order in the 4x4 matrix in first byte is upper left. |
| // The 4 values are passed as an int, then referenced as an array, so |
| // endian will not affect order of the original matrix. But the dither4 |
| // will containing the first pixel in the lower byte for little endian |
| // or the upper byte for big endian. |
| void ARGBToRGB565DitherRow_C(const uint8_t* src_argb, |
| uint8_t* dst_rgb, |
| uint32_t dither4, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| int dither0 = ((const unsigned char*)(&dither4))[x & 3]; |
| int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3]; |
| uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3); |
| uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2); |
| uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3); |
| uint8_t b1 = STATIC_CAST(uint8_t, clamp255(src_argb[4] + dither1) >> 3); |
| uint8_t g1 = STATIC_CAST(uint8_t, clamp255(src_argb[5] + dither1) >> 2); |
| uint8_t r1 = STATIC_CAST(uint8_t, clamp255(src_argb[6] + dither1) >> 3); |
| *(uint16_t*)(dst_rgb + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| *(uint16_t*)(dst_rgb + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 11)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3]; |
| uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3); |
| uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2); |
| uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3); |
| *(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| } |
| } |
| |
| void ARGBToARGB1555Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 3; |
| uint8_t r0 = src_argb[2] >> 3; |
| uint8_t a0 = src_argb[3] >> 7; |
| uint8_t b1 = src_argb[4] >> 3; |
| uint8_t g1 = src_argb[5] >> 3; |
| uint8_t r1 = src_argb[6] >> 3; |
| uint8_t a1 = src_argb[7] >> 7; |
| *(uint16_t*)(dst_rgb + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15)); |
| *(uint16_t*)(dst_rgb + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 10) | (a1 << 15)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb[0] >> 3; |
| uint8_t g0 = src_argb[1] >> 3; |
| uint8_t r0 = src_argb[2] >> 3; |
| uint8_t a0 = src_argb[3] >> 7; |
| *(uint16_t*)(dst_rgb) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15)); |
| } |
| } |
| |
| void ARGBToARGB4444Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb[0] >> 4; |
| uint8_t g0 = src_argb[1] >> 4; |
| uint8_t r0 = src_argb[2] >> 4; |
| uint8_t a0 = src_argb[3] >> 4; |
| uint8_t b1 = src_argb[4] >> 4; |
| uint8_t g1 = src_argb[5] >> 4; |
| uint8_t r1 = src_argb[6] >> 4; |
| uint8_t a1 = src_argb[7] >> 4; |
| *(uint16_t*)(dst_rgb + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12)); |
| *(uint16_t*)(dst_rgb + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 4) | (r1 << 8) | (a1 << 12)); |
| dst_rgb += 4; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb[0] >> 4; |
| uint8_t g0 = src_argb[1] >> 4; |
| uint8_t r0 = src_argb[2] >> 4; |
| uint8_t a0 = src_argb[3] >> 4; |
| *(uint16_t*)(dst_rgb) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12)); |
| } |
| } |
| |
| void ABGRToAR30Row_C(const uint8_t* src_abgr, uint8_t* dst_ar30, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t r0 = (src_abgr[0] >> 6) | ((uint32_t)(src_abgr[0]) << 2); |
| uint32_t g0 = (src_abgr[1] >> 6) | ((uint32_t)(src_abgr[1]) << 2); |
| uint32_t b0 = (src_abgr[2] >> 6) | ((uint32_t)(src_abgr[2]) << 2); |
| uint32_t a0 = (src_abgr[3] >> 6); |
| *(uint32_t*)(dst_ar30) = |
| STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30)); |
| dst_ar30 += 4; |
| src_abgr += 4; |
| } |
| } |
| |
| void ARGBToAR30Row_C(const uint8_t* src_argb, uint8_t* dst_ar30, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint32_t b0 = (src_argb[0] >> 6) | ((uint32_t)(src_argb[0]) << 2); |
| uint32_t g0 = (src_argb[1] >> 6) | ((uint32_t)(src_argb[1]) << 2); |
| uint32_t r0 = (src_argb[2] >> 6) | ((uint32_t)(src_argb[2]) << 2); |
| uint32_t a0 = (src_argb[3] >> 6); |
| *(uint32_t*)(dst_ar30) = |
| STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30)); |
| dst_ar30 += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToAR64Row_C(const uint8_t* src_argb, uint16_t* dst_ar64, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint16_t b = src_argb[0] * 0x0101; |
| uint16_t g = src_argb[1] * 0x0101; |
| uint16_t r = src_argb[2] * 0x0101; |
| uint16_t a = src_argb[3] * 0x0101; |
| dst_ar64[0] = b; |
| dst_ar64[1] = g; |
| dst_ar64[2] = r; |
| dst_ar64[3] = a; |
| dst_ar64 += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void ARGBToAB64Row_C(const uint8_t* src_argb, uint16_t* dst_ab64, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint16_t b = src_argb[0] * 0x0101; |
| uint16_t g = src_argb[1] * 0x0101; |
| uint16_t r = src_argb[2] * 0x0101; |
| uint16_t a = src_argb[3] * 0x0101; |
| dst_ab64[0] = r; |
| dst_ab64[1] = g; |
| dst_ab64[2] = b; |
| dst_ab64[3] = a; |
| dst_ab64 += 4; |
| src_argb += 4; |
| } |
| } |
| |
| void AR64ToARGBRow_C(const uint16_t* src_ar64, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_ar64[0] >> 8; |
| uint8_t g = src_ar64[1] >> 8; |
| uint8_t r = src_ar64[2] >> 8; |
| uint8_t a = src_ar64[3] >> 8; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = a; |
| dst_argb += 4; |
| src_ar64 += 4; |
| } |
| } |
| |
| void AB64ToARGBRow_C(const uint16_t* src_ab64, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t r = src_ab64[0] >> 8; |
| uint8_t g = src_ab64[1] >> 8; |
| uint8_t b = src_ab64[2] >> 8; |
| uint8_t a = src_ab64[3] >> 8; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = a; |
| dst_argb += 4; |
| src_ab64 += 4; |
| } |
| } |
| |
| void AR64ToAB64Row_C(const uint16_t* src_ar64, uint16_t* dst_ab64, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint16_t b = src_ar64[0]; |
| uint16_t g = src_ar64[1]; |
| uint16_t r = src_ar64[2]; |
| uint16_t a = src_ar64[3]; |
| dst_ab64[0] = r; |
| dst_ab64[1] = g; |
| dst_ab64[2] = b; |
| dst_ab64[3] = a; |
| dst_ab64 += 4; |
| src_ar64 += 4; |
| } |
| } |
| |
| // TODO(fbarchard): Make shuffle compatible with SIMD versions |
| void AR64ShuffleRow_C(const uint8_t* src_ar64, |
| uint8_t* dst_ar64, |
| const uint8_t* shuffler, |
| int width) { |
| const uint16_t* src_ar64_16 = (const uint16_t*)src_ar64; |
| uint16_t* dst_ar64_16 = (uint16_t*)dst_ar64; |
| int index0 = shuffler[0] / 2; |
| int index1 = shuffler[2] / 2; |
| int index2 = shuffler[4] / 2; |
| int index3 = shuffler[6] / 2; |
| // Shuffle a row of AR64. |
| int x; |
| for (x = 0; x < width / 2; ++x) { |
| // To support in-place conversion. |
| uint16_t b = src_ar64_16[index0]; |
| uint16_t g = src_ar64_16[index1]; |
| uint16_t r = src_ar64_16[index2]; |
| uint16_t a = src_ar64_16[index3]; |
| dst_ar64_16[0] = b; |
| dst_ar64_16[1] = g; |
| dst_ar64_16[2] = r; |
| dst_ar64_16[3] = a; |
| src_ar64_16 += 4; |
| dst_ar64_16 += 4; |
| } |
| } |
| |
| #ifdef LIBYUV_RGB7 |
| // Old 7 bit math for compatibility on unsupported platforms. |
| static __inline uint8_t RGBToY(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, ((33 * r + 65 * g + 13 * b) >> 7) + 16); |
| } |
| #else |
| // 8 bit |
| // Intel SSE/AVX uses the following equivalent formula |
| // 0x7e80 = (66 + 129 + 25) * -128 + 0x1000 (for +16) and 0x0080 for round. |
| // return (66 * ((int)r - 128) + 129 * ((int)g - 128) + 25 * ((int)b - 128) + |
| // 0x7e80) >> 8; |
| |
| static __inline uint8_t RGBToY(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (66 * r + 129 * g + 25 * b + 0x1080) >> 8); |
| } |
| #endif |
| |
| #define AVGB(a, b) (((a) + (b) + 1) >> 1) |
| |
| // LIBYUV_RGBTOU_TRUNCATE mimics x86 code that does not round. |
| #ifdef LIBYUV_RGBTOU_TRUNCATE |
| static __inline uint8_t RGBToU(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * b - 74 * g - 38 * r + 0x8000) >> 8); |
| } |
| static __inline uint8_t RGBToV(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * r - 94 * g - 18 * b + 0x8000) >> 8); |
| } |
| #else |
| // TODO(fbarchard): Add rounding to x86 SIMD and use this |
| static __inline uint8_t RGBToU(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * b - 74 * g - 38 * r + 0x8080) >> 8); |
| } |
| static __inline uint8_t RGBToV(uint8_t r, uint8_t g, uint8_t b) { |
| return STATIC_CAST(uint8_t, (112 * r - 94 * g - 18 * b + 0x8080) >> 8); |
| } |
| #endif |
| |
| // LIBYUV_ARGBTOUV_PAVGB mimics x86 code that subsamples with 2 pavgb. |
| #if !defined(LIBYUV_ARGBTOUV_PAVGB) |
| static __inline int RGB2xToU(uint16_t r, uint16_t g, uint16_t b) { |
| return STATIC_CAST( |
| uint8_t, ((112 / 2) * b - (74 / 2) * g - (38 / 2) * r + 0x8080) >> 8); |
| } |
| static __inline int RGB2xToV(uint16_t r, uint16_t g, uint16_t b) { |
| return STATIC_CAST( |
| uint8_t, ((112 / 2) * r - (94 / 2) * g - (18 / 2) * b + 0x8080) >> 8); |
| } |
| #endif |
| |
| // ARGBToY_C and ARGBToUV_C |
| // Intel version mimic SSE/AVX which does 2 pavgb |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| #define MAKEROWY(NAME, R, G, B, BPP) \ |
| void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \ |
| AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \ |
| uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \ |
| AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \ |
| uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \ |
| AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \ |
| dst_u[0] = RGBToU(ar, ag, ab); \ |
| dst_v[0] = RGBToV(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \ |
| uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \ |
| uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \ |
| dst_u[0] = RGBToU(ar, ag, ab); \ |
| dst_v[0] = RGBToV(ar, ag, ab); \ |
| } \ |
| } |
| #else |
| // ARM version does sum / 2 then multiply by 2x smaller coefficients |
| #define MAKEROWY(NAME, R, G, B, BPP) \ |
| void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \ |
| src_rgb1[B + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \ |
| src_rgb1[G + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \ |
| src_rgb1[R + BPP] + 1) >> \ |
| 1; \ |
| dst_u[0] = RGB2xToU(ar, ag, ab); \ |
| dst_v[0] = RGB2xToV(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint16_t ab = src_rgb[B] + src_rgb1[B]; \ |
| uint16_t ag = src_rgb[G] + src_rgb1[G]; \ |
| uint16_t ar = src_rgb[R] + src_rgb1[R]; \ |
| dst_u[0] = RGB2xToU(ar, ag, ab); \ |
| dst_v[0] = RGB2xToV(ar, ag, ab); \ |
| } \ |
| } |
| #endif |
| |
| MAKEROWY(ARGB, 2, 1, 0, 4) |
| MAKEROWY(BGRA, 1, 2, 3, 4) |
| MAKEROWY(ABGR, 0, 1, 2, 4) |
| MAKEROWY(RGBA, 3, 2, 1, 4) |
| MAKEROWY(RGB24, 2, 1, 0, 3) |
| MAKEROWY(RAW, 0, 1, 2, 3) |
| #undef MAKEROWY |
| |
| // JPeg uses a variation on BT.601-1 full range |
| // y = 0.29900 * r + 0.58700 * g + 0.11400 * b |
| // u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center |
| // v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center |
| // BT.601 Mpeg range uses: |
| // b 0.1016 * 255 = 25.908 = 25 |
| // g 0.5078 * 255 = 129.489 = 129 |
| // r 0.2578 * 255 = 65.739 = 66 |
| // JPeg 7 bit Y (deprecated) |
| // b 0.11400 * 128 = 14.592 = 15 |
| // g 0.58700 * 128 = 75.136 = 75 |
| // r 0.29900 * 128 = 38.272 = 38 |
| // JPeg 8 bit Y: |
| // b 0.11400 * 256 = 29.184 = 29 |
| // g 0.58700 * 256 = 150.272 = 150 |
| // r 0.29900 * 256 = 76.544 = 77 |
| // JPeg 8 bit U: |
| // b 0.50000 * 255 = 127.5 = 127 |
| // g -0.33126 * 255 = -84.4713 = -84 |
| // r -0.16874 * 255 = -43.0287 = -43 |
| // JPeg 8 bit V: |
| // b -0.08131 * 255 = -20.73405 = -20 |
| // g -0.41869 * 255 = -106.76595 = -107 |
| // r 0.50000 * 255 = 127.5 = 127 |
| |
| #ifdef LIBYUV_RGB7 |
| // Old 7 bit math for compatibility on unsupported platforms. |
| static __inline uint8_t RGBToYJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (38 * r + 75 * g + 15 * b + 64) >> 7; |
| } |
| #else |
| // 8 bit |
| static __inline uint8_t RGBToYJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (77 * r + 150 * g + 29 * b + 128) >> 8; |
| } |
| #endif |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| static __inline uint8_t RGBToUJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (127 * b - 84 * g - 43 * r + 0x8080) >> 8; |
| } |
| static __inline uint8_t RGBToVJ(uint8_t r, uint8_t g, uint8_t b) { |
| return (127 * r - 107 * g - 20 * b + 0x8080) >> 8; |
| } |
| #else |
| static __inline uint8_t RGB2xToUJ(uint16_t r, uint16_t g, uint16_t b) { |
| return ((127 / 2) * b - (84 / 2) * g - (43 / 2) * r + 0x8080) >> 8; |
| } |
| static __inline uint8_t RGB2xToVJ(uint16_t r, uint16_t g, uint16_t b) { |
| return ((127 / 2) * r - (107 / 2) * g - (20 / 2) * b + 0x8080) >> 8; |
| } |
| #endif |
| |
| // ARGBToYJ_C and ARGBToUVJ_C |
| // Intel version mimic SSE/AVX which does 2 pavgb |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| #define MAKEROWYJ(NAME, R, G, B, BPP) \ |
| void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \ |
| AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \ |
| uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \ |
| AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \ |
| uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \ |
| AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \ |
| dst_u[0] = RGBToUJ(ar, ag, ab); \ |
| dst_v[0] = RGBToVJ(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \ |
| uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \ |
| uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \ |
| dst_u[0] = RGBToUJ(ar, ag, ab); \ |
| dst_v[0] = RGBToVJ(ar, ag, ab); \ |
| } \ |
| } |
| #else |
| // ARM version does sum / 2 then multiply by 2x smaller coefficients |
| #define MAKEROWYJ(NAME, R, G, B, BPP) \ |
| void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \ |
| int x; \ |
| for (x = 0; x < width; ++x) { \ |
| dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \ |
| src_rgb += BPP; \ |
| dst_y += 1; \ |
| } \ |
| } \ |
| void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \ |
| uint8_t* dst_u, uint8_t* dst_v, int width) { \ |
| const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \ |
| int x; \ |
| for (x = 0; x < width - 1; x += 2) { \ |
| uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \ |
| src_rgb1[B + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \ |
| src_rgb1[G + BPP] + 1) >> \ |
| 1; \ |
| uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \ |
| src_rgb1[R + BPP] + 1) >> \ |
| 1; \ |
| dst_u[0] = RGB2xToUJ(ar, ag, ab); \ |
| dst_v[0] = RGB2xToVJ(ar, ag, ab); \ |
| src_rgb += BPP * 2; \ |
| src_rgb1 += BPP * 2; \ |
| dst_u += 1; \ |
| dst_v += 1; \ |
| } \ |
| if (width & 1) { \ |
| uint16_t ab = (src_rgb[B] + src_rgb1[B]); \ |
| uint16_t ag = (src_rgb[G] + src_rgb1[G]); \ |
| uint16_t ar = (src_rgb[R] + src_rgb1[R]); \ |
| dst_u[0] = RGB2xToUJ(ar, ag, ab); \ |
| dst_v[0] = RGB2xToVJ(ar, ag, ab); \ |
| } \ |
| } |
| |
| #endif |
| |
| MAKEROWYJ(ARGB, 2, 1, 0, 4) |
| MAKEROWYJ(ABGR, 0, 1, 2, 4) |
| MAKEROWYJ(RGBA, 3, 2, 1, 4) |
| MAKEROWYJ(RGB24, 2, 1, 0, 3) |
| MAKEROWYJ(RAW, 0, 1, 2, 3) |
| #undef MAKEROWYJ |
| |
| void RGB565ToYRow_C(const uint8_t* src_rgb565, uint8_t* dst_y, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_rgb565[0] & 0x1f; |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r = src_rgb565[1] >> 3; |
| b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| g = STATIC_CAST(uint8_t, (g << 2) | (g >> 4)); |
| r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_y[0] = RGBToY(r, g, b); |
| src_rgb565 += 2; |
| dst_y += 1; |
| } |
| } |
| |
| void ARGB1555ToYRow_C(const uint8_t* src_argb1555, uint8_t* dst_y, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb1555[0] & 0x1f; |
| uint8_t g = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r = (src_argb1555[1] & 0x7c) >> 2; |
| b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2)); |
| g = STATIC_CAST(uint8_t, (g << 3) | (g >> 2)); |
| r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2)); |
| dst_y[0] = RGBToY(r, g, b); |
| src_argb1555 += 2; |
| dst_y += 1; |
| } |
| } |
| |
| void ARGB4444ToYRow_C(const uint8_t* src_argb4444, uint8_t* dst_y, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_argb4444[0] & 0x0f; |
| uint8_t g = src_argb4444[0] >> 4; |
| uint8_t r = src_argb4444[1] & 0x0f; |
| b = STATIC_CAST(uint8_t, (b << 4) | b); |
| g = STATIC_CAST(uint8_t, (g << 4) | g); |
| r = STATIC_CAST(uint8_t, (r << 4) | r); |
| dst_y[0] = RGBToY(r, g, b); |
| src_argb4444 += 2; |
| dst_y += 1; |
| } |
| } |
| |
| void RGB565ToUVRow_C(const uint8_t* src_rgb565, |
| int src_stride_rgb565, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| const uint8_t* next_rgb565 = src_rgb565 + src_stride_rgb565; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3); |
| uint8_t b1 = STATIC_CAST(uint8_t, src_rgb565[2] & 0x1f); |
| uint8_t g1 = STATIC_CAST( |
| uint8_t, (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3)); |
| uint8_t r1 = STATIC_CAST(uint8_t, src_rgb565[3] >> 3); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3); |
| uint8_t b3 = STATIC_CAST(uint8_t, next_rgb565[2] & 0x1f); |
| uint8_t g3 = STATIC_CAST( |
| uint8_t, (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3)); |
| uint8_t r3 = STATIC_CAST(uint8_t, next_rgb565[3] >> 3); |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2)); |
| g1 = STATIC_CAST(uint8_t, (g1 << 2) | (g1 >> 4)); |
| r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2)); |
| g3 = STATIC_CAST(uint8_t, (g3 << 2) | (g3 >> 4)); |
| r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3)); |
| uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3)); |
| uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3)); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1; |
| uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1; |
| uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| |
| src_rgb565 += 4; |
| next_rgb565 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| if (width & 1) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3); |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(b0, b2); |
| uint8_t ag = AVGB(g0, g2); |
| uint8_t ar = AVGB(r0, r2); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = b0 + b2; |
| uint16_t g = g0 + g2; |
| uint16_t r = r0 + r2; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| } |
| } |
| |
| void ARGB1555ToUVRow_C(const uint8_t* src_argb1555, |
| int src_stride_argb1555, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| const uint8_t* next_argb1555 = src_argb1555 + src_stride_argb1555; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2); |
| uint8_t b1 = STATIC_CAST(uint8_t, src_argb1555[2] & 0x1f); |
| uint8_t g1 = STATIC_CAST( |
| uint8_t, (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3)); |
| uint8_t r1 = STATIC_CAST(uint8_t, (src_argb1555[3] & 0x7c) >> 2); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2); |
| uint8_t b3 = STATIC_CAST(uint8_t, next_argb1555[2] & 0x1f); |
| uint8_t g3 = STATIC_CAST( |
| uint8_t, (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3)); |
| uint8_t r3 = STATIC_CAST(uint8_t, (next_argb1555[3] & 0x7c) >> 2); |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2)); |
| g1 = STATIC_CAST(uint8_t, (g1 << 3) | (g1 >> 2)); |
| r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2)); |
| g3 = STATIC_CAST(uint8_t, (g3 << 3) | (g3 >> 2)); |
| r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3)); |
| uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3)); |
| uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3)); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1; |
| uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1; |
| uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| |
| src_argb1555 += 4; |
| next_argb1555 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| if (width & 1) { |
| uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f); |
| uint8_t g0 = STATIC_CAST( |
| uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3)); |
| uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2); |
| uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f); |
| uint8_t g2 = STATIC_CAST( |
| uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3)); |
| uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2); |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2)); |
| g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2)); |
| r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2)); |
| b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2)); |
| g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2)); |
| r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2)); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(b0, b2); |
| uint8_t ag = AVGB(g0, g2); |
| uint8_t ar = AVGB(r0, r2); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = b0 + b2; |
| uint16_t g = g0 + g2; |
| uint16_t r = r0 + r2; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| } |
| } |
| |
| void ARGB4444ToUVRow_C(const uint8_t* src_argb4444, |
| int src_stride_argb4444, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| const uint8_t* next_argb4444 = src_argb4444 + src_stride_argb4444; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint8_t b0 = src_argb4444[0] & 0x0f; |
| uint8_t g0 = src_argb4444[0] >> 4; |
| uint8_t r0 = src_argb4444[1] & 0x0f; |
| uint8_t b1 = src_argb4444[2] & 0x0f; |
| uint8_t g1 = src_argb4444[2] >> 4; |
| uint8_t r1 = src_argb4444[3] & 0x0f; |
| uint8_t b2 = next_argb4444[0] & 0x0f; |
| uint8_t g2 = next_argb4444[0] >> 4; |
| uint8_t r2 = next_argb4444[1] & 0x0f; |
| uint8_t b3 = next_argb4444[2] & 0x0f; |
| uint8_t g3 = next_argb4444[2] >> 4; |
| uint8_t r3 = next_argb4444[3] & 0x0f; |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0); |
| g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0); |
| r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0); |
| b1 = STATIC_CAST(uint8_t, (b1 << 4) | b1); |
| g1 = STATIC_CAST(uint8_t, (g1 << 4) | g1); |
| r1 = STATIC_CAST(uint8_t, (r1 << 4) | r1); |
| b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2); |
| g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2); |
| r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2); |
| b3 = STATIC_CAST(uint8_t, (b3 << 4) | b3); |
| g3 = STATIC_CAST(uint8_t, (g3 << 4) | g3); |
| r3 = STATIC_CAST(uint8_t, (r3 << 4) | r3); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3)); |
| uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3)); |
| uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3)); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1; |
| uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1; |
| uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| |
| src_argb4444 += 4; |
| next_argb4444 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| if (width & 1) { |
| uint8_t b0 = src_argb4444[0] & 0x0f; |
| uint8_t g0 = src_argb4444[0] >> 4; |
| uint8_t r0 = src_argb4444[1] & 0x0f; |
| uint8_t b2 = next_argb4444[0] & 0x0f; |
| uint8_t g2 = next_argb4444[0] >> 4; |
| uint8_t r2 = next_argb4444[1] & 0x0f; |
| |
| b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0); |
| g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0); |
| r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0); |
| b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2); |
| g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2); |
| r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2); |
| |
| #if defined(LIBYUV_ARGBTOUV_PAVGB) |
| uint8_t ab = AVGB(b0, b2); |
| uint8_t ag = AVGB(g0, g2); |
| uint8_t ar = AVGB(r0, r2); |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| #else |
| uint16_t b = b0 + b2; |
| uint16_t g = g0 + g2; |
| uint16_t r = r0 + r2; |
| dst_u[0] = RGB2xToU(r, g, b); |
| dst_v[0] = RGB2xToV(r, g, b); |
| #endif |
| } |
| } |
| |
| void ARGBToUV444Row_C(const uint8_t* src_argb, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t ab = src_argb[0]; |
| uint8_t ag = src_argb[1]; |
| uint8_t ar = src_argb[2]; |
| dst_u[0] = RGBToU(ar, ag, ab); |
| dst_v[0] = RGBToV(ar, ag, ab); |
| src_argb += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| } |
| |
| void ARGBGrayRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]); |
| dst_argb[2] = dst_argb[1] = dst_argb[0] = y; |
| dst_argb[3] = src_argb[3]; |
| dst_argb += 4; |
| src_argb += 4; |
| } |
| } |
| |
| // Convert a row of image to Sepia tone. |
| void ARGBSepiaRow_C(uint8_t* dst_argb, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| int sb = (b * 17 + g * 68 + r * 35) >> 7; |
| int sg = (b * 22 + g * 88 + r * 45) >> 7; |
| int sr = (b * 24 + g * 98 + r * 50) >> 7; |
| // b does not over flow. a is preserved from original. |
| dst_argb[0] = STATIC_CAST(uint8_t, sb); |
| dst_argb[1] = STATIC_CAST(uint8_t, clamp255(sg)); |
| dst_argb[2] = STATIC_CAST(uint8_t, clamp255(sr)); |
| dst_argb += 4; |
| } |
| } |
| |
| // Apply color matrix to a row of image. Matrix is signed. |
| // TODO(fbarchard): Consider adding rounding (+32). |
| void ARGBColorMatrixRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| const int8_t* matrix_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = src_argb[0]; |
| int g = src_argb[1]; |
| int r = src_argb[2]; |
| int a = src_argb[3]; |
| int sb = (b * matrix_argb[0] + g * matrix_argb[1] + r * matrix_argb[2] + |
| a * matrix_argb[3]) >> |
| 6; |
| int sg = (b * matrix_argb[4] + g * matrix_argb[5] + r * matrix_argb[6] + |
| a * matrix_argb[7]) >> |
| 6; |
| int sr = (b * matrix_argb[8] + g * matrix_argb[9] + r * matrix_argb[10] + |
| a * matrix_argb[11]) >> |
| 6; |
| int sa = (b * matrix_argb[12] + g * matrix_argb[13] + r * matrix_argb[14] + |
| a * matrix_argb[15]) >> |
| 6; |
| dst_argb[0] = STATIC_CAST(uint8_t, Clamp(sb)); |
| dst_argb[1] = STATIC_CAST(uint8_t, Clamp(sg)); |
| dst_argb[2] = STATIC_CAST(uint8_t, Clamp(sr)); |
| dst_argb[3] = STATIC_CAST(uint8_t, Clamp(sa)); |
| src_argb += 4; |
| dst_argb += 4; |
| } |
| } |
| |
| // Apply color table to a row of image. |
| void ARGBColorTableRow_C(uint8_t* dst_argb, |
