blob: 2cf0d453abdc2cc34f70a3afd3ce1de98a928256 [file] [log] [blame]
/*-
* Copyright (c) 2010-2012 Michihiro NAKAJIMA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "archive_platform.h"
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_ZLIB_H
#include <zlib.h>
#endif
#include "archive.h"
#include "archive_entry.h"
#include "archive_entry_locale.h"
#include "archive_private.h"
#include "archive_read_private.h"
#include "archive_endian.h"
struct lzx_dec {
/* Decoding status. */
int state;
/*
* Window to see last decoded data, from 32KBi to 2MBi.
*/
int w_size;
int w_mask;
/* Window buffer, which is a loop buffer. */
unsigned char *w_buff;
/* The insert position to the window. */
int w_pos;
/* The position where we can copy decoded code from the window. */
int copy_pos;
/* The length how many bytes we can copy decoded code from
* the window. */
int copy_len;
/* Translation reversal for x86 processor CALL byte sequence(E8).
* This is used for LZX only. */
uint32_t translation_size;
char translation;
char block_type;
#define VERBATIM_BLOCK 1
#define ALIGNED_OFFSET_BLOCK 2
#define UNCOMPRESSED_BLOCK 3
size_t block_size;
size_t block_bytes_avail;
/* Repeated offset. */
int r0, r1, r2;
unsigned char rbytes[4];
int rbytes_avail;
int length_header;
int position_slot;
int offset_bits;
struct lzx_pos_tbl {
int base;
int footer_bits;
} *pos_tbl;
/*
* Bit stream reader.
*/
struct lzx_br {
#define CACHE_TYPE uint64_t
#define CACHE_BITS (8 * sizeof(CACHE_TYPE))
/* Cache buffer. */
CACHE_TYPE cache_buffer;
/* Indicates how many bits avail in cache_buffer. */
int cache_avail;
unsigned char odd;
char have_odd;
} br;
/*
* Huffman coding.
*/
struct huffman {
int len_size;
int freq[17];
unsigned char *bitlen;
/*
* Use a index table. It's faster than searching a huffman
* coding tree, which is a binary tree. But a use of a large
* index table causes L1 cache read miss many times.
*/
#define HTBL_BITS 10
int max_bits;
int shift_bits;
int tbl_bits;
int tree_used;
int tree_avail;
/* Direct access table. */
uint16_t *tbl;
/* Binary tree table for extra bits over the direct access. */
struct htree_t {
uint16_t left;
uint16_t right;
} *tree;
} at, lt, mt, pt;
int loop;
int error;
};
static const int slots[] = {
30, 32, 34, 36, 38, 42, 50, 66, 98, 162, 290
};
#define SLOT_BASE 15
#define SLOT_MAX 21/*->25*/
struct lzx_stream {
const unsigned char *next_in;
int64_t avail_in;
int64_t total_in;
unsigned char *next_out;
int64_t avail_out;
int64_t total_out;
struct lzx_dec *ds;
};
/*
* Cabinet file definitions.
*/
/* CFHEADER offset */
#define CFHEADER_signature 0
#define CFHEADER_cbCabinet 8
#define CFHEADER_coffFiles 16
#define CFHEADER_versionMinor 24
#define CFHEADER_versionMajor 25
#define CFHEADER_cFolders 26
#define CFHEADER_cFiles 28
#define CFHEADER_flags 30
#define CFHEADER_setID 32
#define CFHEADER_iCabinet 34
#define CFHEADER_cbCFHeader 36
#define CFHEADER_cbCFFolder 38
#define CFHEADER_cbCFData 39
/* CFFOLDER offset */
#define CFFOLDER_coffCabStart 0
#define CFFOLDER_cCFData 4
#define CFFOLDER_typeCompress 6
#define CFFOLDER_abReserve 8
/* CFFILE offset */
#define CFFILE_cbFile 0
#define CFFILE_uoffFolderStart 4
#define CFFILE_iFolder 8
#define CFFILE_date_time 10
#define CFFILE_attribs 14
/* CFDATA offset */
#define CFDATA_csum 0
#define CFDATA_cbData 4
#define CFDATA_cbUncomp 6
static const char * const compression_name[] = {
"NONE",
"MSZIP",
"Quantum",
"LZX",
};
struct cfdata {
/* Sum value of this CFDATA. */
uint32_t sum;
uint16_t compressed_size;
uint16_t compressed_bytes_remaining;
uint16_t uncompressed_size;
uint16_t uncompressed_bytes_remaining;
/* To know how many bytes we have decompressed. */
uint16_t uncompressed_avail;
/* Offset from the beginning of compressed data of this CFDATA */
uint16_t read_offset;
int64_t unconsumed;
/* To keep memory image of this CFDATA to compute the sum. */
size_t memimage_size;
unsigned char *memimage;
/* Result of calculation of sum. */
uint32_t sum_calculated;
unsigned char sum_extra[4];
int sum_extra_avail;
const void *sum_ptr;
};
struct cffolder {
uint32_t cfdata_offset_in_cab;
uint16_t cfdata_count;
uint16_t comptype;
#define COMPTYPE_NONE 0x0000
#define COMPTYPE_MSZIP 0x0001
#define COMPTYPE_QUANTUM 0x0002
#define COMPTYPE_LZX 0x0003
uint16_t compdata;
const char *compname;
/* At the time reading CFDATA */
struct cfdata cfdata;
int cfdata_index;
/* Flags to mark progress of decompression. */
char decompress_init;
};
struct cffile {
uint32_t uncompressed_size;
uint32_t offset;
time_t mtime;
uint16_t folder;
#define iFoldCONTINUED_FROM_PREV 0xFFFD
#define iFoldCONTINUED_TO_NEXT 0xFFFE
#define iFoldCONTINUED_PREV_AND_NEXT 0xFFFF
unsigned char attr;
#define ATTR_RDONLY 0x01
#define ATTR_NAME_IS_UTF 0x80
struct archive_string pathname;
};
struct cfheader {
/* Total bytes of all file size in a Cabinet. */
uint32_t total_bytes;
uint32_t files_offset;
uint16_t folder_count;
uint16_t file_count;
uint16_t flags;
#define PREV_CABINET 0x0001
#define NEXT_CABINET 0x0002
#define RESERVE_PRESENT 0x0004
uint16_t setid;
uint16_t cabinet;
/* Version number. */
unsigned char major;
unsigned char minor;
unsigned char cffolder;
unsigned char cfdata;
/* All folders in a cabinet. */
struct cffolder *folder_array;
/* All files in a cabinet. */
struct cffile *file_array;
int file_index;
};
struct cab {
/* entry_bytes_remaining is the number of bytes we expect. */
int64_t entry_offset;
int64_t entry_bytes_remaining;
int64_t entry_unconsumed;
int64_t entry_compressed_bytes_read;
int64_t entry_uncompressed_bytes_read;
struct cffolder *entry_cffolder;
struct cffile *entry_cffile;
struct cfdata *entry_cfdata;
/* Offset from beginning of a cabinet file. */
int64_t cab_offset;
struct cfheader cfheader;
struct archive_wstring ws;
/* Flag to mark progress that an archive was read their first header.*/
char found_header;
char end_of_archive;
char end_of_entry;
char end_of_entry_cleanup;
char read_data_invoked;
int64_t bytes_skipped;
unsigned char *uncompressed_buffer;
size_t uncompressed_buffer_size;
int init_default_conversion;
struct archive_string_conv *sconv;
struct archive_string_conv *sconv_default;
struct archive_string_conv *sconv_utf8;
char format_name[64];
#ifdef HAVE_ZLIB_H
z_stream stream;
char stream_valid;
#endif
struct lzx_stream xstrm;
};
static int archive_read_format_cab_bid(struct archive_read *, int);
static int archive_read_format_cab_options(struct archive_read *,
const char *, const char *);
static int archive_read_format_cab_read_header(struct archive_read *,
struct archive_entry *);
static int archive_read_format_cab_read_data(struct archive_read *,
const void **, size_t *, int64_t *);
static int archive_read_format_cab_read_data_skip(struct archive_read *);
static int archive_read_format_cab_cleanup(struct archive_read *);
static int cab_skip_sfx(struct archive_read *);
static time_t cab_dos_time(const unsigned char *);
static int cab_read_data(struct archive_read *, const void **,
size_t *, int64_t *);
static int cab_read_header(struct archive_read *);
static uint32_t cab_checksum_cfdata_4(const void *, size_t bytes, uint32_t);
static uint32_t cab_checksum_cfdata(const void *, size_t bytes, uint32_t);
static void cab_checksum_update(struct archive_read *, size_t);
static int cab_checksum_finish(struct archive_read *);
static int cab_next_cfdata(struct archive_read *);
static const void *cab_read_ahead_cfdata(struct archive_read *, ssize_t *);
static const void *cab_read_ahead_cfdata_none(struct archive_read *, ssize_t *);
static const void *cab_read_ahead_cfdata_deflate(struct archive_read *,
ssize_t *);
static const void *cab_read_ahead_cfdata_lzx(struct archive_read *,
ssize_t *);
static int64_t cab_consume_cfdata(struct archive_read *, int64_t);
static int64_t cab_minimum_consume_cfdata(struct archive_read *, int64_t);
static int lzx_decode_init(struct lzx_stream *, int);
static int lzx_read_blocks(struct lzx_stream *, int);
static int lzx_decode_blocks(struct lzx_stream *, int);
static void lzx_decode_free(struct lzx_stream *);
static void lzx_translation(struct lzx_stream *, void *, size_t, uint32_t);
static void lzx_cleanup_bitstream(struct lzx_stream *);
static int lzx_decode(struct lzx_stream *, int);
static int lzx_read_pre_tree(struct lzx_stream *);
static int lzx_read_bitlen(struct lzx_stream *, struct huffman *, int);
static int lzx_huffman_init(struct huffman *, size_t, int);
static void lzx_huffman_free(struct huffman *);
static int lzx_make_huffman_table(struct huffman *);
static inline int lzx_decode_huffman(struct huffman *, unsigned);
static int lzx_decode_huffman_tree(struct huffman *, unsigned, int);
int
archive_read_support_format_cab(struct archive *_a)
{
struct archive_read *a = (struct archive_read *)_a;
struct cab *cab;
int r;
archive_check_magic(_a, ARCHIVE_READ_MAGIC,
ARCHIVE_STATE_NEW, "archive_read_support_format_cab");
cab = (struct cab *)calloc(1, sizeof(*cab));
if (cab == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate CAB data");
return (ARCHIVE_FATAL);
}
archive_string_init(&cab->ws);
archive_wstring_ensure(&cab->ws, 256);
r = __archive_read_register_format(a,
cab,
"cab",
archive_read_format_cab_bid,
archive_read_format_cab_options,
archive_read_format_cab_read_header,
archive_read_format_cab_read_data,
archive_read_format_cab_read_data_skip,
NULL,
archive_read_format_cab_cleanup,
NULL,
NULL);
if (r != ARCHIVE_OK)
free(cab);
return (ARCHIVE_OK);
}
static int
find_cab_magic(const char *p)
{
switch (p[4]) {
case 0:
/*
* Note: Self-Extraction program has 'MSCF' string in their
* program. If we were finding 'MSCF' string only, we got
* wrong place for Cabinet header, thus, we have to check
* following four bytes which are reserved and must be set
* to zero.
*/
if (memcmp(p, "MSCF\0\0\0\0", 8) == 0)
return 0;
return 5;
case 'F': return 1;
case 'C': return 2;
case 'S': return 3;
case 'M': return 4;
default: return 5;
}
}
static int
archive_read_format_cab_bid(struct archive_read *a, int best_bid)
{
const char *p;
ssize_t bytes_avail, offset, window;
/* If there's already a better bid than we can ever
make, don't bother testing. */
if (best_bid > 64)
return (-1);
if ((p = __archive_read_ahead(a, 8, NULL)) == NULL)
return (-1);
if (memcmp(p, "MSCF\0\0\0\0", 8) == 0)
return (64);
/*
* Attempt to handle self-extracting archives
* by noting a PE header and searching forward
* up to 128k for a 'MSCF' marker.
