blob: 488bfd47bf16ccdd840b41c06fcdc711652763d3 [file] [log] [blame]
#define JEMALLOC_ARENA_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
ssize_t opt_decay_time = DECAY_TIME_DEFAULT;
static ssize_t decay_time_default;
const arena_bin_info_t arena_bin_info[NBINS] = {
#define BIN_INFO_bin_yes(reg_size, slab_size, nregs) \
{reg_size, slab_size, nregs, BITMAP_INFO_INITIALIZER(nregs)},
#define BIN_INFO_bin_no(reg_size, slab_size, nregs)
#define SC(index, lg_grp, lg_delta, ndelta, psz, bin, pgs, \
lg_delta_lookup) \
BIN_INFO_bin_##bin((1U<<lg_grp) + (ndelta<<lg_delta), \
(pgs << LG_PAGE), (pgs << LG_PAGE) / ((1U<<lg_grp) + \
(ndelta<<lg_delta)))
SIZE_CLASSES
#undef BIN_INFO_bin_yes
#undef BIN_INFO_bin_no
#undef SC
};
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static void arena_purge_to_limit(tsdn_t *tsdn, arena_t *arena,
size_t ndirty_limit);
static void arena_dalloc_bin_slab(tsdn_t *tsdn, arena_t *arena,
extent_t *slab, arena_bin_t *bin);
static void arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena,
extent_t *slab, arena_bin_t *bin);
/******************************************************************************/
static size_t
arena_extent_dirty_npages(const extent_t *extent)
{
return (extent_size_get(extent) >> LG_PAGE);
}
static extent_t *
arena_extent_cache_alloc_locked(tsdn_t *tsdn, arena_t *arena,
extent_hooks_t **r_extent_hooks, void *new_addr, size_t usize, size_t pad,
size_t alignment, bool *zero, bool slab)
{
bool commit = true;
malloc_mutex_assert_owner(tsdn, &arena->lock);
return (extent_alloc_cache(tsdn, arena, r_extent_hooks, new_addr, usize,
pad, alignment, zero, &commit, slab));
}
extent_t *
arena_extent_cache_alloc(tsdn_t *tsdn, arena_t *arena,
extent_hooks_t **r_extent_hooks, void *new_addr, size_t size,
size_t alignment, bool *zero)
{
extent_t *extent;
malloc_mutex_lock(tsdn, &arena->lock);
extent = arena_extent_cache_alloc_locked(tsdn, arena, r_extent_hooks,
new_addr, size, 0, alignment, zero, false);
malloc_mutex_unlock(tsdn, &arena->lock);
return (extent);
}
static void
arena_extent_cache_dalloc_locked(tsdn_t *tsdn, arena_t *arena,
extent_hooks_t **r_extent_hooks, extent_t *extent)
{
malloc_mutex_assert_owner(tsdn, &arena->lock);
extent_dalloc_cache(tsdn, arena, r_extent_hooks, extent);
arena_maybe_purge(tsdn, arena);
}
void
arena_extent_cache_dalloc(tsdn_t *tsdn, arena_t *arena,
extent_hooks_t **r_extent_hooks, extent_t *extent)
{
malloc_mutex_lock(tsdn, &arena->lock);
arena_extent_cache_dalloc_locked(tsdn, arena, r_extent_hooks, extent);
malloc_mutex_unlock(tsdn, &arena->lock);
}
void
arena_extent_cache_maybe_insert(tsdn_t *tsdn, arena_t *arena, extent_t *extent,
bool cache)
{
malloc_mutex_assert_owner(tsdn, &arena->extents_mtx);
if (cache) {
extent_ring_insert(&arena->extents_dirty, extent);
arena->ndirty += arena_extent_dirty_npages(extent);
}
}
void
arena_extent_cache_maybe_remove(tsdn_t *tsdn, arena_t *arena, extent_t *extent,
bool dirty)
{
malloc_mutex_assert_owner(tsdn, &arena->extents_mtx);
if (dirty) {
extent_ring_remove(extent);
assert(arena->ndirty >= arena_extent_dirty_npages(extent));
arena->ndirty -= arena_extent_dirty_npages(extent);
}
}
JEMALLOC_INLINE_C void *
arena_slab_reg_alloc(tsdn_t *tsdn, extent_t *slab,
const arena_bin_info_t *bin_info)
{
void *ret;
arena_slab_data_t *slab_data = extent_slab_data_get(slab);
size_t regind;
assert(slab_data->nfree > 0);
assert(!bitmap_full(slab_data->bitmap, &bin_info->bitmap_info));
regind = bitmap_sfu(slab_data->bitmap, &bin_info->bitmap_info);
ret = (void *)((uintptr_t)extent_addr_get(slab) +
(uintptr_t)(bin_info->reg_size * regind));
slab_data->nfree--;
return (ret);
}
JEMALLOC_INLINE_C size_t
arena_slab_regind(extent_t *slab, const arena_bin_info_t *bin_info,
const void *ptr)
{
size_t diff, interval, shift, regind;
/* Freeing a pointer outside the slab can cause assertion failure. */
assert((uintptr_t)ptr >= (uintptr_t)extent_addr_get(slab));
assert((uintptr_t)ptr < (uintptr_t)extent_past_get(slab));
/* Freeing an interior pointer can cause assertion failure. */
assert(((uintptr_t)ptr - (uintptr_t)extent_addr_get(slab)) %
(uintptr_t)bin_info->reg_size == 0);
/*
* Avoid doing division with a variable divisor if possible. Using
* actual division here can reduce allocator throughput by over 20%!
*/
diff = (size_t)((uintptr_t)ptr - (uintptr_t)extent_addr_get(slab));
/* Rescale (factor powers of 2 out of the numerator and denominator). */
interval = bin_info->reg_size;
shift = ffs_zu(interval) - 1;
diff >>= shift;
interval >>= shift;
if (interval == 1) {
/* The divisor was a power of 2. */
regind = diff;
} else {
/*
* To divide by a number D that is not a power of two we
* multiply by (2^21 / D) and then right shift by 21 positions.
*
* X / D
*
* becomes
*
* (X * interval_invs[D - 3]) >> SIZE_INV_SHIFT
*
* We can omit the first three elements, because we never
* divide by 0, and 1 and 2 are both powers of two, which are
* handled above.
