blob: b3efd9946ff102996ec4b3fdbd2a79a16ac78ba9 [file] [log] [blame]
/*
* iperf, Copyright (c) 2014-2018, The Regents of the University of
* California, through Lawrence Berkeley National Laboratory (subject
* to receipt of any required approvals from the U.S. Dept. of
* Energy). All rights reserved.
*
* If you have questions about your rights to use or distribute this
* software, please contact Berkeley Lab's Technology Transfer
* Department at TTD@lbl.gov.
*
* NOTICE. This software is owned by the U.S. Department of Energy.
* As such, the U.S. Government has been granted for itself and others
* acting on its behalf a paid-up, nonexclusive, irrevocable,
* worldwide license in the Software to reproduce, prepare derivative
* works, and perform publicly and display publicly. Beginning five
* (5) years after the date permission to assert copyright is obtained
* from the U.S. Department of Energy, and subject to any subsequent
* five (5) year renewals, the U.S. Government is granted for itself
* and others acting on its behalf a paid-up, nonexclusive,
* irrevocable, worldwide license in the Software to reproduce,
* prepare derivative works, distribute copies to the public, perform
* publicly and display publicly, and to permit others to do so.
*
* This code is distributed under a BSD style license, see the LICENSE
* file for complete information.
*/
#include <errno.h>
#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/select.h>
#include <sys/uio.h>
#include <arpa/inet.h>
#include "iperf.h"
#include "iperf_api.h"
#include "iperf_util.h"
#include "iperf_locale.h"
#include "iperf_time.h"
#include "net.h"
#include "timer.h"
#ifdef __Fuchsia__
#include "fuchsia/fuchsia-compat.h"
#endif
#if defined(HAVE_TCP_CONGESTION)
#if !defined(TCP_CA_NAME_MAX)
#define TCP_CA_NAME_MAX 16
#endif /* TCP_CA_NAME_MAX */
#endif /* HAVE_TCP_CONGESTION */
int
iperf_create_streams(struct iperf_test *test, int sender)
{
int i, s;
#if defined(HAVE_TCP_CONGESTION)
int saved_errno;
#endif /* HAVE_TCP_CONGESTION */
struct iperf_stream *sp;
int orig_bind_port = test->bind_port;
for (i = 0; i < test->num_streams; ++i) {
test->bind_port = orig_bind_port;
if (orig_bind_port)
test->bind_port += i;
if ((s = test->protocol->connect(test)) < 0)
return -1;
#if defined(HAVE_TCP_CONGESTION)
if (test->protocol->id == Ptcp) {
if (test->congestion) {
if (setsockopt(s, IPPROTO_TCP, TCP_CONGESTION, test->congestion, strlen(test->congestion)) < 0) {
saved_errno = errno;
close(s);
errno = saved_errno;
i_errno = IESETCONGESTION;
return -1;
}
}
{
socklen_t len = TCP_CA_NAME_MAX;
char ca[TCP_CA_NAME_MAX + 1];
if (getsockopt(s, IPPROTO_TCP, TCP_CONGESTION, ca, &len) < 0) {
saved_errno = errno;
close(s);
errno = saved_errno;
i_errno = IESETCONGESTION;
return -1;
}
test->congestion_used = strdup(ca);
if (test->debug) {
printf("Congestion algorithm is %s\n", test->congestion_used);
}
}
}
#endif /* HAVE_TCP_CONGESTION */
if (sender)
FD_SET(s, &test->write_set);
else
FD_SET(s, &test->read_set);
if (s > test->max_fd) test->max_fd = s;
sp = iperf_new_stream(test, s, sender);
if (!sp)
return -1;
/* Perform the new stream callback */
if (test->on_new_stream)
test->on_new_stream(sp);
}
return 0;
}
static void
test_timer_proc(TimerClientData client_data, struct iperf_time *nowP)
{
struct iperf_test *test = client_data.p;
test->timer = NULL;
test->done = 1;
}
static void
client_stats_timer_proc(TimerClientData client_data, struct iperf_time *nowP)
{