| const uint8_t* table_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| int a = dst_argb[3]; |
| dst_argb[0] = table_argb[b * 4 + 0]; |
| dst_argb[1] = table_argb[g * 4 + 1]; |
| dst_argb[2] = table_argb[r * 4 + 2]; |
| dst_argb[3] = table_argb[a * 4 + 3]; |
| dst_argb += 4; |
| } |
| } |
| |
| // Apply color table to a row of image. |
| void RGBColorTableRow_C(uint8_t* dst_argb, |
| const uint8_t* table_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| dst_argb[0] = table_argb[b * 4 + 0]; |
| dst_argb[1] = table_argb[g * 4 + 1]; |
| dst_argb[2] = table_argb[r * 4 + 2]; |
| dst_argb += 4; |
| } |
| } |
| |
| void ARGBQuantizeRow_C(uint8_t* dst_argb, |
| int scale, |
| int interval_size, |
| int interval_offset, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| int b = dst_argb[0]; |
| int g = dst_argb[1]; |
| int r = dst_argb[2]; |
| dst_argb[0] = STATIC_CAST( |
| uint8_t, (b * scale >> 16) * interval_size + interval_offset); |
| dst_argb[1] = STATIC_CAST( |
| uint8_t, (g * scale >> 16) * interval_size + interval_offset); |
| dst_argb[2] = STATIC_CAST( |
| uint8_t, (r * scale >> 16) * interval_size + interval_offset); |
| dst_argb += 4; |
| } |
| } |
| |
| #define REPEAT8(v) (v) | ((v) << 8) |
| #define SHADE(f, v) v* f >> 24 |
| |
| void ARGBShadeRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| int width, |
| uint32_t value) { |
| const uint32_t b_scale = REPEAT8(value & 0xff); |
| const uint32_t g_scale = REPEAT8((value >> 8) & 0xff); |
| const uint32_t r_scale = REPEAT8((value >> 16) & 0xff); |
| const uint32_t a_scale = REPEAT8(value >> 24); |
| |
| int i; |
| for (i = 0; i < width; ++i) { |
| const uint32_t b = REPEAT8(src_argb[0]); |
| const uint32_t g = REPEAT8(src_argb[1]); |
| const uint32_t r = REPEAT8(src_argb[2]); |
| const uint32_t a = REPEAT8(src_argb[3]); |
| dst_argb[0] = SHADE(b, b_scale); |
| dst_argb[1] = SHADE(g, g_scale); |
| dst_argb[2] = SHADE(r, r_scale); |
| dst_argb[3] = SHADE(a, a_scale); |
| src_argb += 4; |
| dst_argb += 4; |
| } |
| } |
| #undef REPEAT8 |
| #undef SHADE |
| |
| #define REPEAT8(v) (v) | ((v) << 8) |
| #define SHADE(f, v) v* f >> 16 |
| |
| void ARGBMultiplyRow_C(const uint8_t* src_argb, |
| const uint8_t* src_argb1, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| const uint32_t b = REPEAT8(src_argb[0]); |
| const uint32_t g = REPEAT8(src_argb[1]); |
| const uint32_t r = REPEAT8(src_argb[2]); |
| const uint32_t a = REPEAT8(src_argb[3]); |
| const uint32_t b_scale = src_argb1[0]; |
| const uint32_t g_scale = src_argb1[1]; |
| const uint32_t r_scale = src_argb1[2]; |
| const uint32_t a_scale = src_argb1[3]; |
| dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_scale)); |
| dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_scale)); |
| dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_scale)); |
| dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_scale)); |
| src_argb += 4; |
| src_argb1 += 4; |
| dst_argb += 4; |
| } |
| } |
| #undef REPEAT8 |
| #undef SHADE |
| |
| #define SHADE(f, v) clamp255(v + f) |
| |
| void ARGBAddRow_C(const uint8_t* src_argb, |
| const uint8_t* src_argb1, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| const int b = src_argb[0]; |
| const int g = src_argb[1]; |
| const int r = src_argb[2]; |
| const int a = src_argb[3]; |
| const int b_add = src_argb1[0]; |
| const int g_add = src_argb1[1]; |
| const int r_add = src_argb1[2]; |
| const int a_add = src_argb1[3]; |
| dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_add)); |
| dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_add)); |
| dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_add)); |
| dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_add)); |
| src_argb += 4; |
| src_argb1 += 4; |
| dst_argb += 4; |
| } |
| } |
| #undef SHADE |
| |
| #define SHADE(f, v) clamp0(f - v) |
| |
| void ARGBSubtractRow_C(const uint8_t* src_argb, |
| const uint8_t* src_argb1, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| const int b = src_argb[0]; |
| const int g = src_argb[1]; |
| const int r = src_argb[2]; |
| const int a = src_argb[3]; |
| const int b_sub = src_argb1[0]; |
| const int g_sub = src_argb1[1]; |
| const int r_sub = src_argb1[2]; |
| const int a_sub = src_argb1[3]; |
| dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_sub)); |
| dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_sub)); |
| dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_sub)); |
| dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_sub)); |
| src_argb += 4; |
| src_argb1 += 4; |
| dst_argb += 4; |
| } |
| } |
| #undef SHADE |
| |
| // Sobel functions which mimics SSSE3. |
| void SobelXRow_C(const uint8_t* src_y0, |
| const uint8_t* src_y1, |
| const uint8_t* src_y2, |
| uint8_t* dst_sobelx, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int a = src_y0[i]; |
| int b = src_y1[i]; |
| int c = src_y2[i]; |
| int a_sub = src_y0[i + 2]; |
| int b_sub = src_y1[i + 2]; |
| int c_sub = src_y2[i + 2]; |
| int a_diff = a - a_sub; |
| int b_diff = b - b_sub; |
| int c_diff = c - c_sub; |
| int sobel = Abs(a_diff + b_diff * 2 + c_diff); |
| dst_sobelx[i] = (uint8_t)(clamp255(sobel)); |
| } |
| } |
| |
| void SobelYRow_C(const uint8_t* src_y0, |
| const uint8_t* src_y1, |
| uint8_t* dst_sobely, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int a = src_y0[i + 0]; |
| int b = src_y0[i + 1]; |
| int c = src_y0[i + 2]; |
| int a_sub = src_y1[i + 0]; |
| int b_sub = src_y1[i + 1]; |
| int c_sub = src_y1[i + 2]; |
| int a_diff = a - a_sub; |
| int b_diff = b - b_sub; |
| int c_diff = c - c_sub; |
| int sobel = Abs(a_diff + b_diff * 2 + c_diff); |
| dst_sobely[i] = (uint8_t)(clamp255(sobel)); |
| } |
| } |
| |
| void SobelRow_C(const uint8_t* src_sobelx, |
| const uint8_t* src_sobely, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int r = src_sobelx[i]; |
| int b = src_sobely[i]; |
| int s = clamp255(r + b); |
| dst_argb[0] = (uint8_t)(s); |
| dst_argb[1] = (uint8_t)(s); |
| dst_argb[2] = (uint8_t)(s); |
| dst_argb[3] = (uint8_t)(255u); |
| dst_argb += 4; |
| } |
| } |
| |
| void SobelToPlaneRow_C(const uint8_t* src_sobelx, |
| const uint8_t* src_sobely, |
| uint8_t* dst_y, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int r = src_sobelx[i]; |
| int b = src_sobely[i]; |
| int s = clamp255(r + b); |
| dst_y[i] = (uint8_t)(s); |
| } |
| } |
| |
| void SobelXYRow_C(const uint8_t* src_sobelx, |
| const uint8_t* src_sobely, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| int r = src_sobelx[i]; |
| int b = src_sobely[i]; |
| int g = clamp255(r + b); |
| dst_argb[0] = (uint8_t)(b); |
| dst_argb[1] = (uint8_t)(g); |
| dst_argb[2] = (uint8_t)(r); |
| dst_argb[3] = (uint8_t)(255u); |
| dst_argb += 4; |
| } |
| } |
| |
| void J400ToARGBRow_C(const uint8_t* src_y, uint8_t* dst_argb, int width) { |
| // Copy a Y to RGB. |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t y = src_y[0]; |
| dst_argb[2] = dst_argb[1] = dst_argb[0] = y; |
| dst_argb[3] = 255u; |
| dst_argb += 4; |
| ++src_y; |
| } |
| } |
| |
| // Macros to create SIMD specific yuv to rgb conversion constants. |
| |
| // clang-format off |
| |
| #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) |
| // Bias values include subtract 128 from U and V, bias from Y and rounding. |
| // For B and R bias is negative. For G bias is positive. |
| #define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \ |
| {{UB, VR, UG, VG, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, \ |
| {YG, (UB * 128 - YB), (UG * 128 + VG * 128 + YB), (VR * 128 - YB), YB, 0, \ |
| 0, 0}} |
| #else |
| #define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \ |
| {{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, \ |
| UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, \ |
| {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, \ |
| UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, \ |
| {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, \ |
| 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, \ |
| {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}, \ |
| {YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB}} |
| #endif |
| |
| // clang-format on |
| |
| #define MAKEYUVCONSTANTS(name, YG, YB, UB, UG, VG, VR) \ |
| const struct YuvConstants SIMD_ALIGNED(kYuv##name##Constants) = \ |
| YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR); \ |
| const struct YuvConstants SIMD_ALIGNED(kYvu##name##Constants) = \ |
| YUVCONSTANTSBODY(YG, YB, VR, VG, UG, UB); |
| |
| // TODO(fbarchard): Generate SIMD structures from float matrix. |
| |
| // BT.601 limited range YUV to RGB reference |
| // R = (Y - 16) * 1.164 + V * 1.596 |
| // G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813 |
| // B = (Y - 16) * 1.164 + U * 2.018 |
| // KR = 0.299; KB = 0.114 |
| |
| // U and V contributions to R,G,B. |
| #if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT601) |
| #define UB 129 /* round(2.018 * 64) */ |
| #else |
| #define UB 128 /* max(128, round(2.018 * 64)) */ |
| #endif |
| #define UG 25 /* round(0.391 * 64) */ |
| #define VG 52 /* round(0.813 * 64) */ |
| #define VR 102 /* round(1.596 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ |
| #define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(I601, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.601 full range YUV to RGB reference (aka JPEG) |
| // * R = Y + V * 1.40200 |
| // * G = Y - U * 0.34414 - V * 0.71414 |
| // * B = Y + U * 1.77200 |
| // KR = 0.299; KB = 0.114 |
| |
| // U and V contributions to R,G,B. |
| #define UB 113 /* round(1.77200 * 64) */ |
| #define UG 22 /* round(0.34414 * 64) */ |
| #define VG 46 /* round(0.71414 * 64) */ |
| #define VR 90 /* round(1.40200 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */ |
| #define YB 32 /* 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(JPEG, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.709 limited range YUV to RGB reference |
| // R = (Y - 16) * 1.164 + V * 1.793 |
| // G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533 |
| // B = (Y - 16) * 1.164 + U * 2.112 |
| // KR = 0.2126, KB = 0.0722 |
| |
| // U and V contributions to R,G,B. |
| #if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT709) |
| #define UB 135 /* round(2.112 * 64) */ |
| #else |
| #define UB 128 /* max(128, round(2.112 * 64)) */ |
| #endif |
| #define UG 14 /* round(0.213 * 64) */ |
| #define VG 34 /* round(0.533 * 64) */ |
| #define VR 115 /* round(1.793 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ |
| #define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(H709, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.709 full range YUV to RGB reference |
| // R = Y + V * 1.5748 |
| // G = Y - U * 0.18732 - V * 0.46812 |
| // B = Y + U * 1.8556 |
| // KR = 0.2126, KB = 0.0722 |
| |
| // U and V contributions to R,G,B. |
| #define UB 119 /* round(1.8556 * 64) */ |
| #define UG 12 /* round(0.18732 * 64) */ |
| #define VG 30 /* round(0.46812 * 64) */ |
| #define VR 101 /* round(1.5748 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. (same as jpeg) |
| #define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */ |
| #define YB 32 /* 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(F709, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.2020 limited range YUV to RGB reference |
| // R = (Y - 16) * 1.164384 + V * 1.67867 |
| // G = (Y - 16) * 1.164384 - U * 0.187326 - V * 0.65042 |
| // B = (Y - 16) * 1.164384 + U * 2.14177 |
| // KR = 0.2627; KB = 0.0593 |
| |
| // U and V contributions to R,G,B. |
| #if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT2020) |
| #define UB 137 /* round(2.142 * 64) */ |
| #else |
| #define UB 128 /* max(128, round(2.142 * 64)) */ |
| #endif |
| #define UG 12 /* round(0.187326 * 64) */ |
| #define VG 42 /* round(0.65042 * 64) */ |
| #define VR 107 /* round(1.67867 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. |
| #define YG 19003 /* round(1.164384 * 64 * 256 * 256 / 257) */ |
| #define YB -1160 /* 1.164384 * 64 * -16 + 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(2020, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| // BT.2020 full range YUV to RGB reference |
| // R = Y + V * 1.474600 |
| // G = Y - U * 0.164553 - V * 0.571353 |
| // B = Y + U * 1.881400 |
| // KR = 0.2627; KB = 0.0593 |
| |
| #define UB 120 /* round(1.881400 * 64) */ |
| #define UG 11 /* round(0.164553 * 64) */ |
| #define VG 37 /* round(0.571353 * 64) */ |
| #define VR 94 /* round(1.474600 * 64) */ |
| |
| // Y contribution to R,G,B. Scale and bias. (same as jpeg) |
| #define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */ |
| #define YB 32 /* 64 / 2 */ |
| |
| MAKEYUVCONSTANTS(V2020, YG, YB, UB, UG, VG, VR) |
| |
| #undef YG |
| #undef YB |
| #undef UB |
| #undef UG |
| #undef VG |
| #undef VR |
| |
| #undef BB |
| #undef BG |
| #undef BR |
| |
| #undef MAKEYUVCONSTANTS |
| |
| #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) |