*/
#define SIZE_INV_SHIFT ((sizeof(size_t) << 3) - LG_SLAB_MAXREGS)
#define SIZE_INV(s) (((ZU(1) << SIZE_INV_SHIFT) / (s)) + 1)
static const size_t interval_invs[] = {
SIZE_INV(3),
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
};
if (likely(interval <= ((sizeof(interval_invs) / sizeof(size_t))
+ 2))) {
regind = (diff * interval_invs[interval - 3]) >>
SIZE_INV_SHIFT;
} else
regind = diff / interval;
#undef SIZE_INV
#undef SIZE_INV_SHIFT
}
assert(diff == regind * interval);
assert(regind < bin_info->nregs);
return (regind);
}
JEMALLOC_INLINE_C void
arena_slab_reg_dalloc(tsdn_t *tsdn, extent_t *slab,
arena_slab_data_t *slab_data, void *ptr)
{
szind_t binind = slab_data->binind;
const arena_bin_info_t *bin_info = &arena_bin_info[binind];
size_t regind = arena_slab_regind(slab, bin_info, ptr);
assert(slab_data->nfree < bin_info->nregs);
/* Freeing an unallocated pointer can cause assertion failure. */
assert(bitmap_get(slab_data->bitmap, &bin_info->bitmap_info, regind));
bitmap_unset(slab_data->bitmap, &bin_info->bitmap_info, regind);
slab_data->nfree++;
}
static void
arena_nactive_add(arena_t *arena, size_t add_pages)
{
arena->nactive += add_pages;
}
static void
arena_nactive_sub(arena_t *arena, size_t sub_pages)
{
assert(arena->nactive >= sub_pages);
arena->nactive -= sub_pages;
}
static void
arena_large_malloc_stats_update(arena_t *arena, size_t usize)
{
szind_t index = size2index(usize);
szind_t hindex = (index >= NBINS) ? index - NBINS : 0;
cassert(config_stats);
arena->stats.nmalloc_large++;
arena->stats.allocated_large += usize;
arena->stats.lstats[hindex].nmalloc++;
arena->stats.lstats[hindex].nrequests++;
arena->stats.lstats[hindex].curlextents++;
}
static void
arena_large_malloc_stats_update_undo(arena_t *arena, size_t usize)
{
szind_t index = size2index(usize);
szind_t hindex = (index >= NBINS) ? index - NBINS : 0;
cassert(config_stats);
arena->stats.nmalloc_large--;
arena->stats.allocated_large -= usize;
arena->stats.lstats[hindex].nmalloc--;
arena->stats.lstats[hindex].nrequests--;
arena->stats.lstats[hindex].curlextents--;
}
static void
arena_large_dalloc_stats_update(arena_t *arena, size_t usize)
{
szind_t index = size2index(usize);
szind_t hindex = (index >= NBINS) ? index - NBINS : 0;
cassert(config_stats);
arena->stats.ndalloc_large++;
arena->stats.allocated_large -= usize;
arena->stats.lstats[hindex].ndalloc++;
arena->stats.lstats[hindex].curlextents--;
}
static void
arena_large_reset_stats_cancel(arena_t *arena, size_t usize)
{
szind_t index = size2index(usize);
szind_t hindex = (index >= NBINS) ? index - NBINS : 0;
cassert(config_stats);
arena->stats.ndalloc_large++;
arena->stats.lstats[hindex].ndalloc--;
}
static void
arena_large_ralloc_stats_update(arena_t *arena, size_t oldusize, size_t usize)
{
arena_large_dalloc_stats_update(arena, oldusize);
arena_large_malloc_stats_update(arena, usize);
}
static extent_t *
arena_extent_alloc_large_hard(tsdn_t *tsdn, arena_t *arena,
extent_hooks_t **r_extent_hooks, size_t usize, size_t alignment, bool *zero)
{
extent_t *extent;
bool commit = true;
extent = extent_alloc_wrapper(tsdn, arena, r_extent_hooks, NULL, usize,
large_pad, alignment, zero, &commit, false);
if (extent == NULL) {
/* Revert optimistic stats updates. */
malloc_mutex_lock(tsdn, &arena->lock);
if (config_stats) {
arena_large_malloc_stats_update_undo(arena, usize);
arena->stats.mapped -= usize;
}
arena_nactive_sub(arena, (usize + large_pad) >> LG_PAGE);
malloc_mutex_unlock(tsdn, &arena->lock);
}
return (extent);
}
extent_t *
arena_extent_alloc_large(tsdn_t *tsdn, arena_t *arena, size_t usize,
size_t alignment, bool *zero)
{
extent_t *extent;
extent_hooks_t *extent_hooks = EXTENT_HOOKS_INITIALIZER;
malloc_mutex_lock(tsdn, &arena->lock);
/* Optimistically update stats. */
if (config_stats) {
arena_large_malloc_stats_update(arena, usize);
arena->stats.mapped += usize;
}
arena_nactive_add(arena, (usize + large_pad) >> LG_PAGE);
extent = arena_extent_cache_alloc_locked(tsdn, arena, &extent_hooks,
NULL, usize, large_pad, alignment, zero, false);
malloc_mutex_unlock(tsdn, &arena->lock);
if (extent == NULL) {
extent = arena_extent_alloc_large_hard(tsdn, arena,
&extent_hooks, usize, alignment, zero);
}
return (extent);
}
void
arena_extent_dalloc_large(tsdn_t *tsdn, arena_t *arena, extent_t *extent,
bool locked)
{
extent_hooks_t *extent_hooks = EXTENT_HOOKS_INITIALIZER;
if (!locked)
malloc_mutex_lock(tsdn, &arena->lock);
else
malloc_mutex_assert_owner(tsdn, &arena->lock);
if (config_stats) {
arena_large_dalloc_stats_update(arena,
extent_usize_get(extent));
arena->stats.mapped -= extent_size_get(extent);
}
arena_nactive_sub(arena, extent_size_get(extent) >> LG_PAGE);
arena_extent_cache_dalloc_locked(tsdn, arena, &extent_hooks, extent);
if (!locked)
malloc_mutex_unlock(tsdn, &arena->lock);
}
void
arena_extent_ralloc_large_shrink(tsdn_t *tsdn, arena_t *arena, extent_t *extent,
size_t oldusize)
{
size_t usize = extent_usize_get(extent);
size_t udiff = oldusize - usize;
malloc_mutex_lock(tsdn, &arena->lock);
if (config_stats) {
arena_large_ralloc_stats_update(arena, oldusize, usize);
arena->stats.mapped -= udiff;
}
arena_nactive_sub(arena, udiff >> LG_PAGE);
malloc_mutex_unlock(tsdn, &arena->lock);
}
void
arena_extent_ralloc_large_expand(tsdn_t *tsdn, arena_t *arena, extent_t *extent,
size_t oldusize)
{
size_t usize = extent_usize_get(extent);
size_t udiff = usize - oldusize;
malloc_mutex_lock(tsdn, &arena->lock);
if (config_stats) {
arena_large_ralloc_stats_update(arena, oldusize, usize);
arena->stats.mapped += udiff;
}
arena_nactive_add(arena, udiff >> LG_PAGE);
malloc_mutex_unlock(tsdn, &arena->lock);
}
static void
arena_decay_deadline_init(arena_t *arena)
{
/*
* Generate a new deadline that is uniformly random within the next
* epoch after the current one.
*/
nstime_copy(&arena->decay.deadline, &arena->decay.epoch);
nstime_add(&arena->decay.deadline, &arena->decay.interval);
if (arena->decay.time > 0) {
nstime_t jitter;
nstime_init(&jitter, prng_range_u64(&arena->decay.jitter_state,
nstime_ns(&arena->decay.interval)));
nstime_add(&arena->decay.deadline, &jitter);
}
}
static bool
arena_decay_deadline_reached(const arena_t *arena, const nstime_t *time)
{
return (nstime_compare(&arena->decay.deadline, time) <= 0);
}
static size_t
arena_decay_backlog_npages_limit(const arena_t *arena)
{
static const uint64_t h_steps[] = {
#define STEP(step, h, x, y) \
h,
SMOOTHSTEP
#undef STEP
};
uint64_t sum;
size_t npages_limit_backlog;
unsigned i;
/*
* For each element of decay_backlog, multiply by the corresponding
* fixed-point smoothstep decay factor. Sum the products, then divide
* to round down to the nearest whole number of pages.