struct iperf_test *test = client_data.p;
if (test->done)
return;
if (test->stats_callback)
test->stats_callback(test);
}
static void
client_reporter_timer_proc(TimerClientData client_data, struct iperf_time *nowP)
{
struct iperf_test *test = client_data.p;
if (test->done)
return;
if (test->reporter_callback)
test->reporter_callback(test);
}
static int
create_client_timers(struct iperf_test * test)
{
struct iperf_time now;
TimerClientData cd;
if (iperf_time_now(&now) < 0) {
i_errno = IEINITTEST;
return -1;
}
cd.p = test;
test->timer = test->stats_timer = test->reporter_timer = NULL;
if (test->duration != 0) {
test->done = 0;
test->timer = tmr_create(&now, test_timer_proc, cd, ( test->duration + test->omit ) * SEC_TO_US, 0);
if (test->timer == NULL) {
i_errno = IEINITTEST;
return -1;
}
}
if (test->stats_interval != 0) {
test->stats_timer = tmr_create(&now, client_stats_timer_proc, cd, test->stats_interval * SEC_TO_US, 1);
if (test->stats_timer == NULL) {
i_errno = IEINITTEST;
return -1;
}
}
if (test->reporter_interval != 0) {
test->reporter_timer = tmr_create(&now, client_reporter_timer_proc, cd, test->reporter_interval * SEC_TO_US, 1);
if (test->reporter_timer == NULL) {
i_errno = IEINITTEST;
return -1;
}
}
return 0;
}
static void
client_omit_timer_proc(TimerClientData client_data, struct iperf_time *nowP)
{
struct iperf_test *test = client_data.p;
test->omit_timer = NULL;
test->omitting = 0;
iperf_reset_stats(test);
if (test->verbose && !test->json_output && test->reporter_interval == 0)
iperf_printf(test, "%s", report_omit_done);
/* Reset the timers. */
if (test->stats_timer != NULL)
tmr_reset(nowP, test->stats_timer);
if (test->reporter_timer != NULL)
tmr_reset(nowP, test->reporter_timer);
}
static int
create_client_omit_timer(struct iperf_test * test)
{
struct iperf_time now;
TimerClientData cd;
if (test->omit == 0) {
test->omit_timer = NULL;
test->omitting = 0;
} else {
if (iperf_time_now(&now) < 0) {
i_errno = IEINITTEST;
return -1;
}
test->omitting = 1;
cd.p = test;
test->omit_timer = tmr_create(&now, client_omit_timer_proc, cd, test->omit * SEC_TO_US, 0);
if (test->omit_timer == NULL) {
i_errno = IEINITTEST;
return -1;
}
}
return 0;
}
int
iperf_handle_message_client(struct iperf_test *test)
{
int rval;
int32_t err;
/*!!! Why is this read() and not Nread()? */
if ((rval = read(test->ctrl_sck, (char*) &test->state, sizeof(signed char))) <= 0) {
if (rval == 0) {
i_errno = IECTRLCLOSE;
return -1;
} else {
i_errno = IERECVMESSAGE;
return -1;
}
}
switch (test->state) {
case PARAM_EXCHANGE:
if (iperf_exchange_parameters(test) < 0)
return -1;
if (test->on_connect)
test->on_connect(test);
break;
case CREATE_STREAMS:
if (test->mode == BIDIRECTIONAL)
{
if (iperf_create_streams(test, 1) < 0)
return -1;
if (iperf_create_streams(test, 0) < 0)
return -1;
}
else if (iperf_create_streams(test, test->mode) < 0)
return -1;
break;
case TEST_START:
if (iperf_init_test(test) < 0)
return -1;
if (create_client_timers(test) < 0)
return -1;
if (create_client_omit_timer(test) < 0)
return -1;
if (test->mode)
if (iperf_create_send_timers(test) < 0)
return -1;
break;
case TEST_RUNNING:
break;
case EXCHANGE_RESULTS:
if (iperf_exchange_results(test) < 0)
return -1;
break;
case DISPLAY_RESULTS:
if (test->on_test_finish)
test->on_test_finish(test);
iperf_client_end(test);
break;
case IPERF_DONE:
break;
case SERVER_TERMINATE:
i_errno = IESERVERTERM;
/*
* Temporarily be in DISPLAY_RESULTS phase so we can get
* ending summary statistics.