| #define LOAD_YUV_CONSTANTS \ |
| int ub = yuvconstants->kUVCoeff[0]; \ |
| int vr = yuvconstants->kUVCoeff[1]; \ |
| int ug = yuvconstants->kUVCoeff[2]; \ |
| int vg = yuvconstants->kUVCoeff[3]; \ |
| int yg = yuvconstants->kRGBCoeffBias[0]; \ |
| int bb = yuvconstants->kRGBCoeffBias[1]; \ |
| int bg = yuvconstants->kRGBCoeffBias[2]; \ |
| int br = yuvconstants->kRGBCoeffBias[3] |
| |
| #define CALC_RGB16 \ |
| int32_t y1 = (uint32_t)(y32 * yg) >> 16; \ |
| int b16 = y1 + (u * ub) - bb; \ |
| int g16 = y1 + bg - (u * ug + v * vg); \ |
| int r16 = y1 + (v * vr) - br |
| #else |
| #define LOAD_YUV_CONSTANTS \ |
| int ub = yuvconstants->kUVToB[0]; \ |
| int ug = yuvconstants->kUVToG[0]; \ |
| int vg = yuvconstants->kUVToG[1]; \ |
| int vr = yuvconstants->kUVToR[1]; \ |
| int yg = yuvconstants->kYToRgb[0]; \ |
| int yb = yuvconstants->kYBiasToRgb[0] |
| |
| #define CALC_RGB16 \ |
| int32_t y1 = ((uint32_t)(y32 * yg) >> 16) + yb; \ |
| int8_t ui = (int8_t)u; \ |
| int8_t vi = (int8_t)v; \ |
| ui -= 0x80; \ |
| vi -= 0x80; \ |
| int b16 = y1 + (ui * ub); \ |
| int g16 = y1 - (ui * ug + vi * vg); \ |
| int r16 = y1 + (vi * vr) |
| #endif |
| |
| // C reference code that mimics the YUV assembly. |
| // Reads 8 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel(uint8_t y, |
| uint8_t u, |
| uint8_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y * 0x0101; |
| CALC_RGB16; |
| *b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6)); |
| } |
| |
| // Reads 8 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel8_16(uint8_t y, |
| uint8_t u, |
| uint8_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y * 0x0101; |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 10 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel10_16(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = (y << 6) | (y >> 4); |
| u = STATIC_CAST(uint8_t, clamp255(u >> 2)); |
| v = STATIC_CAST(uint8_t, clamp255(v >> 2)); |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 12 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel12_16(int16_t y, |
| int16_t u, |
| int16_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = (y << 4) | (y >> 8); |
| u = STATIC_CAST(uint8_t, clamp255(u >> 4)); |
| v = STATIC_CAST(uint8_t, clamp255(v >> 4)); |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV 10 bit assembly. |
| // Reads 10 bit YUV and clamps down to 8 bit RGB. |
| static __inline void YuvPixel10(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| int b16; |
| int g16; |
| int r16; |
| YuvPixel10_16(y, u, v, &b16, &g16, &r16, yuvconstants); |
| *b = STATIC_CAST(uint8_t, Clamp(b16 >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp(g16 >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp(r16 >> 6)); |
| } |
| |
| // C reference code that mimics the YUV 12 bit assembly. |
| // Reads 12 bit YUV and clamps down to 8 bit RGB. |
| static __inline void YuvPixel12(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| int b16; |
| int g16; |
| int r16; |
| YuvPixel12_16(y, u, v, &b16, &g16, &r16, yuvconstants); |
| *b = STATIC_CAST(uint8_t, Clamp(b16 >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp(g16 >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp(r16 >> 6)); |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 16 bit YUV and leaves result as 8 bit. |
| static __inline void YuvPixel16_8(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y; |
| u = STATIC_CAST(uint16_t, clamp255(u >> 8)); |
| v = STATIC_CAST(uint16_t, clamp255(v >> 8)); |
| CALC_RGB16; |
| *b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6)); |
| *g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6)); |
| *r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6)); |
| } |
| |
| // C reference code that mimics the YUV 16 bit assembly. |
| // Reads 16 bit YUV and leaves result as 16 bit. |
| static __inline void YuvPixel16_16(uint16_t y, |
| uint16_t u, |
| uint16_t v, |
| int* b, |
| int* g, |
| int* r, |
| const struct YuvConstants* yuvconstants) { |
| LOAD_YUV_CONSTANTS; |
| uint32_t y32 = y; |
| u = STATIC_CAST(uint16_t, clamp255(u >> 8)); |
| v = STATIC_CAST(uint16_t, clamp255(v >> 8)); |
| CALC_RGB16; |
| *b = b16; |
| *g = g16; |
| *r = r16; |
| } |
| |
| // C reference code that mimics the YUV assembly. |
| // Reads 8 bit YUV and leaves result as 8 bit. |
| static __inline void YPixel(uint8_t y, |
| uint8_t* b, |
| uint8_t* g, |
| uint8_t* r, |
| const struct YuvConstants* yuvconstants) { |
| #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) |
| int yg = yuvconstants->kRGBCoeffBias[0]; |
| int ygb = yuvconstants->kRGBCoeffBias[4]; |
| #else |
| int ygb = yuvconstants->kYBiasToRgb[0]; |
| int yg = yuvconstants->kYToRgb[0]; |
| #endif |
| uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16; |
| uint8_t b8 = STATIC_CAST(uint8_t, Clamp(((int32_t)(y1) + ygb) >> 6)); |
| *b = b8; |
| *g = b8; |
| *r = b8; |
| } |
| |
| void I444ToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 4; // Advance 1 pixel. |
| } |
| } |
| |
| void I444ToRGB24Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 3; // Advance 1 pixel. |
| } |
| } |
| |
| // Also used for 420 |
| void I422ToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| // 10 bit YUV to ARGB |
| void I210ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| void I410ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 4; // Advance 1 pixels. |
| } |
| } |
| |
| void I210AlphaToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| const uint16_t* src_a, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2)); |
| YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = STATIC_CAST(uint8_t, clamp255(src_a[1] >> 2)); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| src_a += 2; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2)); |
| } |
| } |
| |
| void I410AlphaToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| const uint16_t* src_a, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2)); |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| src_a += 1; |
| rgb_buf += 4; // Advance 1 pixels. |
| } |
| } |
| |
| // 12 bit YUV to ARGB |
| void I212ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel12(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| static void StoreAR30(uint8_t* rgb_buf, int b, int g, int r) { |
| uint32_t ar30; |
| b = b >> 4; // convert 8 bit 10.6 to 10 bit. |
| g = g >> 4; |
| r = r >> 4; |
| b = Clamp10(b); |
| g = Clamp10(g); |
| r = Clamp10(r); |
| ar30 = b | ((uint32_t)g << 10) | ((uint32_t)r << 20) | 0xc0000000; |
| (*(uint32_t*)rgb_buf) = ar30; |
| } |
| |
| // 10 bit YUV to 10 bit AR30 |
| void I210ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| YuvPixel10_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf + 4, b, g, r); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| } |
| } |
| |
| // 12 bit YUV to 10 bit AR30 |
| void I212ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| YuvPixel12_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf + 4, b, g, r); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| } |
| } |
| |
| void I410ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width; ++x) { |
| YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 4; // Advance 1 pixel. |
| } |
| } |
| |
| // P210 has 10 bits in msb of 16 bit NV12 style layout. |
| void P210ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_argb, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1, |
| dst_argb + 2, yuvconstants); |
| dst_argb[3] = 255; |
| YuvPixel16_8(src_y[1], src_uv[0], src_uv[1], dst_argb + 4, dst_argb + 5, |
| dst_argb + 6, yuvconstants); |
| dst_argb[7] = 255; |
| src_y += 2; |
| src_uv += 2; |
| dst_argb += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1, |
| dst_argb + 2, yuvconstants); |
| dst_argb[3] = 255; |
| } |
| } |
| |
| void P410ToARGBRow_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_argb, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1, |
| dst_argb + 2, yuvconstants); |
| dst_argb[3] = 255; |
| src_y += 1; |
| src_uv += 2; |
| dst_argb += 4; // Advance 1 pixels. |
| } |
| } |
| |
| void P210ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_ar30, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30, b, g, r); |
| YuvPixel16_16(src_y[1], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30 + 4, b, g, r); |
| src_y += 2; |
| src_uv += 2; |
| dst_ar30 += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30, b, g, r); |
| } |
| } |
| |
| void P410ToAR30Row_C(const uint16_t* src_y, |
| const uint16_t* src_uv, |
| uint8_t* dst_ar30, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width; ++x) { |
| YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants); |
| StoreAR30(dst_ar30, b, g, r); |
| src_y += 1; |
| src_uv += 2; |
| dst_ar30 += 4; // Advance 1 pixel. |
| } |
| } |
| |
| // 8 bit YUV to 10 bit AR30 |
| // Uses same code as 10 bit YUV bit shifts the 8 bit values up to 10 bits. |
| void I422ToAR30Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| int b; |
| int g; |
| int r; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| YuvPixel8_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf + 4, b, g, r); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); |
| StoreAR30(rgb_buf, b, g, r); |
| } |
| } |
| |
| void I444AlphaToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| const uint8_t* src_a, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = src_a[0]; |
| src_y += 1; |
| src_u += 1; |
| src_v += 1; |
| src_a += 1; |
| rgb_buf += 4; // Advance 1 pixel. |
| } |
| } |
| |
| void I422AlphaToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| const uint8_t* src_a, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = src_a[0]; |
| YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = src_a[1]; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| src_a += 2; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = src_a[0]; |
| } |
| } |
| |
| void I422ToRGB24Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 3, rgb_buf + 4, |
| rgb_buf + 5, yuvconstants); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 6; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| } |
| } |
| |
| void I422ToARGB4444Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_argb4444, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| uint8_t b0; |
| uint8_t g0; |
| uint8_t r0; |
| uint8_t b1; |
| uint8_t g1; |
| uint8_t r1; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); |
| YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); |
| b0 = b0 >> 4; |
| g0 = g0 >> 4; |
| r0 = r0 >> 4; |
| b1 = b1 >> 4; |
| g1 = g1 >> 4; |
| r1 = r1 >> 4; |
| *(uint16_t*)(dst_argb4444 + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | 0xf000); |
| *(uint16_t*)(dst_argb4444 + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 4) | (r1 << 8) | 0xf000); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| dst_argb4444 += 4; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); |
| b0 = b0 >> 4; |
| g0 = g0 >> 4; |
| r0 = r0 >> 4; |
| *(uint16_t*)(dst_argb4444) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | 0xf000); |
| } |
| } |
| |
| void I422ToARGB1555Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_argb1555, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| uint8_t b0; |
| uint8_t g0; |
| uint8_t r0; |
| uint8_t b1; |
| uint8_t g1; |
| uint8_t r1; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); |
| YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); |
| b0 = b0 >> 3; |
| g0 = g0 >> 3; |
| r0 = r0 >> 3; |
| b1 = b1 >> 3; |
| g1 = g1 >> 3; |
| r1 = r1 >> 3; |
| *(uint16_t*)(dst_argb1555 + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | 0x8000); |
| *(uint16_t*)(dst_argb1555 + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 10) | 0x8000); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| dst_argb1555 += 4; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); |
| b0 = b0 >> 3; |
| g0 = g0 >> 3; |
| r0 = r0 >> 3; |
| *(uint16_t*)(dst_argb1555) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | 0x8000); |
| } |
| } |
| |
| void I422ToRGB565Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_rgb565, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| uint8_t b0; |
| uint8_t g0; |
| uint8_t r0; |
| uint8_t b1; |
| uint8_t g1; |
| uint8_t r1; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); |
| YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); |
| b0 = b0 >> 3; |
| g0 = g0 >> 2; |
| r0 = r0 >> 3; |
| b1 = b1 >> 3; |
| g1 = g1 >> 2; |
| r1 = r1 >> 3; |
| *(uint16_t*)(dst_rgb565 + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| *(uint16_t*)(dst_rgb565 + 2) = |
| STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 11)); |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| dst_rgb565 += 4; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); |
| b0 = b0 >> 3; |
| g0 = g0 >> 2; |
| r0 = r0 >> 3; |
| *(uint16_t*)(dst_rgb565 + 0) = |
| STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11)); |
| } |
| } |
| |
| void NV12ToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_uv, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_uv += 2; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| void NV21ToARGBRow_C(const uint8_t* src_y, |
| const uint8_t* src_vu, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| src_vu += 2; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| void NV12ToRGB24Row_C(const uint8_t* src_y, |
| const uint8_t* src_uv, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 3, rgb_buf + 4, |
| rgb_buf + 5, yuvconstants); |
| src_y += 2; |
| src_uv += 2; |
| rgb_buf += 6; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| } |
| } |
| |
| void NV21ToRGB24Row_C(const uint8_t* src_y, |
| const uint8_t* src_vu, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 3, rgb_buf + 4, |
| rgb_buf + 5, yuvconstants); |
| src_y += 2; |
| src_vu += 2; |
| rgb_buf += 6; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| } |
| } |
| |
| void NV12ToRGB565Row_C(const uint8_t* src_y, |
| const uint8_t* src_uv, |
| uint8_t* dst_rgb565, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| uint8_t b0; |
| uint8_t g0; |
| uint8_t r0; |
| uint8_t b1; |
| uint8_t g1; |
| uint8_t r1; |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants); |
| YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1, yuvconstants); |
| b0 = b0 >> 3; |
| g0 = g0 >> 2; |
| r0 = r0 >> 3; |
| b1 = b1 >> 3; |
| g1 = g1 >> 2; |
| r1 = r1 >> 3; |
| *(uint16_t*)(dst_rgb565 + 0) = STATIC_CAST(uint16_t, b0) | |
| STATIC_CAST(uint16_t, g0 << 5) | |
| STATIC_CAST(uint16_t, r0 << 11); |
| *(uint16_t*)(dst_rgb565 + 2) = STATIC_CAST(uint16_t, b1) | |
| STATIC_CAST(uint16_t, g1 << 5) | |
| STATIC_CAST(uint16_t, r1 << 11); |
| src_y += 2; |
| src_uv += 2; |
| dst_rgb565 += 4; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants); |
| b0 = b0 >> 3; |
| g0 = g0 >> 2; |
| r0 = r0 >> 3; |
| *(uint16_t*)(dst_rgb565) = STATIC_CAST(uint16_t, b0) | |
| STATIC_CAST(uint16_t, g0 << 5) | |
| STATIC_CAST(uint16_t, r0 << 11); |
| } |
| } |
| |
| void YUY2ToARGBRow_C(const uint8_t* src_yuy2, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_yuy2 += 4; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| void UYVYToARGBRow_C(const uint8_t* src_uyvy, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2], rgb_buf + 4, rgb_buf + 5, |
| rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_uyvy += 4; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1, |
| rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| void I422ToRGBARow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2, |
| rgb_buf + 3, yuvconstants); |
| rgb_buf[0] = 255; |
| YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 5, rgb_buf + 6, |
| rgb_buf + 7, yuvconstants); |
| rgb_buf[4] = 255; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2, |
| rgb_buf + 3, yuvconstants); |
| rgb_buf[0] = 255; |
| } |
| } |
| |
| void I400ToARGBRow_C(const uint8_t* src_y, |
| uint8_t* rgb_buf, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); |
| rgb_buf[7] = 255; |
| src_y += 2; |
| rgb_buf += 8; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); |
| rgb_buf[3] = 255; |
| } |
| } |
| |
| void MirrorRow_C(const uint8_t* src, uint8_t* dst, int width) { |
| int x; |
| src += width - 1; |
| for (x = 0; x < width - 1; x += 2) { |
| dst[x] = src[0]; |
| dst[x + 1] = src[-1]; |
| src -= 2; |
| } |
| if (width & 1) { |
| dst[width - 1] = src[0]; |
| } |
| } |
| |
| void MirrorRow_16_C(const uint16_t* src, uint16_t* dst, int width) { |
| int x; |
| src += width - 1; |
| for (x = 0; x < width - 1; x += 2) { |
| dst[x] = src[0]; |
| dst[x + 1] = src[-1]; |
| src -= 2; |
| } |
| if (width & 1) { |
| dst[width - 1] = src[0]; |
| } |
| } |
| |
| void MirrorUVRow_C(const uint8_t* src_uv, uint8_t* dst_uv, int width) { |
| int x; |
| src_uv += (width - 1) << 1; |
| for (x = 0; x < width; ++x) { |
| dst_uv[0] = src_uv[0]; |
| dst_uv[1] = src_uv[1]; |
| src_uv -= 2; |
| dst_uv += 2; |
| } |
| } |
| |
| void MirrorSplitUVRow_C(const uint8_t* src_uv, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| int x; |
| src_uv += (width - 1) << 1; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_u[x] = src_uv[0]; |
| dst_u[x + 1] = src_uv[-2]; |
| dst_v[x] = src_uv[1]; |
| dst_v[x + 1] = src_uv[-2 + 1]; |
| src_uv -= 4; |
| } |
| if (width & 1) { |
| dst_u[width - 1] = src_uv[0]; |
| dst_v[width - 1] = src_uv[1]; |
| } |
| } |
| |
| void ARGBMirrorRow_C(const uint8_t* src, uint8_t* dst, int width) { |
| int x; |
| const uint32_t* src32 = (const uint32_t*)(src); |
| uint32_t* dst32 = (uint32_t*)(dst); |
| src32 += width - 1; |
| for (x = 0; x < width - 1; x += 2) { |
| dst32[x] = src32[0]; |
| dst32[x + 1] = src32[-1]; |
| src32 -= 2; |
| } |
| if (width & 1) { |
| dst32[width - 1] = src32[0]; |
| } |
| } |
| |
| void RGB24MirrorRow_C(const uint8_t* src_rgb24, uint8_t* dst_rgb24, int width) { |
| int x; |
| src_rgb24 += width * 3 - 3; |
| for (x = 0; x < width; ++x) { |
| uint8_t b = src_rgb24[0]; |
| uint8_t g = src_rgb24[1]; |
| uint8_t r = src_rgb24[2]; |
| dst_rgb24[0] = b; |
| dst_rgb24[1] = g; |
| dst_rgb24[2] = r; |
| src_rgb24 -= 3; |
| dst_rgb24 += 3; |
| } |
| } |
| |
| void SplitUVRow_C(const uint8_t* src_uv, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_u[x] = src_uv[0]; |
| dst_u[x + 1] = src_uv[2]; |
| dst_v[x] = src_uv[1]; |
| dst_v[x + 1] = src_uv[3]; |
| src_uv += 4; |
| } |
| if (width & 1) { |
| dst_u[width - 1] = src_uv[0]; |
| dst_v[width - 1] = src_uv[1]; |
| } |
| } |
| |
| void MergeUVRow_C(const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_uv, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_uv[0] = src_u[x]; |
| dst_uv[1] = src_v[x]; |
| dst_uv[2] = src_u[x + 1]; |
| dst_uv[3] = src_v[x + 1]; |
| dst_uv += 4; |
| } |
| if (width & 1) { |
| dst_uv[0] = src_u[width - 1]; |
| dst_uv[1] = src_v[width - 1]; |
| } |
| } |
| |
| void DetileRow_C(const uint8_t* src, |
| ptrdiff_t src_tile_stride, |
| uint8_t* dst, |
| int width) { |
| int x; |
| for (x = 0; x < width - 15; x += 16) { |
| memcpy(dst, src, 16); |
| dst += 16; |
| src += src_tile_stride; |
| } |
| if (width & 15) { |
| memcpy(dst, src, width & 15); |
| } |
| } |
| |
| void DetileRow_16_C(const uint16_t* src, |
| ptrdiff_t src_tile_stride, |
| uint16_t* dst, |
| int width) { |
| int x; |
| for (x = 0; x < width - 15; x += 16) { |
| memcpy(dst, src, 16 * sizeof(uint16_t)); |
| dst += 16; |
| src += src_tile_stride; |
| } |
| if (width & 15) { |
| memcpy(dst, src, (width & 15) * sizeof(uint16_t)); |
| } |
| } |
| |
| void DetileSplitUVRow_C(const uint8_t* src_uv, |
| ptrdiff_t src_tile_stride, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| int x; |
| for (x = 0; x < width - 15; x += 16) { |
| SplitUVRow_C(src_uv, dst_u, dst_v, 8); |
| dst_u += 8; |
| dst_v += 8; |
| src_uv += src_tile_stride; |
| } |
| if (width & 15) { |
| SplitUVRow_C(src_uv, dst_u, dst_v, ((width & 15) + 1) / 2); |
| } |
| } |
| |
| void DetileToYUY2_C(const uint8_t* src_y, |
| ptrdiff_t src_y_tile_stride, |
| const uint8_t* src_uv, |
| ptrdiff_t src_uv_tile_stride, |
| uint8_t* dst_yuy2, |
| int width) { |
| for (int x = 0; x < width - 15; x += 16) { |
| for (int i = 0; i < 8; i++) { |
| dst_yuy2[0] = src_y[0]; |
| dst_yuy2[1] = src_uv[0]; |
| dst_yuy2[2] = src_y[1]; |
| dst_yuy2[3] = src_uv[1]; |
| dst_yuy2 += 4; |
| src_y += 2; |
| src_uv += 2; |
| } |
| src_y += src_y_tile_stride - 16; |
| src_uv += src_uv_tile_stride - 16; |
| } |
| } |
| |
| // Unpack MT2T into tiled P010 64 pixels at a time. MT2T's bitstream is encoded |
| // in 80 byte blocks representing 64 pixels each. The first 16 bytes of the |
| // block contain all of the lower 2 bits of each pixel packed together, and the |
| // next 64 bytes represent all the upper 8 bits of the pixel. The lower bits are |
| // packed into 1x4 blocks, whereas the upper bits are packed in normal raster |
| // order. |
| void UnpackMT2T_C(const uint8_t* src, uint16_t* dst, size_t size) { |
| for (size_t i = 0; i < size; i += 80) { |
| const uint8_t* src_lower_bits = src; |
| const uint8_t* src_upper_bits = src + 16; |
| |
| for (int j = 0; j < 4; j++) { |
| for (int k = 0; k < 16; k++) { |
| *dst++ = ((src_lower_bits[k] >> (j * 2)) & 0x3) << 6 | |
| (uint16_t)*src_upper_bits << 8 | |
| (uint16_t)*src_upper_bits >> 2; |
| src_upper_bits++; |
| } |
| } |
| |
| src += 80; |
| } |
| } |
| |
| void SplitRGBRow_C(const uint8_t* src_rgb, |
| uint8_t* dst_r, |
| uint8_t* dst_g, |
| uint8_t* dst_b, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_r[x] = src_rgb[0]; |
| dst_g[x] = src_rgb[1]; |
| dst_b[x] = src_rgb[2]; |
| src_rgb += 3; |
| } |
| } |
| |
| void MergeRGBRow_C(const uint8_t* src_r, |
| const uint8_t* src_g, |
| const uint8_t* src_b, |
| uint8_t* dst_rgb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_rgb[0] = src_r[x]; |
| dst_rgb[1] = src_g[x]; |
| dst_rgb[2] = src_b[x]; |
| dst_rgb += 3; |
| } |
| } |
| |
| void SplitARGBRow_C(const uint8_t* src_argb, |
| uint8_t* dst_r, |
| uint8_t* dst_g, |
| uint8_t* dst_b, |
| uint8_t* dst_a, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_b[x] = src_argb[0]; |
| dst_g[x] = src_argb[1]; |
| dst_r[x] = src_argb[2]; |
| dst_a[x] = src_argb[3]; |
| src_argb += 4; |
| } |
| } |
| |
| void MergeARGBRow_C(const uint8_t* src_r, |
| const uint8_t* src_g, |
| const uint8_t* src_b, |
| const uint8_t* src_a, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_argb[0] = src_b[x]; |
| dst_argb[1] = src_g[x]; |
| dst_argb[2] = src_r[x]; |
| dst_argb[3] = src_a[x]; |
| dst_argb += 4; |
| } |
| } |
| |
| void MergeXR30Row_C(const uint16_t* src_r, |
| const uint16_t* src_g, |
| const uint16_t* src_b, |
| uint8_t* dst_ar30, |
| int depth, |
| int width) { |
| assert(depth >= 10); |
| assert(depth <= 16); |
| int x; |
| int shift = depth - 10; |
| uint32_t* dst_ar30_32 = (uint32_t*)dst_ar30; |
| for (x = 0; x < width; ++x) { |
| uint32_t r = clamp1023(src_r[x] >> shift); |
| uint32_t g = clamp1023(src_g[x] >> shift); |
| uint32_t b = clamp1023(src_b[x] >> shift); |
| dst_ar30_32[x] = b | (g << 10) | (r << 20) | 0xc0000000; |
| } |
| } |
| |
| void MergeAR64Row_C(const uint16_t* src_r, |
| const uint16_t* src_g, |
| const uint16_t* src_b, |
| const uint16_t* src_a, |
| uint16_t* dst_ar64, |
| int depth, |
| int width) { |
| assert(depth >= 1); |
| assert(depth <= 16); |
| int x; |
| int shift = 16 - depth; |
| int max = (1 << depth) - 1; |
| for (x = 0; x < width; ++x) { |
| dst_ar64[0] = STATIC_CAST(uint16_t, ClampMax(src_b[x], max) << shift); |
| dst_ar64[1] = STATIC_CAST(uint16_t, ClampMax(src_g[x], max) << shift); |
| dst_ar64[2] = STATIC_CAST(uint16_t, ClampMax(src_r[x], max) << shift); |
| dst_ar64[3] = STATIC_CAST(uint16_t, ClampMax(src_a[x], max) << shift); |
| dst_ar64 += 4; |
| } |
| } |
| |
| void MergeARGB16To8Row_C(const uint16_t* src_r, |
| const uint16_t* src_g, |
| const uint16_t* src_b, |
| const uint16_t* src_a, |
| uint8_t* dst_argb, |
| int depth, |
| int width) { |
| assert(depth >= 8); |
| assert(depth <= 16); |
| int x; |
| int shift = depth - 8; |
| for (x = 0; x < width; ++x) { |
| dst_argb[0] = STATIC_CAST(uint8_t, clamp255(src_b[x] >> shift)); |
| dst_argb[1] = STATIC_CAST(uint8_t, clamp255(src_g[x] >> shift)); |
| dst_argb[2] = STATIC_CAST(uint8_t, clamp255(src_r[x] >> shift)); |
| dst_argb[3] = STATIC_CAST(uint8_t, clamp255(src_a[x] >> shift)); |
| dst_argb += 4; |
| } |
| } |
| |
| void MergeXR64Row_C(const uint16_t* src_r, |
| const uint16_t* src_g, |
| const uint16_t* src_b, |
| uint16_t* dst_ar64, |
| int depth, |
| int width) { |
| assert(depth >= 1); |
| assert(depth <= 16); |
| int x; |
| int shift = 16 - depth; |
| int max = (1 << depth) - 1; |
| for (x = 0; x < width; ++x) { |
| dst_ar64[0] = STATIC_CAST(uint16_t, ClampMax(src_b[x], max) << shift); |
| dst_ar64[1] = STATIC_CAST(uint16_t, ClampMax(src_g[x], max) << shift); |
| dst_ar64[2] = STATIC_CAST(uint16_t, ClampMax(src_r[x], max) << shift); |
| dst_ar64[3] = 0xffff; |
| dst_ar64 += 4; |
| } |
| } |
| |
| void MergeXRGB16To8Row_C(const uint16_t* src_r, |
| const uint16_t* src_g, |
| const uint16_t* src_b, |
| uint8_t* dst_argb, |
| int depth, |
| int width) { |
| assert(depth >= 8); |
| assert(depth <= 16); |
| int x; |
| int shift = depth - 8; |
| for (x = 0; x < width; ++x) { |
| dst_argb[0] = STATIC_CAST(uint8_t, clamp255(src_b[x] >> shift)); |
| dst_argb[1] = STATIC_CAST(uint8_t, clamp255(src_g[x] >> shift)); |
| dst_argb[2] = STATIC_CAST(uint8_t, clamp255(src_r[x] >> shift)); |
| dst_argb[3] = 0xff; |
| dst_argb += 4; |
| } |
| } |
| |
| void SplitXRGBRow_C(const uint8_t* src_argb, |
| uint8_t* dst_r, |
| uint8_t* dst_g, |
| uint8_t* dst_b, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_b[x] = src_argb[0]; |
| dst_g[x] = src_argb[1]; |
| dst_r[x] = src_argb[2]; |
| src_argb += 4; |
| } |
| } |
| |
| void MergeXRGBRow_C(const uint8_t* src_r, |