*/
sum = 0;
for (i = 0; i < SMOOTHSTEP_NSTEPS; i++)
sum += arena->decay.backlog[i] * h_steps[i];
npages_limit_backlog = (size_t)(sum >> SMOOTHSTEP_BFP);
return (npages_limit_backlog);
}
static void
arena_decay_backlog_update_last(arena_t *arena)
{
size_t ndirty_delta = (arena->ndirty > arena->decay.ndirty) ?
arena->ndirty - arena->decay.ndirty : 0;
arena->decay.backlog[SMOOTHSTEP_NSTEPS-1] = ndirty_delta;
}
static void
arena_decay_backlog_update(arena_t *arena, uint64_t nadvance_u64)
{
if (nadvance_u64 >= SMOOTHSTEP_NSTEPS) {
memset(arena->decay.backlog, 0, (SMOOTHSTEP_NSTEPS-1) *
sizeof(size_t));
} else {
size_t nadvance_z = (size_t)nadvance_u64;
assert((uint64_t)nadvance_z == nadvance_u64);
memmove(arena->decay.backlog, &arena->decay.backlog[nadvance_z],
(SMOOTHSTEP_NSTEPS - nadvance_z) * sizeof(size_t));
if (nadvance_z > 1) {
memset(&arena->decay.backlog[SMOOTHSTEP_NSTEPS -
nadvance_z], 0, (nadvance_z-1) * sizeof(size_t));
}
}
arena_decay_backlog_update_last(arena);
}
static void
arena_decay_epoch_advance_helper(arena_t *arena, const nstime_t *time)
{
uint64_t nadvance_u64;
nstime_t delta;
assert(arena_decay_deadline_reached(arena, time));
nstime_copy(&delta, time);
nstime_subtract(&delta, &arena->decay.epoch);
nadvance_u64 = nstime_divide(&delta, &arena->decay.interval);
assert(nadvance_u64 > 0);
/* Add nadvance_u64 decay intervals to epoch. */
nstime_copy(&delta, &arena->decay.interval);
nstime_imultiply(&delta, nadvance_u64);
nstime_add(&arena->decay.epoch, &delta);
/* Set a new deadline. */
arena_decay_deadline_init(arena);
/* Update the backlog. */
arena_decay_backlog_update(arena, nadvance_u64);
}
static void
arena_decay_epoch_advance_purge(tsdn_t *tsdn, arena_t *arena)
{
size_t ndirty_limit = arena_decay_backlog_npages_limit(arena);
if (arena->ndirty > ndirty_limit)
arena_purge_to_limit(tsdn, arena, ndirty_limit);
arena->decay.ndirty = arena->ndirty;
}
static void
arena_decay_epoch_advance(tsdn_t *tsdn, arena_t *arena, const nstime_t *time)
{
arena_decay_epoch_advance_helper(arena, time);
arena_decay_epoch_advance_purge(tsdn, arena);
}
static void
arena_decay_init(arena_t *arena, ssize_t decay_time)
{
arena->decay.time = decay_time;
if (decay_time > 0) {
nstime_init2(&arena->decay.interval, decay_time, 0);
nstime_idivide(&arena->decay.interval, SMOOTHSTEP_NSTEPS);
}
nstime_init(&arena->decay.epoch, 0);
nstime_update(&arena->decay.epoch);
arena->decay.jitter_state = (uint64_t)(uintptr_t)arena;
arena_decay_deadline_init(arena);
arena->decay.ndirty = arena->ndirty;
memset(arena->decay.backlog, 0, SMOOTHSTEP_NSTEPS * sizeof(size_t));
}
static bool
arena_decay_time_valid(ssize_t decay_time)
{
if (decay_time < -1)
return (false);
if (decay_time == -1 || (uint64_t)decay_time <= NSTIME_SEC_MAX)
return (true);
return (false);
}
ssize_t
arena_decay_time_get(tsdn_t *tsdn, arena_t *arena)
{
ssize_t decay_time;
malloc_mutex_lock(tsdn, &arena->lock);
decay_time = arena->decay.time;
malloc_mutex_unlock(tsdn, &arena->lock);
return (decay_time);
}
bool
arena_decay_time_set(tsdn_t *tsdn, arena_t *arena, ssize_t decay_time)
{
if (!arena_decay_time_valid(decay_time))
return (true);
malloc_mutex_lock(tsdn, &arena->lock);
/*
* Restart decay backlog from scratch, which may cause many dirty pages
* to be immediately purged. It would conceptually be possible to map
* the old backlog onto the new backlog, but there is no justification
* for such complexity since decay_time changes are intended to be
* infrequent, either between the {-1, 0, >0} states, or a one-time
* arbitrary change during initial arena configuration.
*/
arena_decay_init(arena, decay_time);
arena_maybe_purge(tsdn, arena);
malloc_mutex_unlock(tsdn, &arena->lock);
return (false);
}
static void
arena_maybe_purge_helper(tsdn_t *tsdn, arena_t *arena)
{
nstime_t time;
/* Purge all or nothing if the option is disabled. */
if (arena->decay.time <= 0) {
if (arena->decay.time == 0)
arena_purge_to_limit(tsdn, arena, 0);
return;
}
nstime_init(&time, 0);
nstime_update(&time);
if (unlikely(!nstime_monotonic() && nstime_compare(&arena->decay.epoch,
&time) > 0)) {
/*
* Time went backwards. Move the epoch back in time and
* generate a new deadline, with the expectation that time
* typically flows forward for long enough periods of time that
* epochs complete. Unfortunately, this strategy is susceptible
* to clock jitter triggering premature epoch advances, but
* clock jitter estimation and compensation isn't feasible here
* because calls into this code are event-driven.
*/
nstime_copy(&arena->decay.epoch, &time);
arena_decay_deadline_init(arena);
} else {
/* Verify that time does not go backwards. */
assert(nstime_compare(&arena->decay.epoch, &time) <= 0);
}
/*
* If the deadline has been reached, advance to the current epoch and
* purge to the new limit if necessary. Note that dirty pages created
* during the current epoch are not subject to purge until a future
* epoch, so as a result purging only happens during epoch advances.