*/
signed char oldstate = test->state;
cpu_util(test->cpu_util);
test->state = DISPLAY_RESULTS;
test->reporter_callback(test);
test->state = oldstate;
return -1;
case ACCESS_DENIED:
i_errno = IEACCESSDENIED;
return -1;
case SERVER_ERROR:
if (Nread(test->ctrl_sck, (char*) &err, sizeof(err), Ptcp) < 0) {
i_errno = IECTRLREAD;
return -1;
}
i_errno = ntohl(err);
if (Nread(test->ctrl_sck, (char*) &err, sizeof(err), Ptcp) < 0) {
i_errno = IECTRLREAD;
return -1;
}
errno = ntohl(err);
return -1;
default:
i_errno = IEMESSAGE;
return -1;
}
return 0;
}
/* iperf_connect -- client to server connection function */
int
iperf_connect(struct iperf_test *test)
{
FD_ZERO(&test->read_set);
FD_ZERO(&test->write_set);
make_cookie(test->cookie);
/* Create and connect the control channel */
if (test->ctrl_sck < 0)
// Create the control channel using an ephemeral port
test->ctrl_sck = netdial(test->settings->domain, Ptcp, test->bind_address, 0, test->server_hostname, test->server_port, test->settings->connect_timeout);
if (test->ctrl_sck < 0) {
i_errno = IECONNECT;
return -1;
}
if (Nwrite(test->ctrl_sck, test->cookie, COOKIE_SIZE, Ptcp) < 0) {
i_errno = IESENDCOOKIE;
return -1;
}
FD_SET(test->ctrl_sck, &test->read_set);
if (test->ctrl_sck > test->max_fd) test->max_fd = test->ctrl_sck;
int opt;
socklen_t len;
len = sizeof(opt);
if (getsockopt(test->ctrl_sck, IPPROTO_TCP, TCP_MAXSEG, &opt, &len) < 0) {
test->ctrl_sck_mss = 0;
}
else {
if (opt > 0 && opt <= MAX_UDP_BLOCKSIZE) {
test->ctrl_sck_mss = opt;
}
else {
char str[128];
snprintf(str, sizeof(str),
"Ignoring nonsense TCP MSS %d", opt);
warning(str);
test->ctrl_sck_mss = 0;
}
}
if (test->verbose) {
printf("Control connection MSS %d\n", test->ctrl_sck_mss);
}
/*
* If we're doing a UDP test and the block size wasn't explicitly
* set, then use the known MSS of the control connection to pick
* an appropriate default. If we weren't able to get the
* MSS for some reason, then default to something that should
* work on non-jumbo-frame Ethernet networks. The goal is to
* pick a reasonable default that is large but should get from
* sender to receiver without any IP fragmentation.
*
* We assume that the control connection is routed the same as the
* data packets (thus has the same PMTU). Also in the case of
* --reverse tests, we assume that the MTU is the same in both
* directions. Note that even if the algorithm guesses wrong,
* the user always has the option to override.
*/
if (test->protocol->id == Pudp) {
if (test->settings->blksize == 0) {
if (test->ctrl_sck_mss) {
test->settings->blksize = test->ctrl_sck_mss;
}
else {
test->settings->blksize = DEFAULT_UDP_BLKSIZE;
}
if (test->verbose) {
printf("Setting UDP block size to %d\n", test->settings->blksize);
}
}
/*
* Regardless of whether explicitly or implicitly set, if the
* block size is larger than the MSS, print a warning.