*/
if (p[0] == 'M' && p[1] == 'Z') {
offset = 0;
window = 4096;
while (offset < (1024 * 128)) {
const char *h = __archive_read_ahead(a, offset + window,
&bytes_avail);
if (h == NULL) {
/* Remaining bytes are less than window. */
window >>= 1;
if (window < 128)
return (0);
continue;
}
p = h + offset;
while (p + 8 < h + bytes_avail) {
int next;
if ((next = find_cab_magic(p)) == 0)
return (64);
p += next;
}
offset = p - h;
}
}
return (0);
}
static int
archive_read_format_cab_options(struct archive_read *a,
const char *key, const char *val)
{
struct cab *cab;
int ret = ARCHIVE_FAILED;
cab = (struct cab *)(a->format->data);
if (strcmp(key, "hdrcharset") == 0) {
if (val == NULL || val[0] == 0)
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"cab: hdrcharset option needs a character-set name");
else {
cab->sconv = archive_string_conversion_from_charset(
&a->archive, val, 0);
if (cab->sconv != NULL)
ret = ARCHIVE_OK;
else
ret = ARCHIVE_FATAL;
}
return (ret);
}
/* Note: The "warn" return is just to inform the options
* supervisor that we didn't handle it. It will generate
* a suitable error if no one used this option. */
return (ARCHIVE_WARN);
}
static int
cab_skip_sfx(struct archive_read *a)
{
const char *p, *q;
size_t skip;
ssize_t bytes, window;
window = 4096;
for (;;) {
const char *h = __archive_read_ahead(a, window, &bytes);
if (h == NULL) {
/* Remaining size are less than window. */
window >>= 1;
if (window < 128) {
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT,
"Couldn't find out CAB header");
return (ARCHIVE_FATAL);
}
continue;
}
p = h;
q = p + bytes;
/*
* Scan ahead until we find something that looks
* like the cab header.
*/
while (p + 8 < q) {
int next;
if ((next = find_cab_magic(p)) == 0) {
skip = p - h;
__archive_read_consume(a, skip);
return (ARCHIVE_OK);
}
p += next;
}
skip = p - h;
__archive_read_consume(a, skip);
}
}
static int
truncated_error(struct archive_read *a)
{
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Truncated CAB header");
return (ARCHIVE_FATAL);
}
static ssize_t
cab_strnlen(const unsigned char *p, size_t maxlen)
{
size_t i;
for (i = 0; i <= maxlen; i++) {
if (p[i] == 0)
break;
}
if (i > maxlen)
return (-1);/* invalid */
return ((ssize_t)i);
}
/* Read bytes as much as remaining. */
static const void *
cab_read_ahead_remaining(struct archive_read *a, size_t min, ssize_t *avail)
{
const void *p;
while (min > 0) {
p = __archive_read_ahead(a, min, avail);
if (p != NULL)
return (p);
min--;
}
return (NULL);
}
/* Convert a path separator '\' -> '/' */
static int
cab_convert_path_separator_1(struct archive_string *fn, unsigned char attr)
{
size_t i;
int mb;
/* Easy check if we have '\' in multi-byte string. */
mb = 0;
for (i = 0; i < archive_strlen(fn); i++) {
if (fn->s[i] == '\\') {
if (mb) {
/* This may be second byte of multi-byte
* character. */
break;
}
fn->s[i] = '/';
mb = 0;
} else if ((fn->s[i] & 0x80) && !(attr & ATTR_NAME_IS_UTF))
mb = 1;
else
mb = 0;
}
if (i == archive_strlen(fn))
return (0);
return (-1);
}
/*
* Replace a character '\' with '/' in wide character.
*/
static void
cab_convert_path_separator_2(struct cab *cab, struct archive_entry *entry)
{
const wchar_t *wp;
size_t i;
/* If a conversion to wide character failed, force the replacement. */
if ((wp = archive_entry_pathname_w(entry)) != NULL) {
archive_wstrcpy(&(cab->ws), wp);
for (i = 0; i < archive_strlen(&(cab->ws)); i++) {
if (cab->ws.s[i] == L'\\')
cab->ws.s[i] = L'/';
}
archive_entry_copy_pathname_w(entry, cab->ws.s);
}
}
/*
* Read CFHEADER, CFFOLDER and CFFILE.
*/
static int
cab_read_header(struct archive_read *a)
{
const unsigned char *p;
struct cab *cab;
struct cfheader *hd;
size_t bytes, used;
ssize_t len;
int64_t skip;
int err, i;
int cur_folder, prev_folder;
uint32_t offset32;
a->archive.archive_format = ARCHIVE_FORMAT_CAB;
if (a->archive.archive_format_name == NULL)
a->archive.archive_format_name = "CAB";
if ((p = __archive_read_ahead(a, 42, NULL)) == NULL)
return (truncated_error(a));
cab = (struct cab *)(a->format->data);
if (cab->found_header == 0 &&
p[0] == 'M' && p[1] == 'Z') {
/* This is an executable? Must be self-extracting... */
err = cab_skip_sfx(a);
if (err < ARCHIVE_WARN)
return (err);
/* Re-read header after processing the SFX. */
if ((p = __archive_read_ahead(a, 42, NULL)) == NULL)
return (truncated_error(a));
}
cab->cab_offset = 0;
/*
* Read CFHEADER.
*/
hd = &cab->cfheader;
if (p[CFHEADER_signature+0] != 'M' || p[CFHEADER_signature+1] != 'S' ||
p[CFHEADER_signature+2] != 'C' || p[CFHEADER_signature+3] != 'F') {
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Couldn't find out CAB header");
return (ARCHIVE_FATAL);
}
hd->total_bytes = archive_le32dec(p + CFHEADER_cbCabinet);
hd->files_offset = archive_le32dec(p + CFHEADER_coffFiles);
hd->minor = p[CFHEADER_versionMinor];
hd->major = p[CFHEADER_versionMajor];
hd->folder_count = archive_le16dec(p + CFHEADER_cFolders);
if (hd->folder_count == 0)
goto invalid;
hd->file_count = archive_le16dec(p + CFHEADER_cFiles);
if (hd->file_count == 0)
goto invalid;
hd->flags = archive_le16dec(p + CFHEADER_flags);
hd->setid = archive_le16dec(p + CFHEADER_setID);
hd->cabinet = archive_le16dec(p + CFHEADER_iCabinet);
used = CFHEADER_iCabinet + 2;
if (hd->flags & RESERVE_PRESENT) {
uint16_t cfheader;
cfheader = archive_le16dec(p + CFHEADER_cbCFHeader);
if (cfheader > 60000U)
goto invalid;
hd->cffolder = p[CFHEADER_cbCFFolder];
hd->cfdata = p[CFHEADER_cbCFData];
used += 4;/* cbCFHeader, cbCFFolder and cbCFData */
used += cfheader;/* abReserve */
} else
hd->cffolder = 0;/* Avoid compiling warning. */
if (hd->flags & PREV_CABINET) {
/* How many bytes are used for szCabinetPrev. */
if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
return (truncated_error(a));
if ((len = cab_strnlen(p + used, 255)) <= 0)
goto invalid;
used += len + 1;
/* How many bytes are used for szDiskPrev. */
if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
return (truncated_error(a));
if ((len = cab_strnlen(p + used, 255)) <= 0)
goto invalid;
used += len + 1;
}
if (hd->flags & NEXT_CABINET) {
/* How many bytes are used for szCabinetNext. */
if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
return (truncated_error(a));
if ((len = cab_strnlen(p + used, 255)) <= 0)
goto invalid;
used += len + 1;
/* How many bytes are used for szDiskNext. */
if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
return (truncated_error(a));
if ((len = cab_strnlen(p + used, 255)) <= 0)
goto invalid;
used += len + 1;
}
__archive_read_consume(a, used);
cab->cab_offset += used;
used = 0;
/*
* Read CFFOLDER.
*/
hd->folder_array = (struct cffolder *)calloc(
hd->folder_count, sizeof(struct cffolder));
if (hd->folder_array == NULL)
goto nomem;
bytes = 8;
if (hd->flags & RESERVE_PRESENT)
bytes += hd->cffolder;
bytes *= hd->folder_count;
if ((p = __archive_read_ahead(a, bytes, NULL)) == NULL)
return (truncated_error(a));
offset32 = 0;
for (i = 0; i < hd->folder_count; i++) {
struct cffolder *folder = &(hd->folder_array[i]);
folder->cfdata_offset_in_cab =
archive_le32dec(p + CFFOLDER_coffCabStart);
folder->cfdata_count = archive_le16dec(p+CFFOLDER_cCFData);
folder->comptype =
archive_le16dec(p+CFFOLDER_typeCompress) & 0x0F;
folder->compdata =
archive_le16dec(p+CFFOLDER_typeCompress) >> 8;
/* Get a compression name. */
if (folder->comptype <
sizeof(compression_name) / sizeof(compression_name[0]))
folder->compname = compression_name[folder->comptype];
else
folder->compname = "UNKNOWN";
p += 8;
used += 8;
if (hd->flags & RESERVE_PRESENT) {
p += hd->cffolder;/* abReserve */
used += hd->cffolder;
}
/*
* Sanity check if each data is acceptable.
*/
if (offset32 >= folder->cfdata_offset_in_cab)
goto invalid;
offset32 = folder->cfdata_offset_in_cab;
/* Set a request to initialize zlib for the CFDATA of
* this folder. */
folder->decompress_init = 0;
}
__archive_read_consume(a, used);
cab->cab_offset += used;
/*
* Read CFFILE.
*/
/* Seek read pointer to the offset of CFFILE if needed. */
skip = (int64_t)hd->files_offset - cab->cab_offset;
if (skip < 0) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Invalid offset of CFFILE %jd < %jd",
(intmax_t)hd->files_offset, (intmax_t)cab->cab_offset);
return (ARCHIVE_FATAL);
}
if (skip) {
__archive_read_consume(a, skip);
cab->cab_offset += skip;
}
/* Allocate memory for CFDATA */
hd->file_array = (struct cffile *)calloc(
hd->file_count, sizeof(struct cffile));
if (hd->file_array == NULL)
goto nomem;
prev_folder = -1;
for (i = 0; i < hd->file_count; i++) {
struct cffile *file = &(hd->file_array[i]);
ssize_t avail;
if ((p = __archive_read_ahead(a, 16, NULL)) == NULL)
return (truncated_error(a));
file->uncompressed_size = archive_le32dec(p + CFFILE_cbFile);
file->offset = archive_le32dec(p + CFFILE_uoffFolderStart);
file->folder = archive_le16dec(p + CFFILE_iFolder);
file->mtime = cab_dos_time(p + CFFILE_date_time);
file->attr = (uint8_t)archive_le16dec(p + CFFILE_attribs);
__archive_read_consume(a, 16);
cab->cab_offset += 16;
if ((p = cab_read_ahead_remaining(a, 256, &avail)) == NULL)
return (truncated_error(a));
if ((len = cab_strnlen(p, avail-1)) <= 0)
goto invalid;
/* Copy a pathname. */
archive_string_init(&(file->pathname));
archive_strncpy(&(file->pathname), p, len);
__archive_read_consume(a, len + 1);
cab->cab_offset += len + 1;
/*
* Sanity check if each data is acceptable.
*/
if (file->uncompressed_size > 0x7FFF8000)
goto invalid;/* Too large */
if ((int64_t)file->offset + (int64_t)file->uncompressed_size
> ARCHIVE_LITERAL_LL(0x7FFF8000))
goto invalid;/* Too large */
switch (file->folder) {
case iFoldCONTINUED_TO_NEXT:
/* This must be last file in a folder. */
if (i != hd->file_count -1)
goto invalid;
cur_folder = hd->folder_count -1;
break;
case iFoldCONTINUED_PREV_AND_NEXT:
/* This must be only one file in a folder. */
if (hd->file_count != 1)
goto invalid;
/* FALL THROUGH */
case iFoldCONTINUED_FROM_PREV:
/* This must be first file in a folder. */
if (i != 0)
goto invalid;
prev_folder = cur_folder = 0;
offset32 = file->offset;
break;
default:
if (file->folder >= hd->folder_count)
goto invalid;
cur_folder = file->folder;
break;
}
/* Dot not back track. */
if (cur_folder < prev_folder)
goto invalid;
if (cur_folder != prev_folder)
offset32 = 0;
prev_folder = cur_folder;
/* Make sure there are not any blanks from last file
* contents. */
if (offset32 != file->offset)
goto invalid;
offset32 += file->uncompressed_size;
/* CFDATA is available for file contents. */
if (file->uncompressed_size > 0 &&
hd->folder_array[cur_folder].cfdata_count == 0)
goto invalid;
}
if (hd->cabinet != 0 || hd->flags & (PREV_CABINET | NEXT_CABINET)) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Multivolume cabinet file is unsupported");
return (ARCHIVE_WARN);
}
return (ARCHIVE_OK);
invalid:
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Invalid CAB header");
return (ARCHIVE_FATAL);
nomem:
archive_set_error(&a->archive, ENOMEM,
"Can't allocate memory for CAB data");
return (ARCHIVE_FATAL);
}
static int
archive_read_format_cab_read_header(struct archive_read *a,
struct archive_entry *entry)
{
struct cab *cab;
struct cfheader *hd;
struct cffolder *prev_folder;
struct cffile *file;
struct archive_string_conv *sconv;
int err = ARCHIVE_OK, r;
cab = (struct cab *)(a->format->data);
if (cab->found_header == 0) {
err = cab_read_header(a);
if (err < ARCHIVE_WARN)
return (err);
/* We've found the header. */
cab->found_header = 1;
}
hd = &cab->cfheader;
if (hd->file_index >= hd->file_count) {
cab->end_of_archive = 1;
return (ARCHIVE_EOF);
}
file = &hd->file_array[hd->file_index++];
cab->end_of_entry = 0;
cab->end_of_entry_cleanup = 0;
cab->entry_compressed_bytes_read = 0;
cab->entry_uncompressed_bytes_read = 0;
cab->entry_unconsumed = 0;
cab->entry_cffile = file;
/*
* Choose a proper folder.