*/
if (arena_decay_deadline_reached(arena, &time))
arena_decay_epoch_advance(tsdn, arena, &time);
}
void
arena_maybe_purge(tsdn_t *tsdn, arena_t *arena)
{
malloc_mutex_assert_owner(tsdn, &arena->lock);
/* Don't recursively purge. */
if (arena->purging)
return;
arena_maybe_purge_helper(tsdn, arena);
}
static size_t
arena_dirty_count(tsdn_t *tsdn, arena_t *arena)
{
extent_t *extent;
size_t ndirty = 0;
malloc_mutex_assert_owner(tsdn, &arena->extents_mtx);
for (extent = qr_next(&arena->extents_dirty, qr_link); extent !=
&arena->extents_dirty; extent = qr_next(extent, qr_link))
ndirty += extent_size_get(extent) >> LG_PAGE;
return (ndirty);
}
static size_t
arena_stash_dirty(tsdn_t *tsdn, arena_t *arena, extent_hooks_t **r_extent_hooks,
size_t ndirty_limit, extent_t *purge_extents_sentinel)
{
extent_t *extent, *next;
size_t nstashed = 0;
malloc_mutex_lock(tsdn, &arena->extents_mtx);
/* Stash extents according to ndirty_limit. */
for (extent = qr_next(&arena->extents_dirty, qr_link); extent !=
&arena->extents_dirty; extent = next) {
size_t npages;
bool zero, commit;
UNUSED extent_t *textent;
npages = extent_size_get(extent) >> LG_PAGE;
if (arena->ndirty - (nstashed + npages) < ndirty_limit)
break;
next = qr_next(extent, qr_link);
/* Allocate. */
zero = false;
commit = false;
textent = extent_alloc_cache_locked(tsdn, arena, r_extent_hooks,
extent_base_get(extent), extent_size_get(extent), 0, PAGE,
&zero, &commit, false);
assert(textent == extent);
assert(zero == extent_zeroed_get(extent));
extent_ring_remove(extent);
extent_ring_insert(purge_extents_sentinel, extent);
nstashed += npages;
}
malloc_mutex_unlock(tsdn, &arena->extents_mtx);
return (nstashed);
}
static size_t
arena_purge_stashed(tsdn_t *tsdn, arena_t *arena,
extent_hooks_t **r_extent_hooks, extent_t *purge_extents_sentinel)
{
UNUSED size_t nmadvise;
size_t npurged;
extent_t *extent, *next;
if (config_stats)
nmadvise = 0;
npurged = 0;
for (extent = qr_next(purge_extents_sentinel, qr_link); extent !=
purge_extents_sentinel; extent = next) {
if (config_stats)
nmadvise++;
npurged += extent_size_get(extent) >> LG_PAGE;
next = qr_next(extent, qr_link);
extent_ring_remove(extent);
extent_dalloc_wrapper(tsdn, arena, r_extent_hooks, extent);
}
if (config_stats) {
arena->stats.nmadvise += nmadvise;
arena->stats.purged += npurged;
}
return (npurged);
}
/*
* ndirty_limit: Purge as many dirty extents as possible without violating the
* invariant: (arena->ndirty >= ndirty_limit)
*/
static void
arena_purge_to_limit(tsdn_t *tsdn, arena_t *arena, size_t ndirty_limit)
{
extent_hooks_t *extent_hooks = extent_hooks_get(arena);
size_t npurge, npurged;
extent_t purge_extents_sentinel;
arena->purging = true;
/*
* Calls to arena_dirty_count() are disabled even for debug builds
* because overhead grows nonlinearly as memory usage increases.
*/
if (false && config_debug) {
size_t ndirty = arena_dirty_count(tsdn, arena);
assert(ndirty == arena->ndirty);
}
extent_init(&purge_extents_sentinel, arena, NULL, 0, 0, 0, false, false,
false, false);
npurge = arena_stash_dirty(tsdn, arena, &extent_hooks, ndirty_limit,
&purge_extents_sentinel);
if (npurge == 0)
goto label_return;
npurged = arena_purge_stashed(tsdn, arena, &extent_hooks,
&purge_extents_sentinel);
assert(npurged == npurge);
if (config_stats)
arena->stats.npurge++;
label_return:
arena->purging = false;
}
void
arena_purge(tsdn_t *tsdn, arena_t *arena, bool all)
{
malloc_mutex_lock(tsdn, &arena->lock);
if (all)
arena_purge_to_limit(tsdn, arena, 0);
else
arena_maybe_purge(tsdn, arena);
malloc_mutex_unlock(tsdn, &arena->lock);
}
static void
arena_slab_dalloc(tsdn_t *tsdn, arena_t *arena, extent_t *slab)
{
extent_hooks_t *extent_hooks = EXTENT_HOOKS_INITIALIZER;
arena_nactive_sub(arena, extent_size_get(slab) >> LG_PAGE);
arena_extent_cache_dalloc_locked(tsdn, arena, &extent_hooks, slab);
}
static void
arena_bin_slabs_nonfull_insert(arena_bin_t *bin, extent_t *slab)
{
assert(extent_slab_data_get(slab)->nfree > 0);
extent_heap_insert(&bin->slabs_nonfull, slab);
}
static void
arena_bin_slabs_nonfull_remove(arena_bin_t *bin, extent_t *slab)
{
extent_heap_remove(&bin->slabs_nonfull, slab);
}
static extent_t *
arena_bin_slabs_nonfull_tryget(arena_bin_t *bin)
{
extent_t *slab = extent_heap_remove_first(&bin->slabs_nonfull);
if (slab == NULL)
return (NULL);
if (config_stats)
bin->stats.reslabs++;
return (slab);
}
static void
arena_bin_slabs_full_insert(arena_bin_t *bin, extent_t *slab)
{
assert(extent_slab_data_get(slab)->nfree == 0);
extent_ring_insert(&bin->slabs_full, slab);
}
static void
arena_bin_slabs_full_remove(extent_t *slab)
{
extent_ring_remove(slab);
}
void
arena_reset(tsd_t *tsd, arena_t *arena)
{
unsigned i;
extent_t *extent;
/*
* Locking in this function is unintuitive. The caller guarantees that
* no concurrent operations are happening in this arena, but there are
* still reasons that some locking is necessary:
*
* - Some of the functions in the transitive closure of calls assume
* appropriate locks are held, and in some cases these locks are
* temporarily dropped to avoid lock order reversal or deadlock due to
* reentry.
* - mallctl("epoch", ...) may concurrently refresh stats. While
* strictly speaking this is a "concurrent operation", disallowing
* stats refreshes would impose an inconvenient burden.