| const uint8_t* src_g, |
| const uint8_t* src_b, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_argb[0] = src_b[x]; |
| dst_argb[1] = src_g[x]; |
| dst_argb[2] = src_r[x]; |
| dst_argb[3] = 255; |
| dst_argb += 4; |
| } |
| } |
| |
| // Convert lsb formats to msb, depending on sample depth. |
| void MergeUVRow_16_C(const uint16_t* src_u, |
| const uint16_t* src_v, |
| uint16_t* dst_uv, |
| int depth, |
| int width) { |
| int shift = 16 - depth; |
| assert(depth >= 8); |
| assert(depth <= 16); |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_uv[0] = STATIC_CAST(uint16_t, src_u[x] << shift); |
| dst_uv[1] = STATIC_CAST(uint16_t, src_v[x] << shift); |
| dst_uv += 2; |
| } |
| } |
| |
| // Convert msb formats to lsb, depending on sample depth. |
| void SplitUVRow_16_C(const uint16_t* src_uv, |
| uint16_t* dst_u, |
| uint16_t* dst_v, |
| int depth, |
| int width) { |
| int shift = 16 - depth; |
| int x; |
| assert(depth >= 8); |
| assert(depth <= 16); |
| for (x = 0; x < width; ++x) { |
| dst_u[x] = src_uv[0] >> shift; |
| dst_v[x] = src_uv[1] >> shift; |
| src_uv += 2; |
| } |
| } |
| |
| void MultiplyRow_16_C(const uint16_t* src_y, |
| uint16_t* dst_y, |
| int scale, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_y[x] = STATIC_CAST(uint16_t, src_y[x] * scale); |
| } |
| } |
| |
| void DivideRow_16_C(const uint16_t* src_y, |
| uint16_t* dst_y, |
| int scale, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_y[x] = (src_y[x] * scale) >> 16; |
| } |
| } |
| |
| // Use scale to convert lsb formats to msb, depending how many bits there are: |
| // 32768 = 9 bits |
| // 16384 = 10 bits |
| // 4096 = 12 bits |
| // 256 = 16 bits |
| // TODO(fbarchard): change scale to bits |
| #define C16TO8(v, scale) clamp255(((v) * (scale)) >> 16) |
| |
| void Convert16To8Row_C(const uint16_t* src_y, |
| uint8_t* dst_y, |
| int scale, |
| int width) { |
| int x; |
| assert(scale >= 256); |
| assert(scale <= 32768); |
| |
| for (x = 0; x < width; ++x) { |
| dst_y[x] = STATIC_CAST(uint8_t, C16TO8(src_y[x], scale)); |
| } |
| } |
| |
| // Use scale to convert lsb formats to msb, depending how many bits there are: |
| // 1024 = 10 bits |
| void Convert8To16Row_C(const uint8_t* src_y, |
| uint16_t* dst_y, |
| int scale, |
| int width) { |
| int x; |
| scale *= 0x0101; // replicates the byte. |
| for (x = 0; x < width; ++x) { |
| dst_y[x] = (src_y[x] * scale) >> 16; |
| } |
| } |
| |
| void CopyRow_C(const uint8_t* src, uint8_t* dst, int count) { |
| memcpy(dst, src, count); |
| } |
| |
| void CopyRow_16_C(const uint16_t* src, uint16_t* dst, int count) { |
| memcpy(dst, src, count * 2); |
| } |
| |
| void SetRow_C(uint8_t* dst, uint8_t v8, int width) { |
| memset(dst, v8, width); |
| } |
| |
| void ARGBSetRow_C(uint8_t* dst_argb, uint32_t v32, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| memcpy(dst_argb + x * sizeof v32, &v32, sizeof v32); |
| } |
| } |
| |
| // Filter 2 rows of YUY2 UV's (422) into U and V (420). |
| void YUY2ToUVRow_C(const uint8_t* src_yuy2, |
| int src_stride_yuy2, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| // Output a row of UV values, filtering 2 rows of YUY2. |
| int x; |
| for (x = 0; x < width; x += 2) { |
| dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1; |
| dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1; |
| src_yuy2 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| } |
| |
| // Filter 2 rows of YUY2 UV's (422) into UV (NV12). |
| void YUY2ToNVUVRow_C(const uint8_t* src_yuy2, |
| int src_stride_yuy2, |
| uint8_t* dst_uv, |
| int width) { |
| // Output a row of UV values, filtering 2 rows of YUY2. |
| int x; |
| for (x = 0; x < width; x += 2) { |
| dst_uv[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1; |
| dst_uv[1] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1; |
| src_yuy2 += 4; |
| dst_uv += 2; |
| } |
| } |
| |
| // Copy row of YUY2 UV's (422) into U and V (422). |
| void YUY2ToUV422Row_C(const uint8_t* src_yuy2, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| // Output a row of UV values. |
| int x; |
| for (x = 0; x < width; x += 2) { |
| dst_u[0] = src_yuy2[1]; |
| dst_v[0] = src_yuy2[3]; |
| src_yuy2 += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| } |
| |
| // Copy row of YUY2 Y's (422) into Y (420/422). |
| void YUY2ToYRow_C(const uint8_t* src_yuy2, uint8_t* dst_y, int width) { |
| // Output a row of Y values. |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_y[x] = src_yuy2[0]; |
| dst_y[x + 1] = src_yuy2[2]; |
| src_yuy2 += 4; |
| } |
| if (width & 1) { |
| dst_y[width - 1] = src_yuy2[0]; |
| } |
| } |
| |
| // Filter 2 rows of UYVY UV's (422) into U and V (420). |
| void UYVYToUVRow_C(const uint8_t* src_uyvy, |
| int src_stride_uyvy, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| // Output a row of UV values. |
| int x; |
| for (x = 0; x < width; x += 2) { |
| dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1; |
| dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1; |
| src_uyvy += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| } |
| |
| // Copy row of UYVY UV's (422) into U and V (422). |
| void UYVYToUV422Row_C(const uint8_t* src_uyvy, |
| uint8_t* dst_u, |
| uint8_t* dst_v, |
| int width) { |
| // Output a row of UV values. |
| int x; |
| for (x = 0; x < width; x += 2) { |
| dst_u[0] = src_uyvy[0]; |
| dst_v[0] = src_uyvy[2]; |
| src_uyvy += 4; |
| dst_u += 1; |
| dst_v += 1; |
| } |
| } |
| |
| // Copy row of UYVY Y's (422) into Y (420/422). |
| void UYVYToYRow_C(const uint8_t* src_uyvy, uint8_t* dst_y, int width) { |
| // Output a row of Y values. |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_y[x] = src_uyvy[1]; |
| dst_y[x + 1] = src_uyvy[3]; |
| src_uyvy += 4; |
| } |
| if (width & 1) { |
| dst_y[width - 1] = src_uyvy[1]; |
| } |
| } |
| |
| #define BLEND(f, b, a) clamp255((((256 - a) * b) >> 8) + f) |
| |
| // Blend src_argb over src_argb1 and store to dst_argb. |
| // dst_argb may be src_argb or src_argb1. |
| // This code mimics the SSSE3 version for better testability. |
| void ARGBBlendRow_C(const uint8_t* src_argb, |
| const uint8_t* src_argb1, |
| uint8_t* dst_argb, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| uint32_t fb = src_argb[0]; |
| uint32_t fg = src_argb[1]; |
| uint32_t fr = src_argb[2]; |
| uint32_t a = src_argb[3]; |
| uint32_t bb = src_argb1[0]; |
| uint32_t bg = src_argb1[1]; |
| uint32_t br = src_argb1[2]; |
| dst_argb[0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a)); |
| dst_argb[1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a)); |
| dst_argb[2] = STATIC_CAST(uint8_t, BLEND(fr, br, a)); |
| dst_argb[3] = 255u; |
| |
| fb = src_argb[4 + 0]; |
| fg = src_argb[4 + 1]; |
| fr = src_argb[4 + 2]; |
| a = src_argb[4 + 3]; |
| bb = src_argb1[4 + 0]; |
| bg = src_argb1[4 + 1]; |
| br = src_argb1[4 + 2]; |
| dst_argb[4 + 0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a)); |
| dst_argb[4 + 1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a)); |
| dst_argb[4 + 2] = STATIC_CAST(uint8_t, BLEND(fr, br, a)); |
| dst_argb[4 + 3] = 255u; |
| src_argb += 8; |
| src_argb1 += 8; |
| dst_argb += 8; |
| } |
| |
| if (width & 1) { |
| uint32_t fb = src_argb[0]; |
| uint32_t fg = src_argb[1]; |
| uint32_t fr = src_argb[2]; |
| uint32_t a = src_argb[3]; |
| uint32_t bb = src_argb1[0]; |
| uint32_t bg = src_argb1[1]; |
| uint32_t br = src_argb1[2]; |
| dst_argb[0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a)); |
| dst_argb[1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a)); |
| dst_argb[2] = STATIC_CAST(uint8_t, BLEND(fr, br, a)); |
| dst_argb[3] = 255u; |
| } |
| } |
| #undef BLEND |
| |
| #define UBLEND(f, b, a) (((a)*f) + ((255 - a) * b) + 255) >> 8 |
| void BlendPlaneRow_C(const uint8_t* src0, |
| const uint8_t* src1, |
| const uint8_t* alpha, |
| uint8_t* dst, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst[0] = UBLEND(src0[0], src1[0], alpha[0]); |
| dst[1] = UBLEND(src0[1], src1[1], alpha[1]); |
| src0 += 2; |
| src1 += 2; |
| alpha += 2; |
| dst += 2; |
| } |
| if (width & 1) { |
| dst[0] = UBLEND(src0[0], src1[0], alpha[0]); |
| } |
| } |
| #undef UBLEND |
| |
| #define ATTENUATE(f, a) (f * a + 255) >> 8 |
| |
| // Multiply source RGB by alpha and store to destination. |
| void ARGBAttenuateRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) { |
| int i; |
| for (i = 0; i < width - 1; i += 2) { |
| uint32_t b = src_argb[0]; |
| uint32_t g = src_argb[1]; |
| uint32_t r = src_argb[2]; |
| uint32_t a = src_argb[3]; |
| dst_argb[0] = ATTENUATE(b, a); |
| dst_argb[1] = ATTENUATE(g, a); |
| dst_argb[2] = ATTENUATE(r, a); |
| dst_argb[3] = STATIC_CAST(uint8_t, a); |
| b = src_argb[4]; |
| g = src_argb[5]; |
| r = src_argb[6]; |
| a = src_argb[7]; |
| dst_argb[4] = ATTENUATE(b, a); |
| dst_argb[5] = ATTENUATE(g, a); |
| dst_argb[6] = ATTENUATE(r, a); |
| dst_argb[7] = STATIC_CAST(uint8_t, a); |
| src_argb += 8; |
| dst_argb += 8; |
| } |
| |
| if (width & 1) { |
| const uint32_t b = src_argb[0]; |
| const uint32_t g = src_argb[1]; |
| const uint32_t r = src_argb[2]; |
| const uint32_t a = src_argb[3]; |
| dst_argb[0] = ATTENUATE(b, a); |
| dst_argb[1] = ATTENUATE(g, a); |
| dst_argb[2] = ATTENUATE(r, a); |
| dst_argb[3] = STATIC_CAST(uint8_t, a); |
| } |
| } |
| #undef ATTENUATE |
| |
| // Divide source RGB by alpha and store to destination. |
| // b = (b * 255 + (a / 2)) / a; |
| // g = (g * 255 + (a / 2)) / a; |
| // r = (r * 255 + (a / 2)) / a; |
| // Reciprocal method is off by 1 on some values. ie 125 |
| // 8.8 fixed point inverse table with 1.0 in upper short and 1 / a in lower. |
| #define T(a) 0x01000000 + (0x10000 / a) |
| const uint32_t fixed_invtbl8[256] = { |
| 0x01000000, 0x0100ffff, T(0x02), T(0x03), T(0x04), T(0x05), T(0x06), |
| T(0x07), T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d), |
| T(0x0e), T(0x0f), T(0x10), T(0x11), T(0x12), T(0x13), T(0x14), |
| T(0x15), T(0x16), T(0x17), T(0x18), T(0x19), T(0x1a), T(0x1b), |
| T(0x1c), T(0x1d), T(0x1e), T(0x1f), T(0x20), T(0x21), T(0x22), |
| T(0x23), T(0x24), T(0x25), T(0x26), T(0x27), T(0x28), T(0x29), |
| T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f), T(0x30), |
| T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37), |
| T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e), |
| T(0x3f), T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45), |
| T(0x46), T(0x47), T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c), |
| T(0x4d), T(0x4e), T(0x4f), T(0x50), T(0x51), T(0x52), T(0x53), |
| T(0x54), T(0x55), T(0x56), T(0x57), T(0x58), T(0x59), T(0x5a), |
| T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f), T(0x60), T(0x61), |
| T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67), T(0x68), |
| T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f), |
| T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76), |
| T(0x77), T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d), |
| T(0x7e), T(0x7f), T(0x80), T(0x81), T(0x82), T(0x83), T(0x84), |
| T(0x85), T(0x86), T(0x87), T(0x88), T(0x89), T(0x8a), T(0x8b), |
| T(0x8c), T(0x8d), T(0x8e), T(0x8f), T(0x90), T(0x91), T(0x92), |
| T(0x93), T(0x94), T(0x95), T(0x96), T(0x97), T(0x98), T(0x99), |
| T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f), T(0xa0), |
| T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7), |
| T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae), |
| T(0xaf), T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5), |
| T(0xb6), T(0xb7), T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc), |
| T(0xbd), T(0xbe), T(0xbf), T(0xc0), T(0xc1), T(0xc2), T(0xc3), |
| T(0xc4), T(0xc5), T(0xc6), T(0xc7), T(0xc8), T(0xc9), T(0xca), |
| T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf), T(0xd0), T(0xd1), |
| T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7), T(0xd8), |
| T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf), |
| T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6), |
| T(0xe7), T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed), |
| T(0xee), T(0xef), T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4), |
| T(0xf5), T(0xf6), T(0xf7), T(0xf8), T(0xf9), T(0xfa), T(0xfb), |
| T(0xfc), T(0xfd), T(0xfe), 0x01000100}; |
| #undef T |
| |
| #if defined(LIBYUV_UNATTENUATE_DUP) |
| // This code mimics the Intel SIMD version for better testability. |
| #define UNATTENUATE(f, ia) clamp255(((f | (f << 8)) * ia) >> 16) |
| #else |
| #define UNATTENUATE(f, ia) clamp255((f * ia) >> 8) |
| #endif |
| |
| // mimics the Intel SIMD code for exactness. |
| void ARGBUnattenuateRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| uint32_t b = src_argb[0]; |
| uint32_t g = src_argb[1]; |
| uint32_t r = src_argb[2]; |
| const uint32_t a = src_argb[3]; |
| const uint32_t ia = fixed_invtbl8[a] & 0xffff; // 8.8 fixed point |
| |
| // Clamping should not be necessary but is free in assembly. |
| dst_argb[0] = STATIC_CAST(uint8_t, UNATTENUATE(b, ia)); |