*/
prev_folder = cab->entry_cffolder;
switch (file->folder) {
case iFoldCONTINUED_FROM_PREV:
case iFoldCONTINUED_PREV_AND_NEXT:
cab->entry_cffolder = &hd->folder_array[0];
break;
case iFoldCONTINUED_TO_NEXT:
cab->entry_cffolder = &hd->folder_array[hd->folder_count-1];
break;
default:
cab->entry_cffolder = &hd->folder_array[file->folder];
break;
}
/* If a cffolder of this file is changed, reset a cfdata to read
* file contents from next cfdata. */
if (prev_folder != cab->entry_cffolder)
cab->entry_cfdata = NULL;
/* If a pathname is UTF-8, prepare a string conversion object
* for UTF-8 and use it. */
if (file->attr & ATTR_NAME_IS_UTF) {
if (cab->sconv_utf8 == NULL) {
cab->sconv_utf8 =
archive_string_conversion_from_charset(
&(a->archive), "UTF-8", 1);
if (cab->sconv_utf8 == NULL)
return (ARCHIVE_FATAL);
}
sconv = cab->sconv_utf8;
} else if (cab->sconv != NULL) {
/* Choose the conversion specified by the option. */
sconv = cab->sconv;
} else {
/* Choose the default conversion. */
if (!cab->init_default_conversion) {
cab->sconv_default =
archive_string_default_conversion_for_read(
&(a->archive));
cab->init_default_conversion = 1;
}
sconv = cab->sconv_default;
}
/*
* Set a default value and common data
*/
r = cab_convert_path_separator_1(&(file->pathname), file->attr);
if (archive_entry_copy_pathname_l(entry, file->pathname.s,
archive_strlen(&(file->pathname)), sconv) != 0) {
if (errno == ENOMEM) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate memory for Pathname");
return (ARCHIVE_FATAL);
}
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT,
"Pathname cannot be converted "
"from %s to current locale.",
archive_string_conversion_charset_name(sconv));
err = ARCHIVE_WARN;
}
if (r < 0) {
/* Convert a path separator '\' -> '/' */
cab_convert_path_separator_2(cab, entry);
}
archive_entry_set_size(entry, file->uncompressed_size);
if (file->attr & ATTR_RDONLY)
archive_entry_set_mode(entry, AE_IFREG | 0555);
else
archive_entry_set_mode(entry, AE_IFREG | 0666);
archive_entry_set_mtime(entry, file->mtime, 0);
cab->entry_bytes_remaining = file->uncompressed_size;
cab->entry_offset = 0;
/* We don't need compress data. */
if (file->uncompressed_size == 0)
cab->end_of_entry_cleanup = cab->end_of_entry = 1;
/* Set up a more descriptive format name. */
sprintf(cab->format_name, "CAB %d.%d (%s)",
hd->major, hd->minor, cab->entry_cffolder->compname);
a->archive.archive_format_name = cab->format_name;
return (err);
}
static int
archive_read_format_cab_read_data(struct archive_read *a,
const void **buff, size_t *size, int64_t *offset)
{
struct cab *cab = (struct cab *)(a->format->data);
int r;
switch (cab->entry_cffile->folder) {
case iFoldCONTINUED_FROM_PREV:
case iFoldCONTINUED_TO_NEXT:
case iFoldCONTINUED_PREV_AND_NEXT:
*buff = NULL;
*size = 0;
*offset = 0;
archive_clear_error(&a->archive);
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Cannot restore this file split in multivolume.");
return (ARCHIVE_FAILED);
default:
break;
}
if (cab->read_data_invoked == 0) {
if (cab->bytes_skipped) {
if (cab->entry_cfdata == NULL) {
r = cab_next_cfdata(a);
if (r < 0)
return (r);
}
if (cab_consume_cfdata(a, cab->bytes_skipped) < 0)
return (ARCHIVE_FATAL);
cab->bytes_skipped = 0;
}
cab->read_data_invoked = 1;
}
if (cab->entry_unconsumed) {
/* Consume as much as the compressor actually used. */
r = (int)cab_consume_cfdata(a, cab->entry_unconsumed);
cab->entry_unconsumed = 0;
if (r < 0)
return (r);
}
if (cab->end_of_archive || cab->end_of_entry) {
if (!cab->end_of_entry_cleanup) {
/* End-of-entry cleanup done. */
cab->end_of_entry_cleanup = 1;
}
*offset = cab->entry_offset;
*size = 0;
*buff = NULL;
return (ARCHIVE_EOF);
}
return (cab_read_data(a, buff, size, offset));
}
static uint32_t
cab_checksum_cfdata_4(const void *p, size_t bytes, uint32_t seed)
{
const unsigned char *b;
unsigned u32num;
uint32_t sum;
u32num = (unsigned)bytes / 4;
sum = seed;
b = p;
for (;u32num > 0; --u32num) {
sum ^= archive_le32dec(b);
b += 4;
}
return (sum);
}
static uint32_t
cab_checksum_cfdata(const void *p, size_t bytes, uint32_t seed)
{
const unsigned char *b;
uint32_t sum;
uint32_t t;
sum = cab_checksum_cfdata_4(p, bytes, seed);
b = p;
b += bytes & ~3;
t = 0;
switch (bytes & 3) {
case 3:
t |= ((uint32_t)(*b++)) << 16;
/* FALL THROUGH */
case 2:
t |= ((uint32_t)(*b++)) << 8;
/* FALL THROUGH */
case 1:
t |= *b;
/* FALL THROUGH */
default:
break;
}
sum ^= t;
return (sum);
}
static void
cab_checksum_update(struct archive_read *a, size_t bytes)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata = cab->entry_cfdata;
const unsigned char *p;
size_t sumbytes;
if (cfdata->sum == 0 || cfdata->sum_ptr == NULL)
return;
/*
* Calculate the sum of this CFDATA.
* Make sure CFDATA must be calculated in four bytes.
*/
p = cfdata->sum_ptr;
sumbytes = bytes;
if (cfdata->sum_extra_avail) {
while (cfdata->sum_extra_avail < 4 && sumbytes > 0) {
cfdata->sum_extra[
cfdata->sum_extra_avail++] = *p++;
sumbytes--;
}
if (cfdata->sum_extra_avail == 4) {
cfdata->sum_calculated = cab_checksum_cfdata_4(
cfdata->sum_extra, 4, cfdata->sum_calculated);
cfdata->sum_extra_avail = 0;
}
}
if (sumbytes) {
int odd = sumbytes & 3;
if (sumbytes - odd > 0)
cfdata->sum_calculated = cab_checksum_cfdata_4(
p, sumbytes - odd, cfdata->sum_calculated);
if (odd)
memcpy(cfdata->sum_extra, p + sumbytes - odd, odd);
cfdata->sum_extra_avail = odd;
}
cfdata->sum_ptr = NULL;
}
static int
cab_checksum_finish(struct archive_read *a)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata = cab->entry_cfdata;
int l;
/* Do not need to compute a sum. */
if (cfdata->sum == 0)
return (ARCHIVE_OK);
/*
* Calculate the sum of remaining CFDATA.
*/
if (cfdata->sum_extra_avail) {
cfdata->sum_calculated =
cab_checksum_cfdata(cfdata->sum_extra,
cfdata->sum_extra_avail, cfdata->sum_calculated);
cfdata->sum_extra_avail = 0;
}
l = 4;
if (cab->cfheader.flags & RESERVE_PRESENT)
l += cab->cfheader.cfdata;
cfdata->sum_calculated = cab_checksum_cfdata(
cfdata->memimage + CFDATA_cbData, l, cfdata->sum_calculated);
if (cfdata->sum_calculated != cfdata->sum) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Checksum error CFDATA[%d] %x:%x in %d bytes",
cab->entry_cffolder->cfdata_index -1,
cfdata->sum, cfdata->sum_calculated,
cfdata->compressed_size);
return (ARCHIVE_FAILED);
}
return (ARCHIVE_OK);
}
/*
* Read CFDATA if needed.
*/
static int
cab_next_cfdata(struct archive_read *a)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata = cab->entry_cfdata;
/* There are remaining bytes in current CFDATA, use it first. */
if (cfdata != NULL && cfdata->uncompressed_bytes_remaining > 0)
return (ARCHIVE_OK);
if (cfdata == NULL) {
int64_t skip;
cab->entry_cffolder->cfdata_index = 0;
/* Seek read pointer to the offset of CFDATA if needed. */
skip = cab->entry_cffolder->cfdata_offset_in_cab
- cab->cab_offset;
if (skip < 0) {
int folder_index;
switch (cab->entry_cffile->folder) {
case iFoldCONTINUED_FROM_PREV:
case iFoldCONTINUED_PREV_AND_NEXT:
folder_index = 0;
break;
case iFoldCONTINUED_TO_NEXT:
folder_index = cab->cfheader.folder_count-1;
break;
default:
folder_index = cab->entry_cffile->folder;
break;
}
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Invalid offset of CFDATA in folder(%d) %jd < %jd",
folder_index,
(intmax_t)cab->entry_cffolder->cfdata_offset_in_cab,
(intmax_t)cab->cab_offset);
return (ARCHIVE_FATAL);
}
if (skip > 0) {
if (__archive_read_consume(a, skip) < 0)
return (ARCHIVE_FATAL);
cab->cab_offset =
cab->entry_cffolder->cfdata_offset_in_cab;
}
}
/*
* Read a CFDATA.
*/
if (cab->entry_cffolder->cfdata_index <
cab->entry_cffolder->cfdata_count) {
const unsigned char *p;
int l;
cfdata = &(cab->entry_cffolder->cfdata);
cab->entry_cffolder->cfdata_index++;
cab->entry_cfdata = cfdata;
cfdata->sum_calculated = 0;
cfdata->sum_extra_avail = 0;
cfdata->sum_ptr = NULL;
l = 8;
if (cab->cfheader.flags & RESERVE_PRESENT)
l += cab->cfheader.cfdata;
if ((p = __archive_read_ahead(a, l, NULL)) == NULL)
return (truncated_error(a));
cfdata->sum = archive_le32dec(p + CFDATA_csum);
cfdata->compressed_size = archive_le16dec(p + CFDATA_cbData);
cfdata->compressed_bytes_remaining = cfdata->compressed_size;
cfdata->uncompressed_size =
archive_le16dec(p + CFDATA_cbUncomp);
cfdata->uncompressed_bytes_remaining =
cfdata->uncompressed_size;
cfdata->uncompressed_avail = 0;
cfdata->read_offset = 0;
cfdata->unconsumed = 0;
/*
* Sanity check if data size is acceptable.
*/
if (cfdata->compressed_size == 0 ||
cfdata->compressed_size > (0x8000+6144))
goto invalid;
if (cfdata->uncompressed_size > 0x8000)
goto invalid;
if (cfdata->uncompressed_size == 0) {
switch (cab->entry_cffile->folder) {
case iFoldCONTINUED_PREV_AND_NEXT:
case iFoldCONTINUED_TO_NEXT:
break;
case iFoldCONTINUED_FROM_PREV:
default:
goto invalid;
}
}
/* If CFDATA is not last in a folder, an uncompressed
* size must be 0x8000(32KBi) */
if ((cab->entry_cffolder->cfdata_index <
cab->entry_cffolder->cfdata_count) &&
cfdata->uncompressed_size != 0x8000)
goto invalid;
/* A compressed data size and an uncompressed data size must
* be the same in no compression mode. */
if (cab->entry_cffolder->comptype == COMPTYPE_NONE &&
cfdata->compressed_size != cfdata->uncompressed_size)
goto invalid;
/*
* Save CFDATA image for sum check.