*/
/* Large allocations. */
malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx);
for (extent = ql_last(&arena->large, ql_link); extent != NULL; extent =
ql_last(&arena->large, ql_link)) {
void *ptr = extent_base_get(extent);
size_t usize;
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx);
if (config_stats || (config_prof && opt_prof))
usize = isalloc(tsd_tsdn(tsd), extent, ptr);
/* Remove large allocation from prof sample set. */
if (config_prof && opt_prof)
prof_free(tsd, extent, ptr, usize);
large_dalloc(tsd_tsdn(tsd), extent);
malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx);
/* Cancel out unwanted effects on stats. */
if (config_stats)
arena_large_reset_stats_cancel(arena, usize);
}
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx);
malloc_mutex_lock(tsd_tsdn(tsd), &arena->lock);
/* Bins. */
for (i = 0; i < NBINS; i++) {
extent_t *slab;
arena_bin_t *bin = &arena->bins[i];
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
if (bin->slabcur != NULL) {
slab = bin->slabcur;
bin->slabcur = NULL;
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_slab_dalloc(tsd_tsdn(tsd), arena, slab);
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
}
while ((slab = extent_heap_remove_first(&bin->slabs_nonfull)) !=
NULL) {
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_slab_dalloc(tsd_tsdn(tsd), arena, slab);
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
}
for (slab = qr_next(&bin->slabs_full, qr_link); slab !=
&bin->slabs_full; slab = qr_next(&bin->slabs_full,
qr_link)) {
arena_bin_slabs_full_remove(slab);
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_slab_dalloc(tsd_tsdn(tsd), arena, slab);
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
}
if (config_stats) {
bin->stats.curregs = 0;
bin->stats.curslabs = 0;
}
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
}
assert(!arena->purging);
arena->nactive = 0;
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->lock);
}
static extent_t *
arena_slab_alloc_hard(tsdn_t *tsdn, arena_t *arena,
extent_hooks_t **r_extent_hooks, const arena_bin_info_t *bin_info)
{
extent_t *slab;
bool zero, commit;
zero = false;
commit = true;
malloc_mutex_unlock(tsdn, &arena->lock);
slab = extent_alloc_wrapper(tsdn, arena, r_extent_hooks, NULL,
bin_info->slab_size, 0, PAGE, &zero, &commit, true);
malloc_mutex_lock(tsdn, &arena->lock);
return (slab);
}
static extent_t *
arena_slab_alloc(tsdn_t *tsdn, arena_t *arena, szind_t binind,
const arena_bin_info_t *bin_info)
{
extent_t *slab;
arena_slab_data_t *slab_data;
extent_hooks_t *extent_hooks = EXTENT_HOOKS_INITIALIZER;
bool zero = false;
slab = arena_extent_cache_alloc_locked(tsdn, arena, &extent_hooks, NULL,
bin_info->slab_size, 0, PAGE, &zero, true);
if (slab == NULL) {
slab = arena_slab_alloc_hard(tsdn, arena, &extent_hooks,
bin_info);
if (slab == NULL)
return (NULL);
}
assert(extent_slab_get(slab));
arena_nactive_add(arena, extent_size_get(slab) >> LG_PAGE);
/* Initialize slab internals. */
slab_data = extent_slab_data_get(slab);
slab_data->binind = binind;
slab_data->nfree = bin_info->nregs;
bitmap_init(slab_data->bitmap, &bin_info->bitmap_info);
if (config_stats)
arena->stats.mapped += extent_size_get(slab);
return (slab);
}
static extent_t *
arena_bin_nonfull_slab_get(tsdn_t *tsdn, arena_t *arena, arena_bin_t *bin,
szind_t binind)
{
extent_t *slab;
const arena_bin_info_t *bin_info;
/* Look for a usable slab. */
slab = arena_bin_slabs_nonfull_tryget(bin);
if (slab != NULL)
return (slab);
/* No existing slabs have any space available. */
bin_info = &arena_bin_info[binind];
/* Allocate a new slab. */
malloc_mutex_unlock(tsdn, &bin->lock);
/******************************/
malloc_mutex_lock(tsdn, &arena->lock);
slab = arena_slab_alloc(tsdn, arena, binind, bin_info);
malloc_mutex_unlock(tsdn, &arena->lock);
/********************************/
malloc_mutex_lock(tsdn, &bin->lock);
if (slab != NULL) {
if (config_stats) {
bin->stats.nslabs++;
bin->stats.curslabs++;
}
return (slab);
}
/*
* arena_slab_alloc() failed, but another thread may have made
* sufficient memory available while this one dropped bin->lock above,
* so search one more time.
*/
slab = arena_bin_slabs_nonfull_tryget(bin);
if (slab != NULL)
return (slab);
return (NULL);
}
/* Re-fill bin->slabcur, then call arena_slab_reg_alloc(). */
static void *
arena_bin_malloc_hard(tsdn_t *tsdn, arena_t *arena, arena_bin_t *bin,
szind_t binind)
{
const arena_bin_info_t *bin_info;
extent_t *slab;
bin_info = &arena_bin_info[binind];
if (bin->slabcur != NULL) {
arena_bin_slabs_full_insert(bin, bin->slabcur);
bin->slabcur = NULL;
}
slab = arena_bin_nonfull_slab_get(tsdn, arena, bin, binind);
if (bin->slabcur != NULL) {
/*
* Another thread updated slabcur while this one ran without the
* bin lock in arena_bin_nonfull_slab_get().
*/
if (extent_slab_data_get(bin->slabcur)->nfree > 0) {
void *ret = arena_slab_reg_alloc(tsdn, bin->slabcur,
bin_info);
if (slab != NULL) {
/*
* arena_slab_alloc() may have allocated slab,
* or it may have been pulled from
* slabs_nonfull. Therefore it is unsafe to
* make any assumptions about how slab has
* previously been used, and
* arena_bin_lower_slab() must be called, as if
* a region were just deallocated from the slab.
*/
if (extent_slab_data_get(slab)->nfree ==
bin_info->nregs) {
arena_dalloc_bin_slab(tsdn, arena, slab,
bin);
} else {
arena_bin_lower_slab(tsdn, arena, slab,
bin);
}
}
return (ret);
}
arena_bin_slabs_full_insert(bin, bin->slabcur);
bin->slabcur = NULL;
}
if (slab == NULL)
return (NULL);
bin->slabcur = slab;
assert(extent_slab_data_get(bin->slabcur)->nfree > 0);
return (arena_slab_reg_alloc(tsdn, slab, bin_info));
}
void
arena_tcache_fill_small(tsdn_t *tsdn, arena_t *arena, tcache_bin_t *tbin,
szind_t binind, uint64_t prof_accumbytes)
{
unsigned i, nfill;
arena_bin_t *bin;
assert(tbin->ncached == 0);
if (config_prof && arena_prof_accum(tsdn, arena, prof_accumbytes))
prof_idump(tsdn);
bin = &arena->bins[binind];
malloc_mutex_lock(tsdn, &bin->lock);
for (i = 0, nfill = (tcache_bin_info[binind].ncached_max >>
tbin->lg_fill_div); i < nfill; i++) {
extent_t *slab;
void *ptr;
if ((slab = bin->slabcur) != NULL &&
extent_slab_data_get(slab)->nfree > 0) {
ptr = arena_slab_reg_alloc(tsdn, slab,
&arena_bin_info[binind]);
} else
ptr = arena_bin_malloc_hard(tsdn, arena, bin, binind);
if (ptr == NULL) {
/*
* OOM. tbin->avail isn't yet filled down to its first
* element, so the successful allocations (if any) must
* be moved just before tbin->avail before bailing out.