*/
if (test->ctrl_sck_mss > 0 &&
test->settings->blksize > test->ctrl_sck_mss) {
char str[128];
snprintf(str, sizeof(str),
"UDP block size %d exceeds TCP MSS %d, may result in fragmentation / drops", test->settings->blksize, test->ctrl_sck_mss);
warning(str);
}
}
return 0;
}
int
iperf_client_end(struct iperf_test *test)
{
struct iperf_stream *sp;
/* Close all stream sockets */
SLIST_FOREACH(sp, &test->streams, streams) {
close(sp->socket);
}
/* show final summary */
test->reporter_callback(test);
if (iperf_set_send_state(test, IPERF_DONE) != 0)
return -1;
/* Close control socket */
if (test->ctrl_sck)
close(test->ctrl_sck);
return 0;
}
int
iperf_run_client(struct iperf_test * test)
{
int startup;
int result = 0;
fd_set read_set, write_set;
struct iperf_time now;
struct timeval* timeout = NULL;
struct iperf_stream *sp;
if (test->logfile)
if (iperf_open_logfile(test) < 0)
return -1;
if (test->affinity != -1)
if (iperf_setaffinity(test, test->affinity) != 0)
return -1;
if (test->json_output)
if (iperf_json_start(test) < 0)
return -1;
if (test->json_output) {
cJSON_AddItemToObject(test->json_start, "version", cJSON_CreateString(version));
cJSON_AddItemToObject(test->json_start, "system_info", cJSON_CreateString(get_system_info()));
} else if (test->verbose) {
iperf_printf(test, "%s\n", version);
iperf_printf(test, "%s", "");
iperf_printf(test, "%s\n", get_system_info());
iflush(test);
}
/* Start the client and connect to the server */
if (iperf_connect(test) < 0)
return -1;
/* Begin calculating CPU utilization */
cpu_util(NULL);
startup = 1;
while (test->state != IPERF_DONE) {
memcpy(&read_set, &test->read_set, sizeof(fd_set));
memcpy(&write_set, &test->write_set, sizeof(fd_set));
iperf_time_now(&now);
timeout = tmr_timeout(&now);
#ifdef __Fuchsia__
result = fuchsia_select(test->max_fd + 1, &read_set, &write_set, timeout);
#else
result = select(test->max_fd + 1, &read_set, &write_set, NULL, timeout);
#endif
if (result < 0 && errno != EINTR) {
i_errno = IESELECT;
return -1;
}
if (result > 0) {
if (FD_ISSET(test->ctrl_sck, &read_set)) {
if (iperf_handle_message_client(test) < 0) {
return -1;
}
FD_CLR(test->ctrl_sck, &read_set);
}
}
if (test->state == TEST_RUNNING) {
/* Is this our first time really running? */
if (startup) {
startup = 0;
// Set non-blocking for non-UDP tests
if (test->protocol->id != Pudp) {
SLIST_FOREACH(sp, &test->streams, streams) {
setnonblocking(sp->socket, 1);
}
}
}
if (test->mode == BIDIRECTIONAL)
{
if (iperf_send(test, &write_set) < 0)
return -1;
if (iperf_recv(test, &read_set) < 0)
return -1;
} else if (test->mode == SENDER) {
// Regular mode. Client sends.
if (iperf_send(test, &write_set) < 0)
return -1;
} else {
// Reverse mode. Client receives.
if (iperf_recv(test, &read_set) < 0)
return -1;
}
/* Run the timers. */
iperf_time_now(&now);
tmr_run(&now);
/* Is the test done yet? */
if ((!test->omitting) &&
((test->duration != 0 && test->done) ||
(test->settings->bytes != 0 && test->bytes_sent >= test->settings->bytes) ||
(test->settings->blocks != 0 && test->blocks_sent >= test->settings->blocks))) {
// Unset non-blocking for non-UDP tests
if (test->protocol->id != Pudp) {
SLIST_FOREACH(sp, &test->streams, streams) {
setnonblocking(sp->socket, 0);
}
}
/* Yes, done! Send TEST_END. */
test->done = 1;
cpu_util(test->cpu_util);
test->stats_callback(test);
if (iperf_set_send_state(test, TEST_END) != 0)
return -1;
}
}
// If we're in reverse mode, continue draining the data
// connection(s) even if test is over. This prevents a
// deadlock where the server side fills up its pipe(s)
// and gets blocked, so it can't receive state changes
// from the client side.
else if (test->mode == RECEIVER && test->state == TEST_END) {
if (iperf_recv(test, &read_set) < 0)
return -1;
}
}
if (test->json_output) {
if (iperf_json_finish(test) < 0)
return -1;
} else {
iperf_printf(test, "\n");
iperf_printf(test, "%s", report_done);
}
iflush(test);
return 0;
}