blob: 8abc3dd34a1c191c93cc0e6a1ef5204c68f23dff [file] [log] [blame]
package state
import (
"bytes"
"fmt"
)
// trackGaps is an optional parameter.
//
// If trackGaps is 1, the Set will track maximum gap size recursively,
// enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this
// case, Key must be an unsigned integer.
//
// trackGaps must be 0 or 1.
const addrtrackGaps = 0
var _ = uint8(addrtrackGaps << 7) // Will fail if not zero or one.
// dynamicGap is a type that disappears if trackGaps is 0.
type addrdynamicGap [addrtrackGaps]uintptr
// Get returns the value of the gap.
//
// Precondition: trackGaps must be non-zero.
func (d *addrdynamicGap) Get() uintptr {
return d[:][0]
}
// Set sets the value of the gap.
//
// Precondition: trackGaps must be non-zero.
func (d *addrdynamicGap) Set(v uintptr) {
d[:][0] = v
}
const (
// minDegree is the minimum degree of an internal node in a Set B-tree.
//
// - Any non-root node has at least minDegree-1 segments.
//
// - Any non-root internal (non-leaf) node has at least minDegree children.
//
// - The root node may have fewer than minDegree-1 segments, but it may
// only have 0 segments if the tree is empty.
//
// Our implementation requires minDegree >= 3. Higher values of minDegree
// usually improve performance, but increase memory usage for small sets.
addrminDegree = 10
addrmaxDegree = 2 * addrminDegree
)
// A Set is a mapping of segments with non-overlapping Range keys. The zero
// value for a Set is an empty set. Set values are not safely movable nor
// copyable. Set is thread-compatible.
//
// +stateify savable
type addrSet struct {
root addrnode `state:".(*addrSegmentDataSlices)"`
}
// IsEmpty returns true if the set contains no segments.
func (s *addrSet) IsEmpty() bool {
return s.root.nrSegments == 0
}
// IsEmptyRange returns true iff no segments in the set overlap the given
// range. This is semantically equivalent to s.SpanRange(r) == 0, but may be
// more efficient.
func (s *addrSet) IsEmptyRange(r addrRange) bool {
switch {
case r.Length() < 0:
panic(fmt.Sprintf("invalid range %v", r))
case r.Length() == 0:
return true
}
_, gap := s.Find(r.Start)
if !gap.Ok() {
return false
}
return r.End <= gap.End()
}
// Span returns the total size of all segments in the set.
func (s *addrSet) Span() uintptr {
var sz uintptr
for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
sz += seg.Range().Length()
}
return sz
}
// SpanRange returns the total size of the intersection of segments in the set
// with the given range.
func (s *addrSet) SpanRange(r addrRange) uintptr {
switch {
case r.Length() < 0:
panic(fmt.Sprintf("invalid range %v", r))
case r.Length() == 0:
return 0
}
var sz uintptr
for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() {
sz += seg.Range().Intersect(r).Length()
}
return sz
}
// FirstSegment returns the first segment in the set. If the set is empty,
// FirstSegment returns a terminal iterator.
func (s *addrSet) FirstSegment() addrIterator {
if s.root.nrSegments == 0 {
return addrIterator{}
}
return s.root.firstSegment()
}
// LastSegment returns the last segment in the set. If the set is empty,
// LastSegment returns a terminal iterator.
func (s *addrSet) LastSegment() addrIterator {
if s.root.nrSegments == 0 {
return addrIterator{}
}
return s.root.lastSegment()
}
// FirstGap returns the first gap in the set.
func (s *addrSet) FirstGap() addrGapIterator {
n := &s.root
for n.hasChildren {
n = n.children[0]
}
return addrGapIterator{n, 0}
}
// LastGap returns the last gap in the set.
func (s *addrSet) LastGap() addrGapIterator {
n := &s.root
for n.hasChildren {
n = n.children[n.nrSegments]
}
return addrGapIterator{n, n.nrSegments}
}
// Find returns the segment or gap whose range contains the given key. If a
// segment is found, the returned Iterator is non-terminal and the
// returned GapIterator is terminal. Otherwise, the returned Iterator is
// terminal and the returned GapIterator is non-terminal.