*/
if (cfdata->memimage_size < (size_t)l) {
free(cfdata->memimage);
cfdata->memimage = malloc(l);
if (cfdata->memimage == NULL) {
archive_set_error(&a->archive, ENOMEM,
"Can't allocate memory for CAB data");
return (ARCHIVE_FATAL);
}
cfdata->memimage_size = l;
}
memcpy(cfdata->memimage, p, l);
/* Consume bytes as much as we used. */
__archive_read_consume(a, l);
cab->cab_offset += l;
} else if (cab->entry_cffolder->cfdata_count > 0) {
/* Run out of all CFDATA in a folder. */
cfdata->compressed_size = 0;
cfdata->uncompressed_size = 0;
cfdata->compressed_bytes_remaining = 0;
cfdata->uncompressed_bytes_remaining = 0;
} else {
/* Current folder does not have any CFDATA. */
cfdata = &(cab->entry_cffolder->cfdata);
cab->entry_cfdata = cfdata;
memset(cfdata, 0, sizeof(*cfdata));
}
return (ARCHIVE_OK);
invalid:
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Invalid CFDATA");
return (ARCHIVE_FATAL);
}
/*
* Read ahead CFDATA.
*/
static const void *
cab_read_ahead_cfdata(struct archive_read *a, ssize_t *avail)
{
struct cab *cab = (struct cab *)(a->format->data);
int err;
err = cab_next_cfdata(a);
if (err < ARCHIVE_OK) {
*avail = err;
return (NULL);
}
switch (cab->entry_cffolder->comptype) {
case COMPTYPE_NONE:
return (cab_read_ahead_cfdata_none(a, avail));
case COMPTYPE_MSZIP:
return (cab_read_ahead_cfdata_deflate(a, avail));
case COMPTYPE_LZX:
return (cab_read_ahead_cfdata_lzx(a, avail));
default: /* Unsupported compression. */
archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
"Unsupported CAB compression : %s",
cab->entry_cffolder->compname);
*avail = ARCHIVE_FAILED;
return (NULL);
}
}
/*
* Read ahead CFDATA as uncompressed data.
*/
static const void *
cab_read_ahead_cfdata_none(struct archive_read *a, ssize_t *avail)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata;
const void *d;
cfdata = cab->entry_cfdata;
/*
* Note: '1' here is a performance optimization.
* Recall that the decompression layer returns a count of
* available bytes; asking for more than that forces the
* decompressor to combine reads by copying data.
*/
d = __archive_read_ahead(a, 1, avail);
if (*avail <= 0) {
*avail = truncated_error(a);
return (NULL);
}
if (*avail > cfdata->uncompressed_bytes_remaining)
*avail = cfdata->uncompressed_bytes_remaining;
cfdata->uncompressed_avail = cfdata->uncompressed_size;
cfdata->unconsumed = *avail;
cfdata->sum_ptr = d;
return (d);
}
/*
* Read ahead CFDATA as deflate data.
*/
#ifdef HAVE_ZLIB_H
static const void *
cab_read_ahead_cfdata_deflate(struct archive_read *a, ssize_t *avail)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata;
const void *d;
int r, mszip;
uint16_t uavail;
char eod = 0;
cfdata = cab->entry_cfdata;
/* If the buffer hasn't been allocated, allocate it now. */
if (cab->uncompressed_buffer == NULL) {
cab->uncompressed_buffer_size = 0x8000;
cab->uncompressed_buffer
= (unsigned char *)malloc(cab->uncompressed_buffer_size);
if (cab->uncompressed_buffer == NULL) {
archive_set_error(&a->archive, ENOMEM,
"No memory for CAB reader");
*avail = ARCHIVE_FATAL;
return (NULL);
}
}
uavail = cfdata->uncompressed_avail;
if (uavail == cfdata->uncompressed_size) {
d = cab->uncompressed_buffer + cfdata->read_offset;
*avail = uavail - cfdata->read_offset;
return (d);
}
if (!cab->entry_cffolder->decompress_init) {
cab->stream.next_in = NULL;
cab->stream.avail_in = 0;
cab->stream.total_in = 0;
cab->stream.next_out = NULL;
cab->stream.avail_out = 0;
cab->stream.total_out = 0;
if (cab->stream_valid)
r = inflateReset(&cab->stream);
else
r = inflateInit2(&cab->stream,
-15 /* Don't check for zlib header */);
if (r != Z_OK) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Can't initialize deflate decompression.");
*avail = ARCHIVE_FATAL;
return (NULL);
}
/* Stream structure has been set up. */
cab->stream_valid = 1;
/* We've initialized decompression for this stream. */
cab->entry_cffolder->decompress_init = 1;
}
if (cfdata->compressed_bytes_remaining == cfdata->compressed_size)
mszip = 2;
else
mszip = 0;
eod = 0;
cab->stream.total_out = uavail;
/*
* We always uncompress all data in current CFDATA.
*/
while (!eod && cab->stream.total_out < cfdata->uncompressed_size) {
ssize_t bytes_avail;
cab->stream.next_out =
cab->uncompressed_buffer + cab->stream.total_out;
cab->stream.avail_out =
cfdata->uncompressed_size - cab->stream.total_out;
d = __archive_read_ahead(a, 1, &bytes_avail);
if (bytes_avail <= 0) {
*avail = truncated_error(a);
return (NULL);
}
if (bytes_avail > cfdata->compressed_bytes_remaining)
bytes_avail = cfdata->compressed_bytes_remaining;
/*
* A bug in zlib.h: stream.next_in should be marked 'const'
* but isn't (the library never alters data through the
* next_in pointer, only reads it). The result: this ugly
* cast to remove 'const'.
*/
cab->stream.next_in = (Bytef *)(uintptr_t)d;
cab->stream.avail_in = (uInt)bytes_avail;
cab->stream.total_in = 0;
/* Cut out a tow-byte MSZIP signature(0x43, 0x4b). */
if (mszip > 0) {
if (bytes_avail <= 0)
goto nomszip;
if (bytes_avail <= mszip) {
if (mszip == 2) {
if (cab->stream.next_in[0] != 0x43)
goto nomszip;
if (bytes_avail > 1 &&
cab->stream.next_in[1] != 0x4b)
goto nomszip;
} else if (cab->stream.next_in[0] != 0x4b)
goto nomszip;
cfdata->unconsumed = bytes_avail;
cfdata->sum_ptr = d;
if (cab_minimum_consume_cfdata(
a, cfdata->unconsumed) < 0) {
*avail = ARCHIVE_FATAL;
return (NULL);
}
mszip -= (int)bytes_avail;
continue;
}
if (mszip == 1 && cab->stream.next_in[0] != 0x4b)
goto nomszip;
else if (cab->stream.next_in[0] != 0x43 ||
cab->stream.next_in[1] != 0x4b)
goto nomszip;
cab->stream.next_in += mszip;
cab->stream.avail_in -= mszip;
cab->stream.total_in += mszip;
mszip = 0;
}
r = inflate(&cab->stream, 0);
switch (r) {
case Z_OK:
break;
case Z_STREAM_END:
eod = 1;
break;
default:
goto zlibfailed;
}
cfdata->unconsumed = cab->stream.total_in;
cfdata->sum_ptr = d;
if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
*avail = ARCHIVE_FATAL;
return (NULL);
}
}
uavail = (uint16_t)cab->stream.total_out;
if (uavail < cfdata->uncompressed_size) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Invalid uncompressed size (%d < %d)",
uavail, cfdata->uncompressed_size);
*avail = ARCHIVE_FATAL;
return (NULL);
}
/*
* Note: I suspect there is a bug in makecab.exe because, in rare
* case, compressed bytes are still remaining regardless we have
* gotten all uncompressed bytes, which size is recorded in CFDATA,
* as much as we need, and we have to use the garbage so as to
* correctly compute the sum of CFDATA accordingly.
*/
if (cfdata->compressed_bytes_remaining > 0) {
ssize_t bytes_avail;
d = __archive_read_ahead(a, cfdata->compressed_bytes_remaining,
&bytes_avail);
if (bytes_avail <= 0) {
*avail = truncated_error(a);
return (NULL);
}
cfdata->unconsumed = cfdata->compressed_bytes_remaining;
cfdata->sum_ptr = d;
if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
*avail = ARCHIVE_FATAL;
return (NULL);
}
}
/*
* Set dictionary data for decompressing of next CFDATA, which
* in the same folder. This is why we always do decompress CFDATA
* even if beginning CFDATA or some of CFDATA are not used in
* skipping file data.
*/
if (cab->entry_cffolder->cfdata_index <
cab->entry_cffolder->cfdata_count) {
r = inflateReset(&cab->stream);
if (r != Z_OK)
goto zlibfailed;
r = inflateSetDictionary(&cab->stream,
cab->uncompressed_buffer, cfdata->uncompressed_size);
if (r != Z_OK)
goto zlibfailed;
}
d = cab->uncompressed_buffer + cfdata->read_offset;
*avail = uavail - cfdata->read_offset;
cfdata->uncompressed_avail = uavail;
return (d);
zlibfailed:
switch (r) {
case Z_MEM_ERROR:
archive_set_error(&a->archive, ENOMEM,
"Out of memory for deflate decompression");
break;
default:
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Deflate decompression failed (%d)", r);
break;
}
*avail = ARCHIVE_FATAL;
return (NULL);
nomszip:
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"CFDATA incorrect(no MSZIP signature)");
*avail = ARCHIVE_FATAL;
return (NULL);
}
#else /* HAVE_ZLIB_H */
static const void *
cab_read_ahead_cfdata_deflate(struct archive_read *a, ssize_t *avail)
{
*avail = ARCHIVE_FATAL;
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"libarchive compiled without deflate support (no libz)");
return (NULL);
}
#endif /* HAVE_ZLIB_H */
static const void *
cab_read_ahead_cfdata_lzx(struct archive_read *a, ssize_t *avail)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata;
const void *d;
int r;
uint16_t uavail;
cfdata = cab->entry_cfdata;
/* If the buffer hasn't been allocated, allocate it now. */
if (cab->uncompressed_buffer == NULL) {
cab->uncompressed_buffer_size = 0x8000;
cab->uncompressed_buffer
= (unsigned char *)malloc(cab->uncompressed_buffer_size);
if (cab->uncompressed_buffer == NULL) {
archive_set_error(&a->archive, ENOMEM,
"No memory for CAB reader");
*avail = ARCHIVE_FATAL;
return (NULL);
}
}
uavail = cfdata->uncompressed_avail;
if (uavail == cfdata->uncompressed_size) {
d = cab->uncompressed_buffer + cfdata->read_offset;
*avail = uavail - cfdata->read_offset;
return (d);
}
if (!cab->entry_cffolder->decompress_init) {
r = lzx_decode_init(&cab->xstrm,
cab->entry_cffolder->compdata);
if (r != ARCHIVE_OK) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Can't initialize LZX decompression.");
*avail = ARCHIVE_FATAL;
return (NULL);
}
/* We've initialized decompression for this stream. */
cab->entry_cffolder->decompress_init = 1;
}
/* Clean up remaining bits of previous CFDATA. */
lzx_cleanup_bitstream(&cab->xstrm);
cab->xstrm.total_out = uavail;
while (cab->xstrm.total_out < cfdata->uncompressed_size) {
ssize_t bytes_avail;
cab->xstrm.next_out =
cab->uncompressed_buffer + cab->xstrm.total_out;
cab->xstrm.avail_out =
cfdata->uncompressed_size - cab->xstrm.total_out;
d = __archive_read_ahead(a, 1, &bytes_avail);
if (bytes_avail <= 0) {
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT,
"Truncated CAB file data");
*avail = ARCHIVE_FATAL;
return (NULL);
}
if (bytes_avail > cfdata->compressed_bytes_remaining)
bytes_avail = cfdata->compressed_bytes_remaining;
cab->xstrm.next_in = d;
cab->xstrm.avail_in = bytes_avail;
cab->xstrm.total_in = 0;
r = lzx_decode(&cab->xstrm,
cfdata->compressed_bytes_remaining == bytes_avail);
switch (r) {
case ARCHIVE_OK:
case ARCHIVE_EOF:
break;
default:
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"LZX decompression failed (%d)", r);
*avail = ARCHIVE_FATAL;
return (NULL);
}
cfdata->unconsumed = cab->xstrm.total_in;
cfdata->sum_ptr = d;
if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
*avail = ARCHIVE_FATAL;
return (NULL);
}
}
uavail = (uint16_t)cab->xstrm.total_out;
/*
* Make sure a read pointer advances to next CFDATA.