*/
if (i > 0) {
memmove(tbin->avail - i, tbin->avail - nfill,
i * sizeof(void *));
}
break;
}
if (config_fill && unlikely(opt_junk_alloc)) {
arena_alloc_junk_small(ptr, &arena_bin_info[binind],
true);
}
/* Insert such that low regions get used first. */
*(tbin->avail - nfill + i) = ptr;
}
if (config_stats) {
bin->stats.nmalloc += i;
bin->stats.nrequests += tbin->tstats.nrequests;
bin->stats.curregs += i;
bin->stats.nfills++;
tbin->tstats.nrequests = 0;
}
malloc_mutex_unlock(tsdn, &bin->lock);
tbin->ncached = i;
arena_decay_tick(tsdn, arena);
}
void
arena_alloc_junk_small(void *ptr, const arena_bin_info_t *bin_info, bool zero)
{
if (!zero)
memset(ptr, JEMALLOC_ALLOC_JUNK, bin_info->reg_size);
}
#ifdef JEMALLOC_JET
#undef arena_dalloc_junk_small
#define arena_dalloc_junk_small JEMALLOC_N(n_arena_dalloc_junk_small)
#endif
void
arena_dalloc_junk_small(void *ptr, const arena_bin_info_t *bin_info)
{
memset(ptr, JEMALLOC_FREE_JUNK, bin_info->reg_size);
}
#ifdef JEMALLOC_JET
#undef arena_dalloc_junk_small
#define arena_dalloc_junk_small JEMALLOC_N(arena_dalloc_junk_small)
arena_dalloc_junk_small_t *arena_dalloc_junk_small =
JEMALLOC_N(n_arena_dalloc_junk_small);
#endif
static void *
arena_malloc_small(tsdn_t *tsdn, arena_t *arena, szind_t binind, bool zero)
{
void *ret;
arena_bin_t *bin;
size_t usize;
extent_t *slab;
assert(binind < NBINS);
bin = &arena->bins[binind];
usize = index2size(binind);
malloc_mutex_lock(tsdn, &bin->lock);
if ((slab = bin->slabcur) != NULL && extent_slab_data_get(slab)->nfree >
0)
ret = arena_slab_reg_alloc(tsdn, slab, &arena_bin_info[binind]);
else
ret = arena_bin_malloc_hard(tsdn, arena, bin, binind);
if (ret == NULL) {
malloc_mutex_unlock(tsdn, &bin->lock);
return (NULL);
}
if (config_stats) {
bin->stats.nmalloc++;
bin->stats.nrequests++;
bin->stats.curregs++;
}
malloc_mutex_unlock(tsdn, &bin->lock);
if (config_prof && arena_prof_accum(tsdn, arena, usize))
prof_idump(tsdn);
if (!zero) {
if (config_fill) {
if (unlikely(opt_junk_alloc)) {
arena_alloc_junk_small(ret,
&arena_bin_info[binind], false);
} else if (unlikely(opt_zero))
memset(ret, 0, usize);
}
} else {
if (config_fill && unlikely(opt_junk_alloc)) {
arena_alloc_junk_small(ret, &arena_bin_info[binind],
true);
}
memset(ret, 0, usize);
}
arena_decay_tick(tsdn, arena);
return (ret);
}
void *
arena_malloc_hard(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind,
bool zero)
{
assert(!tsdn_null(tsdn) || arena != NULL);
if (likely(!tsdn_null(tsdn)))
arena = arena_choose(tsdn_tsd(tsdn), arena);
if (unlikely(arena == NULL))
return (NULL);
if (likely(size <= SMALL_MAXCLASS))
return (arena_malloc_small(tsdn, arena, ind, zero));
return (large_malloc(tsdn, arena, index2size(ind), zero));
}
void *
arena_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment,
bool zero, tcache_t *tcache)
{
void *ret;
if (usize <= SMALL_MAXCLASS && (alignment < PAGE || (alignment == PAGE
&& (usize & PAGE_MASK) == 0))) {
/* Small; alignment doesn't require special slab placement. */
ret = arena_malloc(tsdn, arena, usize, size2index(usize), zero,
tcache, true);
} else {
if (likely(alignment <= CACHELINE))
ret = large_malloc(tsdn, arena, usize, zero);
else
ret = large_palloc(tsdn, arena, usize, alignment, zero);
}
return (ret);
}
void
arena_prof_promote(tsdn_t *tsdn, extent_t *extent, const void *ptr,
size_t usize)
{
arena_t *arena = extent_arena_get(extent);
cassert(config_prof);
assert(ptr != NULL);
assert(isalloc(tsdn, extent, ptr) == LARGE_MINCLASS);
assert(usize <= SMALL_MAXCLASS);
extent_usize_set(extent, usize);
/*
* Cancel out as much of the excessive prof_accumbytes increase as
* possible without underflowing. Interval-triggered dumps occur
* slightly more often than intended as a result of incomplete
* canceling.
*/
malloc_mutex_lock(tsdn, &arena->lock);
if (arena->prof_accumbytes >= LARGE_MINCLASS - usize)
arena->prof_accumbytes -= LARGE_MINCLASS - usize;
else
arena->prof_accumbytes = 0;
malloc_mutex_unlock(tsdn, &arena->lock);
assert(isalloc(tsdn, extent, ptr) == usize);
}
static size_t
arena_prof_demote(tsdn_t *tsdn, extent_t *extent, const void *ptr)
{
cassert(config_prof);
assert(ptr != NULL);
extent_usize_set(extent, LARGE_MINCLASS);
assert(isalloc(tsdn, extent, ptr) == LARGE_MINCLASS);
return (LARGE_MINCLASS);
}
void
arena_dalloc_promoted(tsdn_t *tsdn, extent_t *extent, void *ptr,
tcache_t *tcache, bool slow_path)
{
size_t usize;
cassert(config_prof);
assert(opt_prof);
usize = arena_prof_demote(tsdn, extent, ptr);
if (usize <= tcache_maxclass) {
tcache_dalloc_large(tsdn_tsd(tsdn), tcache, ptr, usize,
slow_path);
} else
large_dalloc(tsdn, extent);
}
static void
arena_dissociate_bin_slab(extent_t *slab, arena_bin_t *bin)
{
/* Dissociate slab from bin. */
if (slab == bin->slabcur)
bin->slabcur = NULL;
else {
szind_t binind = extent_slab_data_get(slab)->binind;
const arena_bin_info_t *bin_info = &arena_bin_info[binind];
/*
* The following block's conditional is necessary because if the
* slab only contains one region, then it never gets inserted
* into the non-full slabs heap.
*/
if (bin_info->nregs == 1)
arena_bin_slabs_full_remove(slab);
else
arena_bin_slabs_nonfull_remove(bin, slab);
}
}
static void
arena_dalloc_bin_slab(tsdn_t *tsdn, arena_t *arena, extent_t *slab,
arena_bin_t *bin)
{
assert(slab != bin->slabcur);
malloc_mutex_unlock(tsdn, &bin->lock);
/******************************/
malloc_mutex_lock(tsdn, &arena->lock);
arena_slab_dalloc(tsdn, arena, slab);
malloc_mutex_unlock(tsdn, &arena->lock);
/****************************/
malloc_mutex_lock(tsdn, &bin->lock);
if (config_stats)
bin->stats.curslabs--;
}
static void
arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena, extent_t *slab,
arena_bin_t *bin)
{
assert(extent_slab_data_get(slab)->nfree > 0);
/*
* Make sure that if bin->slabcur is non-NULL, it refers to the
* oldest/lowest non-full slab. It is okay to NULL slabcur out rather
* than proactively keeping it pointing at the oldest/lowest non-full
* slab.