| dst_argb[1] = STATIC_CAST(uint8_t, UNATTENUATE(g, ia)); |
| dst_argb[2] = STATIC_CAST(uint8_t, UNATTENUATE(r, ia)); |
| dst_argb[3] = STATIC_CAST(uint8_t, a); |
| src_argb += 4; |
| dst_argb += 4; |
| } |
| } |
| |
| void ComputeCumulativeSumRow_C(const uint8_t* row, |
| int32_t* cumsum, |
| const int32_t* previous_cumsum, |
| int width) { |
| int32_t row_sum[4] = {0, 0, 0, 0}; |
| int x; |
| for (x = 0; x < width; ++x) { |
| row_sum[0] += row[x * 4 + 0]; |
| row_sum[1] += row[x * 4 + 1]; |
| row_sum[2] += row[x * 4 + 2]; |
| row_sum[3] += row[x * 4 + 3]; |
| cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0]; |
| cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1]; |
| cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2]; |
| cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3]; |
| } |
| } |
| |
| void CumulativeSumToAverageRow_C(const int32_t* tl, |
| const int32_t* bl, |
| int w, |
| int area, |
| uint8_t* dst, |
| int count) { |
| float ooa; |
| int i; |
| assert(area != 0); |
| |
| ooa = 1.0f / STATIC_CAST(float, area); |
| for (i = 0; i < count; ++i) { |
| dst[0] = |
| (uint8_t)(STATIC_CAST(float, bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) * |
| ooa); |
| dst[1] = |
| (uint8_t)(STATIC_CAST(float, bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) * |
| ooa); |
| dst[2] = |
| (uint8_t)(STATIC_CAST(float, bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) * |
| ooa); |
| dst[3] = |
| (uint8_t)(STATIC_CAST(float, bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) * |
| ooa); |
| dst += 4; |
| tl += 4; |
| bl += 4; |
| } |
| } |
| |
| // Copy pixels from rotated source to destination row with a slope. |
| LIBYUV_API |
| void ARGBAffineRow_C(const uint8_t* src_argb, |
| int src_argb_stride, |
| uint8_t* dst_argb, |
| const float* uv_dudv, |
| int width) { |
| int i; |
| // Render a row of pixels from source into a buffer. |
| float uv[2]; |
| uv[0] = uv_dudv[0]; |
| uv[1] = uv_dudv[1]; |
| for (i = 0; i < width; ++i) { |
| int x = (int)(uv[0]); |
| int y = (int)(uv[1]); |
| *(uint32_t*)(dst_argb) = |
| *(const uint32_t*)(src_argb + y * src_argb_stride + x * 4); |
| dst_argb += 4; |
| uv[0] += uv_dudv[2]; |
| uv[1] += uv_dudv[3]; |
| } |
| } |
| |
| // Blend 2 rows into 1. |
| static void HalfRow_C(const uint8_t* src_uv, |
| ptrdiff_t src_uv_stride, |
| uint8_t* dst_uv, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; |
| } |
| } |
| |
| static void HalfRow_16_C(const uint16_t* src_uv, |
| ptrdiff_t src_uv_stride, |
| uint16_t* dst_uv, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; |
| } |
| } |
| |
| static void HalfRow_16To8_C(const uint16_t* src_uv, |
| ptrdiff_t src_uv_stride, |
| uint8_t* dst_uv, |
| int scale, |
| int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_uv[x] = STATIC_CAST( |
| uint8_t, |
| C16TO8((src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1, scale)); |
| } |
| } |
| |
| // C version 2x2 -> 2x1. |
| void InterpolateRow_C(uint8_t* dst_ptr, |
| const uint8_t* src_ptr, |
| ptrdiff_t src_stride, |
| int width, |
| int source_y_fraction) { |
| int y1_fraction = source_y_fraction; |
| int y0_fraction = 256 - y1_fraction; |
| const uint8_t* src_ptr1 = src_ptr + src_stride; |
| int x; |
| assert(source_y_fraction >= 0); |
| assert(source_y_fraction < 256); |
| |
| if (y1_fraction == 0) { |
| memcpy(dst_ptr, src_ptr, width); |
| return; |
| } |
| if (y1_fraction == 128) { |
| HalfRow_C(src_ptr, src_stride, dst_ptr, width); |
| return; |
| } |
| for (x = 0; x < width; ++x) { |
| dst_ptr[0] = STATIC_CAST( |
| uint8_t, |
| (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8); |
| ++src_ptr; |
| ++src_ptr1; |
| ++dst_ptr; |
| } |
| } |
| |
| // C version 2x2 -> 2x1. |
| void InterpolateRow_16_C(uint16_t* dst_ptr, |
| const uint16_t* src_ptr, |
| ptrdiff_t src_stride, |
| int width, |
| int source_y_fraction) { |
| int y1_fraction = source_y_fraction; |
| int y0_fraction = 256 - y1_fraction; |
| const uint16_t* src_ptr1 = src_ptr + src_stride; |
| int x; |
| assert(source_y_fraction >= 0); |
| assert(source_y_fraction < 256); |
| |
| if (y1_fraction == 0) { |
| memcpy(dst_ptr, src_ptr, width * 2); |
| return; |
| } |
| if (y1_fraction == 128) { |
| HalfRow_16_C(src_ptr, src_stride, dst_ptr, width); |
| return; |
| } |
| for (x = 0; x < width; ++x) { |
| dst_ptr[0] = STATIC_CAST( |
| uint16_t, |
| (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8); |
| ++src_ptr; |
| ++src_ptr1; |
| ++dst_ptr; |
| } |
| } |
| |
| // C version 2x2 16 bit-> 2x1 8 bit. |
| // Use scale to convert lsb formats to msb, depending how many bits there are: |
| // 32768 = 9 bits |
| // 16384 = 10 bits |
| // 4096 = 12 bits |
| // 256 = 16 bits |
| // TODO(fbarchard): change scale to bits |
| |
| void InterpolateRow_16To8_C(uint8_t* dst_ptr, |
| const uint16_t* src_ptr, |
| ptrdiff_t src_stride, |
| int scale, |
| int width, |
| int source_y_fraction) { |
| int y1_fraction = source_y_fraction; |
| int y0_fraction = 256 - y1_fraction; |
| const uint16_t* src_ptr1 = src_ptr + src_stride; |
| int x; |
| assert(source_y_fraction >= 0); |
| assert(source_y_fraction < 256); |
| |
| if (source_y_fraction == 0) { |
| Convert16To8Row_C(src_ptr, dst_ptr, scale, width); |
| return; |
| } |
| if (source_y_fraction == 128) { |
| HalfRow_16To8_C(src_ptr, src_stride, dst_ptr, scale, width); |
| return; |
| } |
| for (x = 0; x < width; ++x) { |
| dst_ptr[0] = STATIC_CAST( |
| uint8_t, |
| C16TO8( |
| (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8, |
| scale)); |
| src_ptr += 1; |
| src_ptr1 += 1; |
| dst_ptr += 1; |
| } |
| } |
| |
| // Use first 4 shuffler values to reorder ARGB channels. |
| void ARGBShuffleRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| const uint8_t* shuffler, |
| int width) { |
| int index0 = shuffler[0]; |
| int index1 = shuffler[1]; |
| int index2 = shuffler[2]; |
| int index3 = shuffler[3]; |
| // Shuffle a row of ARGB. |
| int x; |
| for (x = 0; x < width; ++x) { |
| // To support in-place conversion. |
| uint8_t b = src_argb[index0]; |
| uint8_t g = src_argb[index1]; |
| uint8_t r = src_argb[index2]; |
| uint8_t a = src_argb[index3]; |
| dst_argb[0] = b; |
| dst_argb[1] = g; |
| dst_argb[2] = r; |
| dst_argb[3] = a; |
| src_argb += 4; |
| dst_argb += 4; |
| } |
| } |
| |
| void I422ToYUY2Row_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_frame, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_frame[0] = src_y[0]; |
| dst_frame[1] = src_u[0]; |
| dst_frame[2] = src_y[1]; |
| dst_frame[3] = src_v[0]; |
| dst_frame += 4; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| } |
| if (width & 1) { |
| dst_frame[0] = src_y[0]; |
| dst_frame[1] = src_u[0]; |
| dst_frame[2] = 0; |
| dst_frame[3] = src_v[0]; |
| } |
| } |
| |
| void I422ToUYVYRow_C(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_frame, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_frame[0] = src_u[0]; |
| dst_frame[1] = src_y[0]; |
| dst_frame[2] = src_v[0]; |
| dst_frame[3] = src_y[1]; |
| dst_frame += 4; |
| src_y += 2; |
| src_u += 1; |
| src_v += 1; |
| } |
| if (width & 1) { |
| dst_frame[0] = src_u[0]; |
| dst_frame[1] = src_y[0]; |
| dst_frame[2] = src_v[0]; |
| dst_frame[3] = 0; |
| } |
| } |
| |
| void ARGBPolynomialRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| const float* poly, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| float b = (float)(src_argb[0]); |
| float g = (float)(src_argb[1]); |
| float r = (float)(src_argb[2]); |
| float a = (float)(src_argb[3]); |
| float b2 = b * b; |
| float g2 = g * g; |
| float r2 = r * r; |
| float a2 = a * a; |
| float db = poly[0] + poly[4] * b; |
| float dg = poly[1] + poly[5] * g; |
| float dr = poly[2] + poly[6] * r; |
| float da = poly[3] + poly[7] * a; |
| float b3 = b2 * b; |
| float g3 = g2 * g; |
| float r3 = r2 * r; |
| float a3 = a2 * a; |
| db += poly[8] * b2; |
| dg += poly[9] * g2; |
| dr += poly[10] * r2; |
| da += poly[11] * a2; |
| db += poly[12] * b3; |
| dg += poly[13] * g3; |
| dr += poly[14] * r3; |
| da += poly[15] * a3; |
| |
| dst_argb[0] = STATIC_CAST(uint8_t, Clamp((int32_t)(db))); |
| dst_argb[1] = STATIC_CAST(uint8_t, Clamp((int32_t)(dg))); |
| dst_argb[2] = STATIC_CAST(uint8_t, Clamp((int32_t)(dr))); |
| dst_argb[3] = STATIC_CAST(uint8_t, Clamp((int32_t)(da))); |
| src_argb += 4; |
| dst_argb += 4; |
| } |
| } |
| |
| // Samples assumed to be unsigned in low 9, 10 or 12 bits. Scale factor |
| // adjust the source integer range to the half float range desired. |
| |
| // This magic constant is 2^-112. Multiplying by this |
| // is the same as subtracting 112 from the exponent, which |
| // is the difference in exponent bias between 32-bit and |
| // 16-bit floats. Once we've done this subtraction, we can |
| // simply extract the low bits of the exponent and the high |
| // bits of the mantissa from our float and we're done. |
| |
| // Work around GCC 7 punning warning -Wstrict-aliasing |
| #if defined(__GNUC__) |
| typedef uint32_t __attribute__((__may_alias__)) uint32_alias_t; |
| #else |
| typedef uint32_t uint32_alias_t; |
| #endif |
| |
| void HalfFloatRow_C(const uint16_t* src, |
| uint16_t* dst, |
| float scale, |
| int width) { |
| int i; |
| float mult = 1.9259299444e-34f * scale; |
| for (i = 0; i < width; ++i) { |
| float value = src[i] * mult; |
| dst[i] = (uint16_t)((*(const uint32_alias_t*)&value) >> 13); |
| } |
| } |
| |
| void ByteToFloatRow_C(const uint8_t* src, float* dst, float scale, int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| float value = src[i] * scale; |
| dst[i] = value; |
| } |
| } |
| |
| void ARGBLumaColorTableRow_C(const uint8_t* src_argb, |
| uint8_t* dst_argb, |
| int width, |
| const uint8_t* luma, |
| uint32_t lumacoeff) { |
| uint32_t bc = lumacoeff & 0xff; |
| uint32_t gc = (lumacoeff >> 8) & 0xff; |
| uint32_t rc = (lumacoeff >> 16) & 0xff; |
| |
| int i; |
| for (i = 0; i < width - 1; i += 2) { |
| // Luminance in rows, color values in columns. |
| const uint8_t* luma0 = |
| ((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) + |
| luma; |
| const uint8_t* luma1; |
| dst_argb[0] = luma0[src_argb[0]]; |
| dst_argb[1] = luma0[src_argb[1]]; |
| dst_argb[2] = luma0[src_argb[2]]; |
| dst_argb[3] = src_argb[3]; |
| luma1 = |
| ((src_argb[4] * bc + src_argb[5] * gc + src_argb[6] * rc) & 0x7F00u) + |
| luma; |
| dst_argb[4] = luma1[src_argb[4]]; |
| dst_argb[5] = luma1[src_argb[5]]; |
| dst_argb[6] = luma1[src_argb[6]]; |
| dst_argb[7] = src_argb[7]; |
| src_argb += 8; |
| dst_argb += 8; |
| } |
| if (width & 1) { |
| // Luminance in rows, color values in columns. |
| const uint8_t* luma0 = |
| ((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) + |
| luma; |
| dst_argb[0] = luma0[src_argb[0]]; |
| dst_argb[1] = luma0[src_argb[1]]; |
| dst_argb[2] = luma0[src_argb[2]]; |
| dst_argb[3] = src_argb[3]; |
| } |
| } |
| |
| void ARGBCopyAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) { |
| int i; |
| for (i = 0; i < width - 1; i += 2) { |
| dst[3] = src[3]; |
| dst[7] = src[7]; |
| dst += 8; |
| src += 8; |
| } |
| if (width & 1) { |
| dst[3] = src[3]; |
| } |
| } |
| |
| void ARGBExtractAlphaRow_C(const uint8_t* src_argb, uint8_t* dst_a, int width) { |
| int i; |
| for (i = 0; i < width - 1; i += 2) { |
| dst_a[0] = src_argb[3]; |
| dst_a[1] = src_argb[7]; |
| dst_a += 2; |
| src_argb += 8; |
| } |
| if (width & 1) { |
| dst_a[0] = src_argb[3]; |
| } |
| } |
| |
| void ARGBCopyYToAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) { |
| int i; |
| for (i = 0; i < width - 1; i += 2) { |
| dst[3] = src[0]; |
| dst[7] = src[1]; |
| dst += 8; |
| src += 2; |
| } |
| if (width & 1) { |
| dst[3] = src[0]; |
| } |
| } |
| |
| // Maximum temporary width for wrappers to process at a time, in pixels. |
| #define MAXTWIDTH 2048 |
| |
| #if !(defined(_MSC_VER) && !defined(__clang__) && defined(_M_IX86)) && \ |
| defined(HAS_I422TORGB565ROW_SSSE3) |
| // row_win.cc has asm version, but GCC uses 2 step wrapper. |
| void I422ToRGB565Row_SSSE3(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_rgb565, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); |
| ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); |
| src_y += twidth; |
| src_u += twidth / 2; |
| src_v += twidth / 2; |
| dst_rgb565 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_I422TOARGB1555ROW_SSSE3) |
| void I422ToARGB1555Row_SSSE3(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_argb1555, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); |
| ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth); |
| src_y += twidth; |
| src_u += twidth / 2; |
| src_v += twidth / 2; |
| dst_argb1555 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_I422TOARGB4444ROW_SSSE3) |
| void I422ToARGB4444Row_SSSE3(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_argb4444, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); |
| ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth); |