*/
if (cfdata->compressed_bytes_remaining > 0) {
ssize_t bytes_avail;
d = __archive_read_ahead(a, cfdata->compressed_bytes_remaining,
&bytes_avail);
if (bytes_avail <= 0) {
*avail = truncated_error(a);
return (NULL);
}
cfdata->unconsumed = cfdata->compressed_bytes_remaining;
cfdata->sum_ptr = d;
if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
*avail = ARCHIVE_FATAL;
return (NULL);
}
}
/*
* Translation reversal of x86 processor CALL byte sequence(E8).
*/
lzx_translation(&cab->xstrm, cab->uncompressed_buffer,
cfdata->uncompressed_size,
(cab->entry_cffolder->cfdata_index-1) * 0x8000);
d = cab->uncompressed_buffer + cfdata->read_offset;
*avail = uavail - cfdata->read_offset;
cfdata->uncompressed_avail = uavail;
return (d);
}
/*
* Consume CFDATA.
* We always decompress CFDATA to consume CFDATA as much as we need
* in uncompressed bytes because all CFDATA in a folder are related
* so we do not skip any CFDATA without decompressing.
* Note: If the folder of a CFFILE is iFoldCONTINUED_PREV_AND_NEXT or
* iFoldCONTINUED_FROM_PREV, we won't decompress because a CFDATA for
* the CFFILE is remaining bytes of previous Multivolume CAB file.
*/
static int64_t
cab_consume_cfdata(struct archive_read *a, int64_t consumed_bytes)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata;
int64_t cbytes, rbytes;
int err;
rbytes = cab_minimum_consume_cfdata(a, consumed_bytes);
if (rbytes < 0)
return (ARCHIVE_FATAL);
cfdata = cab->entry_cfdata;
while (rbytes > 0) {
ssize_t avail;
if (cfdata->compressed_size == 0) {
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT,
"Invalid CFDATA");
return (ARCHIVE_FATAL);
}
cbytes = cfdata->uncompressed_bytes_remaining;
if (cbytes > rbytes)
cbytes = rbytes;
rbytes -= cbytes;
if (cfdata->uncompressed_avail == 0 &&
(cab->entry_cffile->folder == iFoldCONTINUED_PREV_AND_NEXT ||
cab->entry_cffile->folder == iFoldCONTINUED_FROM_PREV)) {
/* We have not read any data yet. */
if (cbytes == cfdata->uncompressed_bytes_remaining) {
/* Skip whole current CFDATA. */
__archive_read_consume(a,
cfdata->compressed_size);
cab->cab_offset += cfdata->compressed_size;
cfdata->compressed_bytes_remaining = 0;
cfdata->uncompressed_bytes_remaining = 0;
err = cab_next_cfdata(a);
if (err < 0)
return (err);
cfdata = cab->entry_cfdata;
if (cfdata->uncompressed_size == 0) {
switch (cab->entry_cffile->folder) {
case iFoldCONTINUED_PREV_AND_NEXT:
case iFoldCONTINUED_TO_NEXT:
case iFoldCONTINUED_FROM_PREV:
rbytes = 0;
break;
default:
break;
}
}
continue;
}
cfdata->read_offset += (uint16_t)cbytes;
cfdata->uncompressed_bytes_remaining -= (uint16_t)cbytes;
break;
} else if (cbytes == 0) {
err = cab_next_cfdata(a);
if (err < 0)
return (err);
cfdata = cab->entry_cfdata;
if (cfdata->uncompressed_size == 0) {
switch (cab->entry_cffile->folder) {
case iFoldCONTINUED_PREV_AND_NEXT:
case iFoldCONTINUED_TO_NEXT:
case iFoldCONTINUED_FROM_PREV:
return (ARCHIVE_FATAL);
default:
break;
}
}
continue;
}
while (cbytes > 0) {
(void)cab_read_ahead_cfdata(a, &avail);
if (avail <= 0)
return (ARCHIVE_FATAL);
if (avail > cbytes)
avail = (ssize_t)cbytes;
if (cab_minimum_consume_cfdata(a, avail) < 0)
return (ARCHIVE_FATAL);
cbytes -= avail;
}
}
return (consumed_bytes);
}
/*
* Consume CFDATA as much as we have already gotten and
* compute the sum of CFDATA.
*/
static int64_t
cab_minimum_consume_cfdata(struct archive_read *a, int64_t consumed_bytes)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfdata *cfdata;
int64_t cbytes, rbytes;
int err;
cfdata = cab->entry_cfdata;
rbytes = consumed_bytes;
if (cab->entry_cffolder->comptype == COMPTYPE_NONE) {
if (consumed_bytes < cfdata->unconsumed)
cbytes = consumed_bytes;
else
cbytes = cfdata->unconsumed;
rbytes -= cbytes;
cfdata->read_offset += (uint16_t)cbytes;
cfdata->uncompressed_bytes_remaining -= (uint16_t)cbytes;
cfdata->unconsumed -= cbytes;
} else {
cbytes = cfdata->uncompressed_avail - cfdata->read_offset;
if (cbytes > 0) {
if (consumed_bytes < cbytes)
cbytes = consumed_bytes;
rbytes -= cbytes;
cfdata->read_offset += (uint16_t)cbytes;
cfdata->uncompressed_bytes_remaining -= (uint16_t)cbytes;
}
if (cfdata->unconsumed) {
cbytes = cfdata->unconsumed;
cfdata->unconsumed = 0;
} else
cbytes = 0;
}
if (cbytes) {
/* Compute the sum. */
cab_checksum_update(a, (size_t)cbytes);
/* Consume as much as the compressor actually used. */
__archive_read_consume(a, cbytes);
cab->cab_offset += cbytes;
cfdata->compressed_bytes_remaining -= (uint16_t)cbytes;
if (cfdata->compressed_bytes_remaining == 0) {
err = cab_checksum_finish(a);
if (err < 0)
return (err);
}
}
return (rbytes);
}
/*
* Returns ARCHIVE_OK if successful, ARCHIVE_FATAL otherwise, sets
* cab->end_of_entry if it consumes all of the data.
*/
static int
cab_read_data(struct archive_read *a, const void **buff,
size_t *size, int64_t *offset)
{
struct cab *cab = (struct cab *)(a->format->data);
ssize_t bytes_avail;
if (cab->entry_bytes_remaining == 0) {
*buff = NULL;
*size = 0;
*offset = cab->entry_offset;
cab->end_of_entry = 1;
return (ARCHIVE_OK);
}
*buff = cab_read_ahead_cfdata(a, &bytes_avail);
if (bytes_avail <= 0) {
*buff = NULL;
*size = 0;
*offset = 0;
if (bytes_avail == 0 &&
cab->entry_cfdata->uncompressed_size == 0) {
/* All of CFDATA in a folder has been handled. */
archive_set_error(&a->archive,
ARCHIVE_ERRNO_FILE_FORMAT, "Invalid CFDATA");
return (ARCHIVE_FATAL);
} else
return ((int)bytes_avail);
}
if (bytes_avail > cab->entry_bytes_remaining)
bytes_avail = (ssize_t)cab->entry_bytes_remaining;
*size = bytes_avail;
*offset = cab->entry_offset;
cab->entry_offset += bytes_avail;
cab->entry_bytes_remaining -= bytes_avail;
if (cab->entry_bytes_remaining == 0)
cab->end_of_entry = 1;
cab->entry_unconsumed = bytes_avail;
if (cab->entry_cffolder->comptype == COMPTYPE_NONE) {
/* Don't consume more than current entry used. */
if (cab->entry_cfdata->unconsumed > cab->entry_unconsumed)
cab->entry_cfdata->unconsumed = cab->entry_unconsumed;
}
return (ARCHIVE_OK);
}
static int
archive_read_format_cab_read_data_skip(struct archive_read *a)
{
struct cab *cab;
int64_t bytes_skipped;
int r;
cab = (struct cab *)(a->format->data);
if (cab->end_of_archive)
return (ARCHIVE_EOF);
if (!cab->read_data_invoked) {
cab->bytes_skipped += cab->entry_bytes_remaining;
cab->entry_bytes_remaining = 0;
/* This entry is finished and done. */
cab->end_of_entry_cleanup = cab->end_of_entry = 1;
return (ARCHIVE_OK);
}
if (cab->entry_unconsumed) {
/* Consume as much as the compressor actually used. */
r = (int)cab_consume_cfdata(a, cab->entry_unconsumed);
cab->entry_unconsumed = 0;
if (r < 0)
return (r);
} else if (cab->entry_cfdata == NULL) {
r = cab_next_cfdata(a);
if (r < 0)
return (r);
}
/* if we've already read to end of data, we're done. */
if (cab->end_of_entry_cleanup)
return (ARCHIVE_OK);
/*
* If the length is at the beginning, we can skip the
* compressed data much more quickly.
*/
bytes_skipped = cab_consume_cfdata(a, cab->entry_bytes_remaining);
if (bytes_skipped < 0)
return (ARCHIVE_FATAL);
/* If the compression type is none(uncompressed), we've already
* consumed data as much as the current entry size. */
if (cab->entry_cffolder->comptype == COMPTYPE_NONE &&
cab->entry_cfdata != NULL)
cab->entry_cfdata->unconsumed = 0;
/* This entry is finished and done. */
cab->end_of_entry_cleanup = cab->end_of_entry = 1;
return (ARCHIVE_OK);
}
static int
archive_read_format_cab_cleanup(struct archive_read *a)
{
struct cab *cab = (struct cab *)(a->format->data);
struct cfheader *hd = &cab->cfheader;
int i;
if (hd->folder_array != NULL) {
for (i = 0; i < hd->folder_count; i++)
free(hd->folder_array[i].cfdata.memimage);
free(hd->folder_array);
}
if (hd->file_array != NULL) {
for (i = 0; i < cab->cfheader.file_count; i++)
archive_string_free(&(hd->file_array[i].pathname));
free(hd->file_array);
}
#ifdef HAVE_ZLIB_H
if (cab->stream_valid)
inflateEnd(&cab->stream);
#endif
lzx_decode_free(&cab->xstrm);
archive_wstring_free(&cab->ws);
free(cab->uncompressed_buffer);
free(cab);
(a->format->data) = NULL;
return (ARCHIVE_OK);
}
/* Convert an MSDOS-style date/time into Unix-style time. */
static time_t
cab_dos_time(const unsigned char *p)
{
int msTime, msDate;
struct tm ts;
msDate = archive_le16dec(p);
msTime = archive_le16dec(p+2);
memset(&ts, 0, sizeof(ts));
ts.tm_year = ((msDate >> 9) & 0x7f) + 80; /* Years since 1900. */
ts.tm_mon = ((msDate >> 5) & 0x0f) - 1; /* Month number. */
ts.tm_mday = msDate & 0x1f; /* Day of month. */
ts.tm_hour = (msTime >> 11) & 0x1f;
ts.tm_min = (msTime >> 5) & 0x3f;
ts.tm_sec = (msTime << 1) & 0x3e;
ts.tm_isdst = -1;
return (mktime(&ts));
}
/*****************************************************************
*
* LZX decompression code.
*
*****************************************************************/
/*
* Initialize LZX decoder.
*
* Returns ARCHIVE_OK if initialization was successful.
* Returns ARCHIVE_FAILED if w_bits has unsupported value.
* Returns ARCHIVE_FATAL if initialization failed; memory allocation
* error occurred.