*/
if (bin->slabcur != NULL && extent_snad_comp(bin->slabcur, slab) > 0) {
/* Switch slabcur. */
if (extent_slab_data_get(bin->slabcur)->nfree > 0)
arena_bin_slabs_nonfull_insert(bin, bin->slabcur);
else
arena_bin_slabs_full_insert(bin, bin->slabcur);
bin->slabcur = slab;
if (config_stats)
bin->stats.reslabs++;
} else
arena_bin_slabs_nonfull_insert(bin, slab);
}
static void
arena_dalloc_bin_locked_impl(tsdn_t *tsdn, arena_t *arena, extent_t *slab,
void *ptr, bool junked)
{
arena_slab_data_t *slab_data = extent_slab_data_get(slab);
szind_t binind = slab_data->binind;
arena_bin_t *bin = &arena->bins[binind];
const arena_bin_info_t *bin_info = &arena_bin_info[binind];
if (!junked && config_fill && unlikely(opt_junk_free))
arena_dalloc_junk_small(ptr, bin_info);
arena_slab_reg_dalloc(tsdn, slab, slab_data, ptr);
if (slab_data->nfree == bin_info->nregs) {
arena_dissociate_bin_slab(slab, bin);
arena_dalloc_bin_slab(tsdn, arena, slab, bin);
} else if (slab_data->nfree == 1 && slab != bin->slabcur) {
arena_bin_slabs_full_remove(slab);
arena_bin_lower_slab(tsdn, arena, slab, bin);
}
if (config_stats) {
bin->stats.ndalloc++;
bin->stats.curregs--;
}
}
void
arena_dalloc_bin_junked_locked(tsdn_t *tsdn, arena_t *arena, extent_t *extent,
void *ptr)
{
arena_dalloc_bin_locked_impl(tsdn, arena, extent, ptr, true);
}
static void
arena_dalloc_bin(tsdn_t *tsdn, arena_t *arena, extent_t *extent, void *ptr)
{
arena_bin_t *bin = &arena->bins[extent_slab_data_get(extent)->binind];
malloc_mutex_lock(tsdn, &bin->lock);
arena_dalloc_bin_locked_impl(tsdn, arena, extent, ptr, false);
malloc_mutex_unlock(tsdn, &bin->lock);
}
void
arena_dalloc_small(tsdn_t *tsdn, arena_t *arena, extent_t *extent, void *ptr)
{
arena_dalloc_bin(tsdn, arena, extent, ptr);
arena_decay_tick(tsdn, arena);
}
bool
arena_ralloc_no_move(tsdn_t *tsdn, extent_t *extent, void *ptr, size_t oldsize,
size_t size, size_t extra, bool zero)
{
size_t usize_min, usize_max;
/* Calls with non-zero extra had to clamp extra. */
assert(extra == 0 || size + extra <= LARGE_MAXCLASS);
if (unlikely(size > LARGE_MAXCLASS))
return (true);
usize_min = s2u(size);
usize_max = s2u(size + extra);
if (likely(oldsize <= SMALL_MAXCLASS && usize_min <= SMALL_MAXCLASS)) {
/*
* Avoid moving the allocation if the size class can be left the
* same.
*/
assert(arena_bin_info[size2index(oldsize)].reg_size ==
oldsize);
if ((usize_max > SMALL_MAXCLASS || size2index(usize_max) !=
size2index(oldsize)) && (size > oldsize || usize_max <
oldsize))
return (true);
arena_decay_tick(tsdn, extent_arena_get(extent));
return (false);
} else if (oldsize >= LARGE_MINCLASS && usize_max >= LARGE_MINCLASS) {
return (large_ralloc_no_move(tsdn, extent, usize_min, usize_max,
zero));
}
return (true);
}
static void *
arena_ralloc_move_helper(tsdn_t *tsdn, arena_t *arena, size_t usize,
size_t alignment, bool zero, tcache_t *tcache)
{
if (alignment == 0)
return (arena_malloc(tsdn, arena, usize, size2index(usize),
zero, tcache, true));
usize = sa2u(usize, alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS))
return (NULL);
return (ipalloct(tsdn, usize, alignment, zero, tcache, arena));
}
void *
arena_ralloc(tsdn_t *tsdn, arena_t *arena, extent_t *extent, void *ptr,
size_t oldsize, size_t size, size_t alignment, bool zero, tcache_t *tcache)
{
void *ret;
size_t usize, copysize;
usize = s2u(size);
if (unlikely(usize == 0 || size > LARGE_MAXCLASS))
return (NULL);
if (likely(usize <= SMALL_MAXCLASS)) {
/* Try to avoid moving the allocation. */
if (!arena_ralloc_no_move(tsdn, extent, ptr, oldsize, usize, 0,
zero))
return (ptr);
}
if (oldsize >= LARGE_MINCLASS && usize >= LARGE_MINCLASS) {
return (large_ralloc(tsdn, arena, extent, usize, alignment,
zero, tcache));
}
/*
* size and oldsize are different enough that we need to move the
* object. In that case, fall back to allocating new space and copying.
*/
ret = arena_ralloc_move_helper(tsdn, arena, usize, alignment, zero,
tcache);
if (ret == NULL)
return (NULL);
/*
* Junk/zero-filling were already done by
* ipalloc()/arena_malloc().