| src_y += twidth; |
| src_u += twidth / 2; |
| src_v += twidth / 2; |
| dst_argb4444 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_NV12TORGB565ROW_SSSE3) |
| void NV12ToRGB565Row_SSSE3(const uint8_t* src_y, |
| const uint8_t* src_uv, |
| uint8_t* dst_rgb565, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth); |
| ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); |
| src_y += twidth; |
| src_uv += twidth; |
| dst_rgb565 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_NV12TORGB24ROW_SSSE3) |
| void NV12ToRGB24Row_SSSE3(const uint8_t* src_y, |
| const uint8_t* src_uv, |
| uint8_t* dst_rgb24, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth); |
| ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); |
| src_y += twidth; |
| src_uv += twidth; |
| dst_rgb24 += twidth * 3; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_NV21TORGB24ROW_SSSE3) |
| void NV21ToRGB24Row_SSSE3(const uint8_t* src_y, |
| const uint8_t* src_vu, |
| uint8_t* dst_rgb24, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| NV21ToARGBRow_SSSE3(src_y, src_vu, row, yuvconstants, twidth); |
| ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); |
| src_y += twidth; |
| src_vu += twidth; |
| dst_rgb24 += twidth * 3; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_NV12TORGB24ROW_AVX2) |
| void NV12ToRGB24Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_uv, |
| uint8_t* dst_rgb24, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTORGB24ROW_AVX2) |
| ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth); |
| #else |
| ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); |
| #endif |
| src_y += twidth; |
| src_uv += twidth; |
| dst_rgb24 += twidth * 3; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_NV21TORGB24ROW_AVX2) |
| void NV21ToRGB24Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_vu, |
| uint8_t* dst_rgb24, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| NV21ToARGBRow_AVX2(src_y, src_vu, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTORGB24ROW_AVX2) |
| ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth); |
| #else |
| ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); |
| #endif |
| src_y += twidth; |
| src_vu += twidth; |
| dst_rgb24 += twidth * 3; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_I422TORGB565ROW_AVX2) |
| void I422ToRGB565Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_rgb565, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTORGB565ROW_AVX2) |
| ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); |
| #else |
| ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); |
| #endif |
| src_y += twidth; |
| src_u += twidth / 2; |
| src_v += twidth / 2; |
| dst_rgb565 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_I422TOARGB1555ROW_AVX2) |
| void I422ToARGB1555Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_argb1555, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTOARGB1555ROW_AVX2) |
| ARGBToARGB1555Row_AVX2(row, dst_argb1555, twidth); |
| #else |
| ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth); |
| #endif |
| src_y += twidth; |
| src_u += twidth / 2; |
| src_v += twidth / 2; |
| dst_argb1555 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_I422TOARGB4444ROW_AVX2) |
| void I422ToARGB4444Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_argb4444, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTOARGB4444ROW_AVX2) |
| ARGBToARGB4444Row_AVX2(row, dst_argb4444, twidth); |
| #else |
| ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth); |
| #endif |
| src_y += twidth; |
| src_u += twidth / 2; |
| src_v += twidth / 2; |
| dst_argb4444 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_I422TORGB24ROW_AVX2) |
| void I422ToRGB24Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_rgb24, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTORGB24ROW_AVX2) |
| ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth); |
| #else |
| ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); |
| #endif |
| src_y += twidth; |
| src_u += twidth / 2; |
| src_v += twidth / 2; |
| dst_rgb24 += twidth * 3; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_I444TORGB24ROW_AVX2) |
| void I444ToRGB24Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_u, |
| const uint8_t* src_v, |
| uint8_t* dst_rgb24, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| I444ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTORGB24ROW_AVX2) |
| ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth); |
| #else |
| ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); |
| #endif |
| src_y += twidth; |
| src_u += twidth; |
| src_v += twidth; |
| dst_rgb24 += twidth * 3; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #if defined(HAS_NV12TORGB565ROW_AVX2) |
| void NV12ToRGB565Row_AVX2(const uint8_t* src_y, |
| const uint8_t* src_uv, |
| uint8_t* dst_rgb565, |
| const struct YuvConstants* yuvconstants, |
| int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth); |
| #if defined(HAS_ARGBTORGB565ROW_AVX2) |
| ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); |
| #else |
| ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); |
| #endif |
| src_y += twidth; |
| src_uv += twidth; |
| dst_rgb565 += twidth * 2; |
| width -= twidth; |
| } |
| } |
| #endif |
| |
| #ifdef HAS_RGB24TOYJROW_AVX2 |
| // Convert 16 RGB24 pixels (64 bytes) to 16 YJ values. |
| void RGB24ToYJRow_AVX2(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth); |
| ARGBToYJRow_AVX2(row, dst_yj, twidth); |
| src_rgb24 += twidth * 3; |
| dst_yj += twidth; |
| width -= twidth; |
| } |
| } |
| #endif // HAS_RGB24TOYJROW_AVX2 |
| |
| #ifdef HAS_RAWTOYJROW_AVX2 |
| // Convert 16 RAW pixels (64 bytes) to 16 YJ values. |
| void RAWToYJRow_AVX2(const uint8_t* src_raw, uint8_t* dst_yj, int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| RAWToARGBRow_SSSE3(src_raw, row, twidth); |
| ARGBToYJRow_AVX2(row, dst_yj, twidth); |
| src_raw += twidth * 3; |
| dst_yj += twidth; |
| width -= twidth; |
| } |
| } |
| #endif // HAS_RAWTOYJROW_AVX2 |
| |
| #ifdef HAS_RGB24TOYJROW_SSSE3 |
| // Convert 16 RGB24 pixels (64 bytes) to 16 YJ values. |
| void RGB24ToYJRow_SSSE3(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth); |
| ARGBToYJRow_SSSE3(row, dst_yj, twidth); |
| src_rgb24 += twidth * 3; |
| dst_yj += twidth; |
| width -= twidth; |
| } |
| } |
| #endif // HAS_RGB24TOYJROW_SSSE3 |
| |
| #ifdef HAS_RAWTOYJROW_SSSE3 |
| // Convert 16 RAW pixels (64 bytes) to 16 YJ values. |
| void RAWToYJRow_SSSE3(const uint8_t* src_raw, uint8_t* dst_yj, int width) { |
| // Row buffer for intermediate ARGB pixels. |
| SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| RAWToARGBRow_SSSE3(src_raw, row, twidth); |
| ARGBToYJRow_SSSE3(row, dst_yj, twidth); |
| src_raw += twidth * 3; |
| dst_yj += twidth; |
| width -= twidth; |
| } |
| } |
| #endif // HAS_RAWTOYJROW_SSSE3 |
| |
| #ifdef HAS_INTERPOLATEROW_16TO8_AVX2 |
| void InterpolateRow_16To8_AVX2(uint8_t* dst_ptr, |
| const uint16_t* src_ptr, |
| ptrdiff_t src_stride, |
| int scale, |
| int width, |
| int source_y_fraction) { |
| // Row buffer for intermediate 16 bit pixels. |
| SIMD_ALIGNED(uint16_t row[MAXTWIDTH]); |
| while (width > 0) { |
| int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; |
| InterpolateRow_16_C(row, src_ptr, src_stride, twidth, source_y_fraction); |
| Convert16To8Row_AVX2(row, dst_ptr, scale, twidth); |
| src_ptr += twidth; |
| dst_ptr += twidth; |
| width -= twidth; |
| } |
| } |
| #endif // HAS_INTERPOLATEROW_16TO8_AVX2 |
| |
| float ScaleSumSamples_C(const float* src, float* dst, float scale, int width) { |
| float fsum = 0.f; |
| int i; |
| for (i = 0; i < width; ++i) { |
| float v = *src++; |
| fsum += v * v; |
| *dst++ = v * scale; |
| } |
| return fsum; |
| } |
| |
| float ScaleMaxSamples_C(const float* src, float* dst, float scale, int width) { |
| float fmax = 0.f; |
| int i; |
| for (i = 0; i < width; ++i) { |
| float v = *src++; |
| float vs = v * scale; |
| fmax = (v > fmax) ? v : fmax; |
| *dst++ = vs; |
| } |
| return fmax; |
| } |
| |
| void ScaleSamples_C(const float* src, float* dst, float scale, int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| *dst++ = *src++ * scale; |
| } |
| } |
| |
| void GaussRow_C(const uint32_t* src, uint16_t* dst, int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| *dst++ = STATIC_CAST( |
| uint16_t, |
| (src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4] + 128) >> 8); |
| ++src; |
| } |
| } |
| |
| // filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row. |
| void GaussCol_C(const uint16_t* src0, |
| const uint16_t* src1, |
| const uint16_t* src2, |
| const uint16_t* src3, |
| const uint16_t* src4, |
| uint32_t* dst, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| *dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++; |
| } |
| } |
| |
| void GaussRow_F32_C(const float* src, float* dst, int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| *dst++ = (src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4]) * |
| (1.0f / 256.0f); |
| ++src; |
| } |
| } |
| |
| // filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row. |
| void GaussCol_F32_C(const float* src0, |
| const float* src1, |
| const float* src2, |
| const float* src3, |
| const float* src4, |
| float* dst, |
| int width) { |
| int i; |
| for (i = 0; i < width; ++i) { |
| *dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++; |
| } |
| } |
| |
| // Convert biplanar NV21 to packed YUV24 |
| void NV21ToYUV24Row_C(const uint8_t* src_y, |
| const uint8_t* src_vu, |
| uint8_t* dst_yuv24, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_yuv24[0] = src_vu[0]; // V |
| dst_yuv24[1] = src_vu[1]; // U |
| dst_yuv24[2] = src_y[0]; // Y0 |
| dst_yuv24[3] = src_vu[0]; // V |
| dst_yuv24[4] = src_vu[1]; // U |
| dst_yuv24[5] = src_y[1]; // Y1 |
| src_y += 2; |
| src_vu += 2; |
| dst_yuv24 += 6; // Advance 2 pixels. |
| } |
| if (width & 1) { |
| dst_yuv24[0] = src_vu[0]; // V |
| dst_yuv24[1] = src_vu[1]; // U |
| dst_yuv24[2] = src_y[0]; // Y0 |
| } |
| } |
| |
| // Filter 2 rows of AYUV UV's (444) into UV (420). |
| // AYUV is VUYA in memory. UV for NV12 is UV order in memory. |
| void AYUVToUVRow_C(const uint8_t* src_ayuv, |
| int src_stride_ayuv, |
| uint8_t* dst_uv, |
| int width) { |
| // Output a row of UV values, filtering 2x2 rows of AYUV. |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_uv[0] = (src_ayuv[1] + src_ayuv[5] + src_ayuv[src_stride_ayuv + 1] + |
| src_ayuv[src_stride_ayuv + 5] + 2) >> |
| 2; |
| dst_uv[1] = (src_ayuv[0] + src_ayuv[4] + src_ayuv[src_stride_ayuv + 0] + |
| src_ayuv[src_stride_ayuv + 4] + 2) >> |
| 2; |
| src_ayuv += 8; |
| dst_uv += 2; |
| } |
| if (width & 1) { |
| dst_uv[0] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1; |
| dst_uv[1] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1; |
| } |
| } |
| |
| // Filter 2 rows of AYUV UV's (444) into VU (420). |
| void AYUVToVURow_C(const uint8_t* src_ayuv, |
| int src_stride_ayuv, |
| uint8_t* dst_vu, |
| int width) { |
| // Output a row of VU values, filtering 2x2 rows of AYUV. |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_vu[0] = (src_ayuv[0] + src_ayuv[4] + src_ayuv[src_stride_ayuv + 0] + |
| src_ayuv[src_stride_ayuv + 4] + 2) >> |
| 2; |
| dst_vu[1] = (src_ayuv[1] + src_ayuv[5] + src_ayuv[src_stride_ayuv + 1] + |
| src_ayuv[src_stride_ayuv + 5] + 2) >> |
| 2; |
| src_ayuv += 8; |
| dst_vu += 2; |
| } |
| if (width & 1) { |
| dst_vu[0] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1; |
| dst_vu[1] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1; |
| } |
| } |
| |
| // Copy row of AYUV Y's into Y |
| void AYUVToYRow_C(const uint8_t* src_ayuv, uint8_t* dst_y, int width) { |
| // Output a row of Y values. |
| int x; |
| for (x = 0; x < width; ++x) { |
| dst_y[x] = src_ayuv[2]; // v,u,y,a |
| src_ayuv += 4; |
| } |
| } |
| |
| // Convert UV plane of NV12 to VU of NV21. |
| void SwapUVRow_C(const uint8_t* src_uv, uint8_t* dst_vu, int width) { |
| int x; |
| for (x = 0; x < width; ++x) { |
| uint8_t u = src_uv[0]; |
| uint8_t v = src_uv[1]; |
| dst_vu[0] = v; |
| dst_vu[1] = u; |
| src_uv += 2; |
| dst_vu += 2; |
| } |
| } |
| |
| void HalfMergeUVRow_C(const uint8_t* src_u, |
| int src_stride_u, |
| const uint8_t* src_v, |
| int src_stride_v, |
| uint8_t* dst_uv, |
| int width) { |
| int x; |
| for (x = 0; x < width - 1; x += 2) { |
| dst_uv[0] = (src_u[0] + src_u[1] + src_u[src_stride_u] + |
| src_u[src_stride_u + 1] + 2) >> |
| 2; |
| dst_uv[1] = (src_v[0] + src_v[1] + src_v[src_stride_v] + |
| src_v[src_stride_v + 1] + 2) >> |
| 2; |
| src_u += 2; |
| src_v += 2; |
| dst_uv += 2; |
| } |
| if (width & 1) { |
| dst_uv[0] = (src_u[0] + src_u[src_stride_u] + 1) >> 1; |
| dst_uv[1] = (src_v[0] + src_v[src_stride_v] + 1) >> 1; |
| } |
| } |
| |
| #undef STATIC_CAST |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| } // namespace libyuv |
| #endif |