*/
static int
lzx_decode_init(struct lzx_stream *strm, int w_bits)
{
struct lzx_dec *ds;
int slot, w_size, w_slot;
int base, footer;
int base_inc[18];
if (strm->ds == NULL) {
strm->ds = calloc(1, sizeof(*strm->ds));
if (strm->ds == NULL)
return (ARCHIVE_FATAL);
}
ds = strm->ds;
ds->error = ARCHIVE_FAILED;
/* Allow bits from 15(32KBi) up to 21(2MBi) */
if (w_bits < SLOT_BASE || w_bits > SLOT_MAX)
return (ARCHIVE_FAILED);
ds->error = ARCHIVE_FATAL;
/*
* Alloc window
*/
w_size = ds->w_size;
w_slot = slots[w_bits - SLOT_BASE];
ds->w_size = 1U << w_bits;
ds->w_mask = ds->w_size -1;
if (ds->w_buff == NULL || w_size != ds->w_size) {
free(ds->w_buff);
ds->w_buff = malloc(ds->w_size);
if (ds->w_buff == NULL)
return (ARCHIVE_FATAL);
free(ds->pos_tbl);
ds->pos_tbl = malloc(sizeof(ds->pos_tbl[0]) * w_slot);
if (ds->pos_tbl == NULL)
return (ARCHIVE_FATAL);
lzx_huffman_free(&(ds->mt));
}
for (footer = 0; footer < 18; footer++)
base_inc[footer] = 1 << footer;
base = footer = 0;
for (slot = 0; slot < w_slot; slot++) {
int n;
if (footer == 0)
base = slot;
else
base += base_inc[footer];
if (footer < 17) {
footer = -2;
for (n = base; n; n >>= 1)
footer++;
if (footer <= 0)
footer = 0;
}
ds->pos_tbl[slot].base = base;
ds->pos_tbl[slot].footer_bits = footer;
}
ds->w_pos = 0;
ds->state = 0;
ds->br.cache_buffer = 0;
ds->br.cache_avail = 0;
ds->r0 = ds->r1 = ds->r2 = 1;
/* Initialize aligned offset tree. */
if (lzx_huffman_init(&(ds->at), 8, 8) != ARCHIVE_OK)
return (ARCHIVE_FATAL);
/* Initialize pre-tree. */
if (lzx_huffman_init(&(ds->pt), 20, 10) != ARCHIVE_OK)
return (ARCHIVE_FATAL);
/* Initialize Main tree. */
if (lzx_huffman_init(&(ds->mt), 256+(w_slot<<3), 16)
!= ARCHIVE_OK)
return (ARCHIVE_FATAL);
/* Initialize Length tree. */
if (lzx_huffman_init(&(ds->lt), 249, 16) != ARCHIVE_OK)
return (ARCHIVE_FATAL);
ds->error = 0;
return (ARCHIVE_OK);
}
/*
* Release LZX decoder.
*/
static void
lzx_decode_free(struct lzx_stream *strm)
{
if (strm->ds == NULL)
return;
free(strm->ds->w_buff);
free(strm->ds->pos_tbl);
lzx_huffman_free(&(strm->ds->at));
lzx_huffman_free(&(strm->ds->pt));
lzx_huffman_free(&(strm->ds->mt));
lzx_huffman_free(&(strm->ds->lt));
free(strm->ds);
strm->ds = NULL;
}
/*
* E8 Call Translation reversal.
*/
static void
lzx_translation(struct lzx_stream *strm, void *p, size_t size, uint32_t offset)
{
struct lzx_dec *ds = strm->ds;
unsigned char *b, *end;
if (!ds->translation || size <= 10)
return;
b = p;
end = b + size - 10;
while (b < end && (b = memchr(b, 0xE8, end - b)) != NULL) {
size_t i = b - (unsigned char *)p;
int32_t cp, displacement, value;
cp = (int32_t)(offset + (uint32_t)i);
value = archive_le32dec(&b[1]);
if (value >= -cp && value < (int32_t)ds->translation_size) {
if (value >= 0)
displacement = value - cp;
else
displacement = value + ds->translation_size;
archive_le32enc(&b[1], (uint32_t)displacement);
}
b += 5;
}
}
/*
* Bit stream reader.
*/
/* Check that the cache buffer has enough bits. */
#define lzx_br_has(br, n) ((br)->cache_avail >= n)
/* Get compressed data by bit. */
#define lzx_br_bits(br, n) \
(((uint32_t)((br)->cache_buffer >> \
((br)->cache_avail - (n)))) & cache_masks[n])
#define lzx_br_bits_forced(br, n) \
(((uint32_t)((br)->cache_buffer << \
((n) - (br)->cache_avail))) & cache_masks[n])
/* Read ahead to make sure the cache buffer has enough compressed data we
* will use.
* True : completed, there is enough data in the cache buffer.
* False : we met that strm->next_in is empty, we have to get following
* bytes. */
#define lzx_br_read_ahead_0(strm, br, n) \
(lzx_br_has((br), (n)) || lzx_br_fillup(strm, br))
/* True : the cache buffer has some bits as much as we need.
* False : there are no enough bits in the cache buffer to be used,
* we have to get following bytes if we could. */
#define lzx_br_read_ahead(strm, br, n) \
(lzx_br_read_ahead_0((strm), (br), (n)) || lzx_br_has((br), (n)))
/* Notify how many bits we consumed. */
#define lzx_br_consume(br, n) ((br)->cache_avail -= (n))
#define lzx_br_consume_unaligned_bits(br) ((br)->cache_avail &= ~0x0f)
#define lzx_br_is_unaligned(br) ((br)->cache_avail & 0x0f)
static const uint32_t cache_masks[] = {
0x00000000, 0x00000001, 0x00000003, 0x00000007,
0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
};
/*
* Shift away used bits in the cache data and fill it up with following bits.
* Call this when cache buffer does not have enough bits you need.
*
* Returns 1 if the cache buffer is full.
* Returns 0 if the cache buffer is not full; input buffer is empty.
*/
static int
lzx_br_fillup(struct lzx_stream *strm, struct lzx_br *br)
{
/*
* x86 processor family can read misaligned data without an access error.
*/
int n = CACHE_BITS - br->cache_avail;
for (;;) {
switch (n >> 4) {
case 4:
if (strm->avail_in >= 8) {
br->cache_buffer =
((uint64_t)strm->next_in[1]) << 56 |
((uint64_t)strm->next_in[0]) << 48 |
((uint64_t)strm->next_in[3]) << 40 |
((uint64_t)strm->next_in[2]) << 32 |
((uint32_t)strm->next_in[5]) << 24 |
((uint32_t)strm->next_in[4]) << 16 |
((uint32_t)strm->next_in[7]) << 8 |
(uint32_t)strm->next_in[6];
strm->next_in += 8;
strm->avail_in -= 8;
br->cache_avail += 8 * 8;
return (1);
}
break;
case 3:
if (strm->avail_in >= 6) {
br->cache_buffer =
(br->cache_buffer << 48) |
((uint64_t)strm->next_in[1]) << 40 |
((uint64_t)strm->next_in[0]) << 32 |
((uint32_t)strm->next_in[3]) << 24 |
((uint32_t)strm->next_in[2]) << 16 |
((uint32_t)strm->next_in[5]) << 8 |
(uint32_t)strm->next_in[4];
strm->next_in += 6;
strm->avail_in -= 6;
br->cache_avail += 6 * 8;
return (1);
}
break;
case 0:
/* We have enough compressed data in
* the cache buffer.*/
return (1);
default:
break;
}
if (strm->avail_in < 2) {
/* There is not enough compressed data to
* fill up the cache buffer. */
if (strm->avail_in == 1) {
br->odd = *strm->next_in++;
strm->avail_in--;
br->have_odd = 1;
}
return (0);
}
br->cache_buffer =
(br->cache_buffer << 16) |
archive_le16dec(strm->next_in);
strm->next_in += 2;
strm->avail_in -= 2;
br->cache_avail += 16;
n -= 16;
}
}
static void
lzx_br_fixup(struct lzx_stream *strm, struct lzx_br *br)
{
int n = CACHE_BITS - br->cache_avail;
if (br->have_odd && n >= 16 && strm->avail_in > 0) {
br->cache_buffer =
(br->cache_buffer << 16) |
((uint16_t)(*strm->next_in)) << 8 | br->odd;
strm->next_in++;
strm->avail_in--;
br->cache_avail += 16;
br->have_odd = 0;
}
}
static void
lzx_cleanup_bitstream(struct lzx_stream *strm)
{
strm->ds->br.cache_avail = 0;
strm->ds->br.have_odd = 0;
}
/*
* Decode LZX.
*
* 1. Returns ARCHIVE_OK if output buffer or input buffer are empty.
* Please set available buffer and call this function again.
* 2. Returns ARCHIVE_EOF if decompression has been completed.
* 3. Returns ARCHIVE_FAILED if an error occurred; compressed data
* is broken or you do not set 'last' flag properly.
*/
#define ST_RD_TRANSLATION 0
#define ST_RD_TRANSLATION_SIZE 1
#define ST_RD_BLOCK_TYPE 2
#define ST_RD_BLOCK_SIZE 3
#define ST_RD_ALIGNMENT 4
#define ST_RD_R0 5
#define ST_RD_R1 6
#define ST_RD_R2 7
#define ST_COPY_UNCOMP1 8
#define ST_COPY_UNCOMP2 9
#define ST_RD_ALIGNED_OFFSET 10
#define ST_RD_VERBATIM 11
#define ST_RD_PRE_MAIN_TREE_256 12
#define ST_MAIN_TREE_256 13
#define ST_RD_PRE_MAIN_TREE_REM 14
#define ST_MAIN_TREE_REM 15
#define ST_RD_PRE_LENGTH_TREE 16
#define ST_LENGTH_TREE 17
#define ST_MAIN 18
#define ST_LENGTH 19
#define ST_OFFSET 20
#define ST_REAL_POS 21
#define ST_COPY 22
static int
lzx_decode(struct lzx_stream *strm, int last)
{
struct lzx_dec *ds = strm->ds;
int64_t avail_in;
int r;
if (ds->error)
return (ds->error);
avail_in = strm->avail_in;
lzx_br_fixup(strm, &(ds->br));
do {
if (ds->state < ST_MAIN)
r = lzx_read_blocks(strm, last);
else {
int64_t bytes_written = strm->avail_out;
r = lzx_decode_blocks(strm, last);
bytes_written -= strm->avail_out;
strm->next_out += bytes_written;
strm->total_out += bytes_written;
}
} while (r == 100);
strm->total_in += avail_in - strm->avail_in;
return (r);
}
static int
lzx_read_blocks(struct lzx_stream *strm, int last)
{
struct lzx_dec *ds = strm->ds;
struct lzx_br *br = &(ds->br);
int i, r;
for (;;) {
switch (ds->state) {
case ST_RD_TRANSLATION:
if (!lzx_br_read_ahead(strm, br, 1)) {
ds->state = ST_RD_TRANSLATION;
if (last)
goto failed;
return (ARCHIVE_OK);
}
ds->translation = lzx_br_bits(br, 1);
lzx_br_consume(br, 1);
/* FALL THROUGH */
case ST_RD_TRANSLATION_SIZE:
if (ds->translation) {
if (!lzx_br_read_ahead(strm, br, 32)) {
ds->state = ST_RD_TRANSLATION_SIZE;
if (last)
goto failed;
return (ARCHIVE_OK);
}
ds->translation_size = lzx_br_bits(br, 16);
lzx_br_consume(br, 16);
ds->translation_size <<= 16;
ds->translation_size |= lzx_br_bits(br, 16);
lzx_br_consume(br, 16);
}
/* FALL THROUGH */
case ST_RD_BLOCK_TYPE:
if (!lzx_br_read_ahead(strm, br, 3)) {
ds->state = ST_RD_BLOCK_TYPE;
if (last)
goto failed;
return (ARCHIVE_OK);
}
ds->block_type = lzx_br_bits(br, 3);
lzx_br_consume(br, 3);
/* Check a block type. */
switch (ds->block_type) {
case VERBATIM_BLOCK:
case ALIGNED_OFFSET_BLOCK:
case UNCOMPRESSED_BLOCK:
break;
default:
goto failed;/* Invalid */
}
/* FALL THROUGH */
case ST_RD_BLOCK_SIZE:
if (!lzx_br_read_ahead(strm, br, 24)) {
ds->state = ST_RD_BLOCK_SIZE;
if (last)
goto failed;
return (ARCHIVE_OK);
}
ds->block_size = lzx_br_bits(br, 8);
lzx_br_consume(br, 8);
ds->block_size <<= 16;
ds->block_size |= lzx_br_bits(br, 16);
lzx_br_consume(br, 16);
if (ds->block_size == 0)
goto failed;
ds->block_bytes_avail = ds->block_size;
if (ds->block_type != UNCOMPRESSED_BLOCK) {
if (ds->block_type == VERBATIM_BLOCK)
ds->state = ST_RD_VERBATIM;
else
ds->state = ST_RD_ALIGNED_OFFSET;
break;
}
/* FALL THROUGH */
case ST_RD_ALIGNMENT:
/*
* Handle an Uncompressed Block.