*/
copysize = (usize < oldsize) ? usize : oldsize;
memcpy(ret, ptr, copysize);
isdalloct(tsdn, extent, ptr, oldsize, tcache, true);
return (ret);
}
dss_prec_t
arena_dss_prec_get(tsdn_t *tsdn, arena_t *arena)
{
dss_prec_t ret;
malloc_mutex_lock(tsdn, &arena->lock);
ret = arena->dss_prec;
malloc_mutex_unlock(tsdn, &arena->lock);
return (ret);
}
bool
arena_dss_prec_set(tsdn_t *tsdn, arena_t *arena, dss_prec_t dss_prec)
{
if (!have_dss)
return (dss_prec != dss_prec_disabled);
malloc_mutex_lock(tsdn, &arena->lock);
arena->dss_prec = dss_prec;
malloc_mutex_unlock(tsdn, &arena->lock);
return (false);
}
ssize_t
arena_decay_time_default_get(void)
{
return ((ssize_t)atomic_read_zu((size_t *)&decay_time_default));
}
bool
arena_decay_time_default_set(ssize_t decay_time)
{
if (!arena_decay_time_valid(decay_time))
return (true);
atomic_write_zu((size_t *)&decay_time_default, (size_t)decay_time);
return (false);
}
static void
arena_basic_stats_merge_locked(arena_t *arena, unsigned *nthreads,
const char **dss, ssize_t *decay_time, size_t *nactive, size_t *ndirty)
{
*nthreads += arena_nthreads_get(arena, false);
*dss = dss_prec_names[arena->dss_prec];
*decay_time = arena->decay.time;
*nactive += arena->nactive;
*ndirty += arena->ndirty;
}
void
arena_basic_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads,
const char **dss, ssize_t *decay_time, size_t *nactive, size_t *ndirty)
{
malloc_mutex_lock(tsdn, &arena->lock);
arena_basic_stats_merge_locked(arena, nthreads, dss, decay_time,
nactive, ndirty);
malloc_mutex_unlock(tsdn, &arena->lock);
}
void
arena_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads,
const char **dss, ssize_t *decay_time, size_t *nactive, size_t *ndirty,
arena_stats_t *astats, malloc_bin_stats_t *bstats,
malloc_large_stats_t *lstats)
{
unsigned i;
cassert(config_stats);
malloc_mutex_lock(tsdn, &arena->lock);
arena_basic_stats_merge_locked(arena, nthreads, dss, decay_time,
nactive, ndirty);
astats->mapped += arena->stats.mapped;
astats->retained += arena->stats.retained;
astats->npurge += arena->stats.npurge;
astats->nmadvise += arena->stats.nmadvise;
astats->purged += arena->stats.purged;
astats->metadata += arena_metadata_get(arena);
astats->allocated_large += arena->stats.allocated_large;
astats->nmalloc_large += arena->stats.nmalloc_large;
astats->ndalloc_large += arena->stats.ndalloc_large;
astats->nrequests_large += arena->stats.nrequests_large;
for (i = 0; i < NSIZES - NBINS; i++) {
lstats[i].nmalloc += arena->stats.lstats[i].nmalloc;
lstats[i].ndalloc += arena->stats.lstats[i].ndalloc;
lstats[i].nrequests += arena->stats.lstats[i].nrequests;
lstats[i].curlextents += arena->stats.lstats[i].curlextents;
}
malloc_mutex_unlock(tsdn, &arena->lock);
for (i = 0; i < NBINS; i++) {
arena_bin_t *bin = &arena->bins[i];
malloc_mutex_lock(tsdn, &bin->lock);
bstats[i].nmalloc += bin->stats.nmalloc;
bstats[i].ndalloc += bin->stats.ndalloc;
bstats[i].nrequests += bin->stats.nrequests;
bstats[i].curregs += bin->stats.curregs;
if (config_tcache) {
bstats[i].nfills += bin->stats.nfills;
bstats[i].nflushes += bin->stats.nflushes;
}
bstats[i].nslabs += bin->stats.nslabs;
bstats[i].reslabs += bin->stats.reslabs;
bstats[i].curslabs += bin->stats.curslabs;
malloc_mutex_unlock(tsdn, &bin->lock);
}
}
unsigned
arena_nthreads_get(arena_t *arena, bool internal)
{
return (atomic_read_u(&arena->nthreads[internal]));
}
void
arena_nthreads_inc(arena_t *arena, bool internal)
{
atomic_add_u(&arena->nthreads[internal], 1);
}
void
arena_nthreads_dec(arena_t *arena, bool internal)
{
atomic_sub_u(&arena->nthreads[internal], 1);
}
size_t
arena_extent_sn_next(arena_t *arena)
{
return (atomic_add_zu(&arena->extent_sn_next, 1) - 1);
}
arena_t *
arena_new(tsdn_t *tsdn, unsigned ind)
{
arena_t *arena;
unsigned i;
arena = (arena_t *)base_alloc(tsdn, sizeof(arena_t));
if (arena == NULL)
return (NULL);
arena->ind = ind;
arena->nthreads[0] = arena->nthreads[1] = 0;
if (malloc_mutex_init(&arena->lock, "arena", WITNESS_RANK_ARENA))
return (NULL);
if (config_stats && config_tcache)
ql_new(&arena->tcache_ql);
if (config_prof)
arena->prof_accumbytes = 0;
if (config_cache_oblivious) {
/*
* A nondeterministic seed based on the address of arena reduces
* the likelihood of lockstep non-uniform cache index
* utilization among identical concurrent processes, but at the
* cost of test repeatability. For debug builds, instead use a
* deterministic seed.
*/
arena->offset_state = config_debug ? ind :
(size_t)(uintptr_t)arena;
}
arena->extent_sn_next = 0;
arena->dss_prec = extent_dss_prec_get();
arena->purging = false;
arena->nactive = 0;
arena->ndirty = 0;
arena_decay_init(arena, arena_decay_time_default_get());
ql_new(&arena->large);
if (malloc_mutex_init(&arena->large_mtx, "arena_large",
WITNESS_RANK_ARENA_LARGE))
return (NULL);
for (i = 0; i < NPSIZES+1; i++) {
extent_heap_new(&arena->extents_cached[i]);
extent_heap_new(&arena->extents_retained[i]);
}
extent_init(&arena->extents_dirty, arena, NULL, 0, 0, 0, false, false,
false, false);
if (malloc_mutex_init(&arena->extents_mtx, "arena_extents",
WITNESS_RANK_ARENA_EXTENTS))
return (NULL);
arena->extent_hooks = (extent_hooks_t *)&extent_hooks_default;
ql_new(&arena->extent_cache);
if (malloc_mutex_init(&arena->extent_cache_mtx, "arena_extent_cache",
WITNESS_RANK_ARENA_EXTENT_CACHE))
return (NULL);
/* Initialize bins. */
for (i = 0; i < NBINS; i++) {
arena_bin_t *bin = &arena->bins[i];
if (malloc_mutex_init(&bin->lock, "arena_bin",
WITNESS_RANK_ARENA_BIN))
return (NULL);
bin->slabcur = NULL;
extent_heap_new(&bin->slabs_nonfull);
extent_init(&bin->slabs_full, arena, NULL, 0, 0, 0, false,
false, false, false);
if (config_stats)
memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
}
return (arena);
}
void
arena_boot(void)
{
arena_decay_time_default_set(opt_decay_time);
}
void
arena_prefork0(tsdn_t *tsdn, arena_t *arena)
{
malloc_mutex_prefork(tsdn, &arena->lock);
}
void
arena_prefork1(tsdn_t *tsdn, arena_t *arena)
{
malloc_mutex_prefork(tsdn, &arena->extents_mtx);
}
void
arena_prefork2(tsdn_t *tsdn, arena_t *arena)
{
malloc_mutex_prefork(tsdn, &arena->extent_cache_mtx);
}
void
arena_prefork3(tsdn_t *tsdn, arena_t *arena)
{
unsigned i;
for (i = 0; i < NBINS; i++)
malloc_mutex_prefork(tsdn, &arena->bins[i].lock);
malloc_mutex_prefork(tsdn, &arena->large_mtx);
}
void
arena_postfork_parent(tsdn_t *tsdn, arena_t *arena)
{
unsigned i;
malloc_mutex_postfork_parent(tsdn, &arena->large_mtx);
for (i = 0; i < NBINS; i++)
malloc_mutex_postfork_parent(tsdn, &arena->bins[i].lock);
malloc_mutex_postfork_parent(tsdn, &arena->extent_cache_mtx);
malloc_mutex_postfork_parent(tsdn, &arena->extents_mtx);
malloc_mutex_postfork_parent(tsdn, &arena->lock);
}
void
arena_postfork_child(tsdn_t *tsdn, arena_t *arena)
{
unsigned i;
malloc_mutex_postfork_child(tsdn, &arena->large_mtx);
for (i = 0; i < NBINS; i++)
malloc_mutex_postfork_child(tsdn, &arena->bins[i].lock);
malloc_mutex_postfork_child(tsdn, &arena->extent_cache_mtx);
malloc_mutex_postfork_child(tsdn, &arena->extents_mtx);
malloc_mutex_postfork_child(tsdn, &arena->lock);
}