*/
/* Skip padding to align following field on
* 16-bit boundary. */
if (lzx_br_is_unaligned(br))
lzx_br_consume_unaligned_bits(br);
else {
if (lzx_br_read_ahead(strm, br, 16))
lzx_br_consume(br, 16);
else {
ds->state = ST_RD_ALIGNMENT;
if (last)
goto failed;
return (ARCHIVE_OK);
}
}
/* Preparation to read repeated offsets R0,R1 and R2. */
ds->rbytes_avail = 0;
ds->state = ST_RD_R0;
/* FALL THROUGH */
case ST_RD_R0:
case ST_RD_R1:
case ST_RD_R2:
do {
uint16_t u16;
/* Drain bits in the cache buffer of
* bit-stream. */
if (lzx_br_has(br, 32)) {
u16 = lzx_br_bits(br, 16);
lzx_br_consume(br, 16);
archive_le16enc(ds->rbytes, u16);
u16 = lzx_br_bits(br, 16);
lzx_br_consume(br, 16);
archive_le16enc(ds->rbytes+2, u16);
ds->rbytes_avail = 4;
} else if (lzx_br_has(br, 16)) {
u16 = lzx_br_bits(br, 16);
lzx_br_consume(br, 16);
archive_le16enc(ds->rbytes, u16);
ds->rbytes_avail = 2;
}
if (ds->rbytes_avail < 4 && ds->br.have_odd) {
ds->rbytes[ds->rbytes_avail++] =
ds->br.odd;
ds->br.have_odd = 0;
}
while (ds->rbytes_avail < 4) {
if (strm->avail_in <= 0) {
if (last)
goto failed;
return (ARCHIVE_OK);
}
ds->rbytes[ds->rbytes_avail++] =
*strm->next_in++;
strm->avail_in--;
}
ds->rbytes_avail = 0;
if (ds->state == ST_RD_R0) {
ds->r0 = archive_le32dec(ds->rbytes);
if (ds->r0 < 0)
goto failed;
ds->state = ST_RD_R1;
} else if (ds->state == ST_RD_R1) {
ds->r1 = archive_le32dec(ds->rbytes);
if (ds->r1 < 0)
goto failed;
ds->state = ST_RD_R2;
} else if (ds->state == ST_RD_R2) {
ds->r2 = archive_le32dec(ds->rbytes);
if (ds->r2 < 0)
goto failed;
/* We've gotten all repeated offsets. */
ds->state = ST_COPY_UNCOMP1;
}
} while (ds->state != ST_COPY_UNCOMP1);
/* FALL THROUGH */
case ST_COPY_UNCOMP1:
/*
* Copy bytes form next_in to next_out directly.
*/
while (ds->block_bytes_avail) {
int l;
if (strm->avail_out <= 0)
/* Output buffer is empty. */
return (ARCHIVE_OK);
if (strm->avail_in <= 0) {
/* Input buffer is empty. */
if (last)
goto failed;
return (ARCHIVE_OK);
}
l = (int)ds->block_bytes_avail;
if (l > ds->w_size - ds->w_pos)
l = ds->w_size - ds->w_pos;
if (l > strm->avail_out)
l = (int)strm->avail_out;
if (l > strm->avail_in)
l = (int)strm->avail_in;
memcpy(strm->next_out, strm->next_in, l);
memcpy(&(ds->w_buff[ds->w_pos]),
strm->next_in, l);
strm->next_in += l;
strm->avail_in -= l;
strm->next_out += l;
strm->avail_out -= l;
strm->total_out += l;
ds->w_pos = (ds->w_pos + l) & ds->w_mask;
ds->block_bytes_avail -= l;
}
/* FALL THROUGH */
case ST_COPY_UNCOMP2:
/* Re-align; skip padding byte. */
if (ds->block_size & 1) {
if (strm->avail_in <= 0) {
/* Input buffer is empty. */
ds->state = ST_COPY_UNCOMP2;
if (last)
goto failed;
return (ARCHIVE_OK);
}
strm->next_in++;
strm->avail_in --;
}
/* This block ended. */
ds->state = ST_RD_BLOCK_TYPE;
return (ARCHIVE_EOF);
/********************/
case ST_RD_ALIGNED_OFFSET:
/*
* Read Aligned offset tree.
*/
if (!lzx_br_read_ahead(strm, br, 3 * ds->at.len_size)) {
ds->state = ST_RD_ALIGNED_OFFSET;
if (last)
goto failed;
return (ARCHIVE_OK);
}
memset(ds->at.freq, 0, sizeof(ds->at.freq));
for (i = 0; i < ds->at.len_size; i++) {
ds->at.bitlen[i] = lzx_br_bits(br, 3);
ds->at.freq[ds->at.bitlen[i]]++;
lzx_br_consume(br, 3);
}
if (!lzx_make_huffman_table(&ds->at))
goto failed;
/* FALL THROUGH */
case ST_RD_VERBATIM:
ds->loop = 0;
/* FALL THROUGH */
case ST_RD_PRE_MAIN_TREE_256:
/*
* Read Pre-tree for first 256 elements of main tree.
*/
if (!lzx_read_pre_tree(strm)) {
ds->state = ST_RD_PRE_MAIN_TREE_256;
if (last)
goto failed;
return (ARCHIVE_OK);
}
if (!lzx_make_huffman_table(&ds->pt))
goto failed;
ds->loop = 0;
/* FALL THROUGH */
case ST_MAIN_TREE_256:
/*
* Get path lengths of first 256 elements of main tree.
*/
r = lzx_read_bitlen(strm, &ds->mt, 256);
if (r < 0)
goto failed;
else if (!r) {
ds->state = ST_MAIN_TREE_256;
if (last)
goto failed;
return (ARCHIVE_OK);
}
ds->loop = 0;
/* FALL THROUGH */
case ST_RD_PRE_MAIN_TREE_REM:
/*
* Read Pre-tree for remaining elements of main tree.
*/
if (!lzx_read_pre_tree(strm)) {
ds->state = ST_RD_PRE_MAIN_TREE_REM;
if (last)
goto failed;
return (ARCHIVE_OK);
}
if (!lzx_make_huffman_table(&ds->pt))
goto failed;
ds->loop = 256;
/* FALL THROUGH */
case ST_MAIN_TREE_REM:
/*
* Get path lengths of remaining elements of main tree.
*/
r = lzx_read_bitlen(strm, &ds->mt, -1);
if (r < 0)
goto failed;
else if (!r) {
ds->state = ST_MAIN_TREE_REM;
if (last)
goto failed;
return (ARCHIVE_OK);
}
if (!lzx_make_huffman_table(&ds->mt))
goto failed;
ds->loop = 0;
/* FALL THROUGH */
case ST_RD_PRE_LENGTH_TREE:
/*
* Read Pre-tree for remaining elements of main tree.
*/
if (!lzx_read_pre_tree(strm)) {
ds->state = ST_RD_PRE_LENGTH_TREE;
if (last)
goto failed;
return (ARCHIVE_OK);
}
if (!lzx_make_huffman_table(&ds->pt))
goto failed;
ds->loop = 0;
/* FALL THROUGH */
case ST_LENGTH_TREE:
/*
* Get path lengths of remaining elements of main tree.
*/
r = lzx_read_bitlen(strm, &ds->lt, -1);
if (r < 0)
goto failed;
else if (!r) {
ds->state = ST_LENGTH_TREE;
if (last)
goto failed;
return (ARCHIVE_OK);
}
if (!lzx_make_huffman_table(&ds->lt))
goto failed;
ds->state = ST_MAIN;
return (100);
}
}
failed:
return (ds->error = ARCHIVE_FAILED);
}
static int
lzx_decode_blocks(struct lzx_stream *strm, int last)
{
struct lzx_dec *ds = strm->ds;
struct lzx_br bre = ds->br;
struct huffman *at = &(ds->at), *lt = &(ds->lt), *mt = &(ds->mt);
const struct lzx_pos_tbl *pos_tbl = ds->pos_tbl;
unsigned char *noutp = strm->next_out;
unsigned char *endp = noutp + strm->avail_out;
unsigned char *w_buff = ds->w_buff;
unsigned char *at_bitlen = at->bitlen;
unsigned char *lt_bitlen = lt->bitlen;
unsigned char *mt_bitlen = mt->bitlen;
size_t block_bytes_avail = ds->block_bytes_avail;
int at_max_bits = at->max_bits;
int lt_max_bits = lt->max_bits;
int mt_max_bits = mt->max_bits;
int c, copy_len = ds->copy_len, copy_pos = ds->copy_pos;
int w_pos = ds->w_pos, w_mask = ds->w_mask, w_size = ds->w_size;
int length_header = ds->length_header;
int offset_bits = ds->offset_bits;
int position_slot = ds->position_slot;
int r0 = ds->r0, r1 = ds->r1, r2 = ds->r2;
int state = ds->state;
char block_type = ds->block_type;
for (;;) {
switch (state) {
case ST_MAIN:
for (;;) {
if (block_bytes_avail == 0) {
/* This block ended. */
ds->state = ST_RD_BLOCK_TYPE;
ds->br = bre;
ds->block_bytes_avail =
block_bytes_avail;
ds->copy_len = copy_len;
ds->copy_pos = copy_pos;
ds->length_header = length_header;
ds->position_slot = position_slot;
ds->r0 = r0; ds->r1 = r1; ds->r2 = r2;
ds->w_pos = w_pos;
strm->avail_out = endp - noutp;
return (ARCHIVE_EOF);
}
if (noutp >= endp)
/* Output buffer is empty. */
goto next_data;
if (!lzx_br_read_ahead(strm, &bre,
mt_max_bits)) {
if (!last)
goto next_data;
/* Remaining bits are less than
* maximum bits(mt.max_bits) but maybe
* it still remains as much as we need,
* so we should try to use it with
* dummy bits. */
c = lzx_decode_huffman(mt,
lzx_br_bits_forced(
&bre, mt_max_bits));
lzx_br_consume(&bre, mt_bitlen[c]);
if (!lzx_br_has(&bre, 0))
goto failed;/* Over read. */
} else {
c = lzx_decode_huffman(mt,
lzx_br_bits(&bre, mt_max_bits));
lzx_br_consume(&bre, mt_bitlen[c]);
}
if (c > UCHAR_MAX)
break;
/*
* 'c' is exactly literal code.
*/
/* Save a decoded code to reference it
* afterward. */
w_buff[w_pos] = c;
w_pos = (w_pos + 1) & w_mask;
/* Store the decoded code to output buffer. */
*noutp++ = c;
block_bytes_avail--;
}
/*
* Get a match code, its length and offset.
*/
c -= UCHAR_MAX + 1;
length_header = c & 7;
position_slot = c >> 3;
/* FALL THROUGH */
case ST_LENGTH:
/*
* Get a length.
*/
if (length_header == 7) {
if (!lzx_br_read_ahead(strm, &bre,
lt_max_bits)) {
if (!last) {
state = ST_LENGTH;
goto next_data;
}
c = lzx_decode_huffman(lt,
lzx_br_bits_forced(
&bre, lt_max_bits));
lzx_br_consume(&bre, lt_bitlen[c]);
if (!lzx_br_has(&bre, 0))
goto failed;/* Over read. */
} else {
c = lzx_decode_huffman(lt,
lzx_br_bits(&bre, lt_max_bits));
lzx_br_consume(&bre, lt_bitlen[c]);
}
copy_len = c + 7 + 2;
} else
copy_len = length_header + 2;
if ((size_t)copy_len > block_bytes_avail)
goto failed;
/*
* Get an offset.
*/
switch (position_slot) {
case 0: /* Use repeated offset 0. */
copy_pos = r0;
state = ST_REAL_POS;
continue;
case 1: /* Use repeated offset 1. */
copy_pos = r1;
/* Swap repeated offset. */
r1 = r0;
r0 = copy_pos;
state = ST_REAL_POS;
continue;
case 2: /* Use repeated offset 2. */
copy_pos = r2;
/* Swap repeated offset. */
r2 = r0;
r0 = copy_pos;
state = ST_REAL_POS;
continue;
default:
offset_bits =
pos_tbl[position_slot].footer_bits;
break;
}
/* FALL THROUGH */
case ST_OFFSET:
/*
* Get the offset, which is a distance from
* current window position.
*/
if (block_type == ALIGNED_OFFSET_BLOCK &&
offset_bits >= 3) {
int offbits = offset_bits - 3;
if (!lzx_br_read_ahead(strm, &bre, offbits)) {
state = ST_OFFSET;
if (last)
goto failed;
goto next_data;
}
copy_pos = lzx_br_bits(&bre, offbits) << 3;
/* Get an aligned number. */
if (!lzx_br_read_ahead(strm, &bre,
offbits + at_max_bits)) {
if (!last) {
state = ST_OFFSET;
goto next_data;
}
lzx_br_consume(&bre, offbits);
c = lzx_decode_huffman(at,
lzx_br_bits_forced(&bre,
at_max_bits));
lzx_br_consume(&bre, at_bitlen[c]);
if (!lzx_br_has(&bre, 0))
goto failed;/* Over read. */
} else {
lzx_br_consume(&bre, offbits);
c = lzx_decode_huffman(at,
lzx_br_bits(&bre, at_max_bits));
lzx_br_consume(&bre, at_bitlen[c]);
}
/* Add an aligned number. */
copy_pos += c;
} else {
if (!lzx_br_read_ahead(strm, &bre,
offset_bits)) {
state = ST_OFFSET;
if (last)
goto failed;
goto next_data;
}
copy_pos = lzx_br_bits(&bre, offset_bits);
lzx_br_consume(&bre, offset_bits);
}
copy_pos += pos_tbl[position_slot].base -2;
/* Update repeated offset LRU queue. */
r2 = r1;
r1 = r0;
r0 = copy_pos;
/* FALL THROUGH */
case ST_REAL_POS:
/*
* Compute a real position in window.
*/
copy_pos = (w_pos - copy_pos) & w_mask;
/* FALL THROUGH */
case ST_COPY:
/*
* Copy several bytes as extracted data from the window
* into the output buffer.
*/
for (;;) {
const unsigned char *s;
int l;
l = copy_len;
if (copy_pos > w_pos) {
if (l > w_size - copy_pos)
l = w_size - copy_pos;
} else {
if (l > w_size - w_pos)
l = w_size - w_pos;
}
if (noutp + l >= endp)
l = (int)(endp - noutp);
s = w_buff + copy_pos;
if (l >= 8 && ((copy_pos + l < w_pos)
|| (w_pos + l < copy_pos))) {
memcpy(w_buff + w_pos, s, l);
memcpy(noutp, s, l);
} else {
unsigned char *d;
int li;
d = w_buff + w_pos;
for (li = 0; li < l; li++)
noutp[li] = d[li] = s[li];
}
noutp += l;
copy_pos = (copy_pos + l) & w_mask;
w_pos = (w_pos + l) & w_mask;
block_bytes_avail -= l;
if (copy_len <= l)
/* A copy of current pattern ended. */
break;
copy_len -= l;
if (noutp >= endp) {
/* Output buffer is empty. */
state = ST_COPY;
goto next_data;
}
}
state = ST_MAIN;
break;
}
}
failed:
return (ds->error = ARCHIVE_FAILED);
next_data:
ds->br = bre;
ds->block_bytes_avail = block_bytes_avail;
ds->copy_len = copy_len;
ds->copy_pos = copy_pos;
ds->length_header = length_header;
ds->offset_bits = offset_bits;
ds->position_slot = position_slot;
ds->r0 = r0; ds->r1 = r1; ds->r2 = r2;
ds->state = state;
ds->w_pos = w_pos;
strm->avail_out = endp - noutp;
return (ARCHIVE_OK);
}
static int
lzx_read_pre_tree(struct lzx_stream *strm)
{
struct lzx_dec *ds = strm->ds;
struct lzx_br *br = &(ds->br);
int i;
if (ds->loop == 0)
memset(ds->pt.freq, 0, sizeof(ds->pt.freq));
for (i = ds->loop; i < ds->pt.len_size; i++) {
if (!lzx_br_read_ahead(strm, br, 4)) {
ds->loop = i;
return (0);
}
ds->pt.bitlen[i] = lzx_br_bits(br, 4);
ds->pt.freq[ds->pt.bitlen[i]]++;
lzx_br_consume(br, 4);
}
ds->loop = i;
return (1);
}
/*
* Read a bunch of bit-lengths from pre-tree.
*/
static int
lzx_read_bitlen(struct lzx_stream *strm, struct huffman *d, int end)
{
struct lzx_dec *ds = strm->ds;
struct lzx_br *br = &(ds->br);
int c, i, j, ret, same;
unsigned rbits;
i = ds->loop;
if (i == 0)
memset(d->freq, 0, sizeof(d->freq));
ret = 0;
if (end < 0)
end = d->len_size;
while (i < end) {
ds->loop = i;
if (!lzx_br_read_ahead(strm, br, ds->pt.max_bits))
goto getdata;
rbits = lzx_br_bits(br, ds->pt.max_bits);
c = lzx_decode_huffman(&(ds->pt), rbits);
switch (c) {
case 17:/* several zero lengths, from 4 to 19. */
if (!lzx_br_read_ahead(strm, br, ds->pt.bitlen[c]+4))
goto getdata;
lzx_br_consume(br, ds->pt.bitlen[c]);
same = lzx_br_bits(br, 4) + 4;
if (i + same > end)
return (-1);/* Invalid */
lzx_br_consume(br, 4);
for (j = 0; j < same; j++)
d->bitlen[i++] = 0;
break;
case 18:/* many zero lengths, from 20 to 51. */
if (!lzx_br_read_ahead(strm, br, ds->pt.bitlen[c]+5))
goto getdata;
lzx_br_consume(br, ds->pt.bitlen[c]);
same = lzx_br_bits(br, 5) + 20;
if (i + same > end)
return (-1);/* Invalid */
lzx_br_consume(br, 5);
memset(d->bitlen + i, 0, same);
i += same;
break;
case 19:/* a few same lengths. */
if (!lzx_br_read_ahead(strm, br,
ds->pt.bitlen[c]+1+ds->pt.max_bits))
goto getdata;
lzx_br_consume(br, ds->pt.bitlen[c]);
same = lzx_br_bits(br, 1) + 4;
if (i + same > end)
return (-1);
lzx_br_consume(br, 1);
rbits = lzx_br_bits(br, ds->pt.max_bits);
c = lzx_decode_huffman(&(ds->pt), rbits);
lzx_br_consume(br, ds->pt.bitlen[c]);
c = (d->bitlen[i] - c + 17) % 17;
if (c < 0)
return (-1);/* Invalid */
for (j = 0; j < same; j++)
d->bitlen[i++] = c;
d->freq[c] += same;
break;
default:
lzx_br_consume(br, ds->pt.bitlen[c]);
c = (d->bitlen[i] - c + 17) % 17;
if (c < 0)
return (-1);/* Invalid */
d->freq[c]++;
d->bitlen[i++] = c;
break;
}
}
ret = 1;
getdata:
ds->loop = i;
return (ret);
}
static int
lzx_huffman_init(struct huffman *hf, size_t len_size, int tbl_bits)
{
int bits;
if (hf->bitlen == NULL || hf->len_size != (int)len_size) {
free(hf->bitlen);
hf->bitlen = calloc(len_size, sizeof(hf->bitlen[0]));
if (hf->bitlen == NULL)
return (ARCHIVE_FATAL);
hf->len_size = (int)len_size;
} else
memset(hf->bitlen, 0, len_size * sizeof(hf->bitlen[0]));
if (hf->tbl == NULL) {
if (tbl_bits < HTBL_BITS)
bits = tbl_bits;
else
bits = HTBL_BITS;
hf->tbl = malloc(((size_t)1 << bits) * sizeof(hf->tbl[0]));
if (hf->tbl == NULL)
return (ARCHIVE_FATAL);
hf->tbl_bits = tbl_bits;
}
if (hf->tree == NULL && tbl_bits > HTBL_BITS) {
hf->tree_avail = 1 << (tbl_bits - HTBL_BITS + 4);
hf->tree = malloc(hf->tree_avail * sizeof(hf->tree[0]));
if (hf->tree == NULL)
return (ARCHIVE_FATAL);
}
return (ARCHIVE_OK);
}
static void
lzx_huffman_free(struct huffman *hf)
{
free(hf->bitlen);
free(hf->tbl);
free(hf->tree);
}
/*
* Make a huffman coding table.
*/
static int
lzx_make_huffman_table(struct huffman *hf)
{
uint16_t *tbl;
const unsigned char *bitlen;
int bitptn[17], weight[17];
int i, maxbits = 0, ptn, tbl_size, w;
int diffbits, len_avail;
/*
* Initialize bit patterns.
*/
ptn = 0;
for (i = 1, w = 1 << 15; i <= 16; i++, w >>= 1) {
bitptn[i] = ptn;
weight[i] = w;
if (hf->freq[i]) {
ptn += hf->freq[i] * w;
maxbits = i;
}
}
if ((ptn & 0xffff) != 0 || maxbits > hf->tbl_bits)
return (0);/* Invalid */
hf->max_bits = maxbits;
/*
* Cut out extra bits which we won't house in the table.
* This preparation reduces the same calculation in the for-loop
* making the table.
*/
if (maxbits < 16) {
int ebits = 16 - maxbits;
for (i = 1; i <= maxbits; i++) {
bitptn[i] >>= ebits;
weight[i] >>= ebits;
}
}
if (maxbits > HTBL_BITS) {
int htbl_max;
uint16_t *p;
diffbits = maxbits - HTBL_BITS;
for (i = 1; i <= HTBL_BITS; i++) {
bitptn[i] >>= diffbits;
weight[i] >>= diffbits;
}
htbl_max = bitptn[HTBL_BITS] +
weight[HTBL_BITS] * hf->freq[HTBL_BITS];
p = &(hf->tbl[htbl_max]);
while (p < &hf->tbl[1U<<HTBL_BITS])
*p++ = 0;
} else
diffbits = 0;
hf->shift_bits = diffbits;
/*
* Make the table.
*/
tbl_size = 1 << HTBL_BITS;
tbl = hf->tbl;
bitlen = hf->bitlen;
len_avail = hf->len_size;
hf->tree_used = 0;
for (i = 0; i < len_avail; i++) {
uint16_t *p;
int len, cnt;
uint16_t bit;
int extlen;
struct htree_t *ht;
if (bitlen[i] == 0)
continue;
/* Get a bit pattern */
len = bitlen[i];
ptn = bitptn[len];
cnt = weight[len];
if (len <= HTBL_BITS) {
/* Calculate next bit pattern */
if ((bitptn[len] = ptn + cnt) > tbl_size)
return (0);/* Invalid */
/* Update the table */
p = &(tbl[ptn]);
while (--cnt >= 0)
p[cnt] = (uint16_t)i;
continue;
}
/*
* A bit length is too big to be housed to a direct table,
* so we use a tree model for its extra bits.
*/
bitptn[len] = ptn + cnt;
bit = 1U << (diffbits -1);
extlen = len - HTBL_BITS;
p = &(tbl[ptn >> diffbits]);
if (*p == 0) {
*p = len_avail + hf->tree_used;
ht = &(hf->tree[hf->tree_used++]);
if (hf->tree_used > hf->tree_avail)
return (0);/* Invalid */
ht->left = 0;
ht->right = 0;
} else {
if (*p < len_avail ||
*p >= (len_avail + hf->tree_used))
return (0);/* Invalid */
ht = &(hf->tree[*p - len_avail]);
}
while (--extlen > 0) {
if (ptn & bit) {
if (ht->left < len_avail) {
ht->left = len_avail + hf->tree_used;
ht = &(hf->tree[hf->tree_used++]);
if (hf->tree_used > hf->tree_avail)
return (0);/* Invalid */
ht->left = 0;
ht->right = 0;
} else {
ht = &(hf->tree[ht->left - len_avail]);
}
} else {
if (ht->right < len_avail) {
ht->right = len_avail + hf->tree_used;
ht = &(hf->tree[hf->tree_used++]);
if (hf->tree_used > hf->tree_avail)
return (0);/* Invalid */
ht->left = 0;
ht->right = 0;
} else {
ht = &(hf->tree[ht->right - len_avail]);
}
}
bit >>= 1;
}
if (ptn & bit) {
if (ht->left != 0)
return (0);/* Invalid */
ht->left = (uint16_t)i;
} else {
if (ht->right != 0)
return (0);/* Invalid */
ht->right = (uint16_t)i;
}
}
return (1);
}
static int
lzx_decode_huffman_tree(struct huffman *hf, unsigned rbits, int c)
{
struct htree_t *ht;
int extlen;
ht = hf->tree;
extlen = hf->shift_bits;
while (c >= hf->len_size) {
c -= hf->len_size;
if (extlen-- <= 0 || c >= hf->tree_used)
return (0);
if (rbits & (1U << extlen))
c = ht[c].left;
else
c = ht[c].right;
}
return (c);
}
static inline int
lzx_decode_huffman(struct huffman *hf, unsigned rbits)
{
int c;
/*
* At first search an index table for a bit pattern.
* If it fails, search a huffman tree for.
*/
c = hf->tbl[rbits >> hf->shift_bits];
if (c < hf->len_size)
return (c);
/* This bit pattern needs to be found out at a huffman tree. */
return (lzx_decode_huffman_tree(hf, rbits, c));
}