func (s *addrSet) Find(key uintptr) (addrIterator, addrGapIterator) {
n := &s.root
for {
lower := 0
upper := n.nrSegments
for lower < upper {
i := lower + (upper-lower)/2
if r := n.keys[i]; key < r.End {
if key >= r.Start {
return addrIterator{n, i}, addrGapIterator{}
}
upper = i
} else {
lower = i + 1
}
}
i := lower
if !n.hasChildren {
return addrIterator{}, addrGapIterator{n, i}
}
n = n.children[i]
}
}
// FindSegment returns the segment whose range contains the given key. If no
// such segment exists, FindSegment returns a terminal iterator.
func (s *addrSet) FindSegment(key uintptr) addrIterator {
seg, _ := s.Find(key)
return seg
}
// LowerBoundSegment returns the segment with the lowest range that contains a
// key greater than or equal to min. If no such segment exists,
// LowerBoundSegment returns a terminal iterator.
func (s *addrSet) LowerBoundSegment(min uintptr) addrIterator {
seg, gap := s.Find(min)
if seg.Ok() {
return seg
}
return gap.NextSegment()
}
// UpperBoundSegment returns the segment with the highest range that contains a
// key less than or equal to max. If no such segment exists, UpperBoundSegment
// returns a terminal iterator.
func (s *addrSet) UpperBoundSegment(max uintptr) addrIterator {
seg, gap := s.Find(max)
if seg.Ok() {
return seg
}
return gap.PrevSegment()
}
// FindGap returns the gap containing the given key. If no such gap exists
// (i.e. the set contains a segment containing that key), FindGap returns a
// terminal iterator.
func (s *addrSet) FindGap(key uintptr) addrGapIterator {
_, gap := s.Find(key)
return gap
}
// LowerBoundGap returns the gap with the lowest range that is greater than or
// equal to min.
func (s *addrSet) LowerBoundGap(min uintptr) addrGapIterator {
seg, gap := s.Find(min)
if gap.Ok() {
return gap
}
return seg.NextGap()
}
// UpperBoundGap returns the gap with the highest range that is less than or
// equal to max.
func (s *addrSet) UpperBoundGap(max uintptr) addrGapIterator {
seg, gap := s.Find(max)
if gap.Ok() {
return gap
}
return seg.PrevGap()
}
// Add inserts the given segment into the set and returns true. If the new
// segment can be merged with adjacent segments, Add will do so. If the new
// segment would overlap an existing segment, Add returns false. If Add
// succeeds, all existing iterators are invalidated.
func (s *addrSet) Add(r addrRange, val *objectEncodeState) bool {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
gap := s.FindGap(r.Start)
if !gap.Ok() {
return false
}
if r.End > gap.End() {
return false
}
s.Insert(gap, r, val)
return true
}
// AddWithoutMerging inserts the given segment into the set and returns true.
// If it would overlap an existing segment, AddWithoutMerging does nothing and
// returns false. If AddWithoutMerging succeeds, all existing iterators are
// invalidated.
func (s *addrSet) AddWithoutMerging(r addrRange, val *objectEncodeState) bool {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
gap := s.FindGap(r.Start)
if !gap.Ok() {
return false
}
if r.End > gap.End() {
return false
}
s.InsertWithoutMergingUnchecked(gap, r, val)
return true
}
// Insert inserts the given segment into the given gap. If the new segment can
// be merged with adjacent segments, Insert will do so. Insert returns an
// iterator to the segment containing the inserted value (which may have been
// merged with other values). All existing iterators (including gap, but not
// including the returned iterator) are invalidated.
//
// If the gap cannot accommodate the segment, or if r is invalid, Insert panics.
//
// Insert is semantically equivalent to a InsertWithoutMerging followed by a
// Merge, but may be more efficient. Note that there is no unchecked variant of
// Insert since Insert must retrieve and inspect gap's predecessor and
// successor segments regardless.
func (s *addrSet) Insert(gap addrGapIterator, r addrRange, val *objectEncodeState) addrIterator {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
prev, next := gap.PrevSegment(), gap.NextSegment()
if prev.Ok() && prev.End() > r.Start {
panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range()))
}
if next.Ok() && next.Start() < r.End {
panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range()))
}
if prev.Ok() && prev.End() == r.Start {
if mval, ok := (addrSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok {
shrinkMaxGap := addrtrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
prev.SetEndUnchecked(r.End)
prev.SetValue(mval)
if shrinkMaxGap {
gap.node.updateMaxGapLeaf()
}
if next.Ok() && next.Start() == r.End {
val = mval
if mval, ok := (addrSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok {
prev.SetEndUnchecked(next.End())
prev.SetValue(mval)
return s.Remove(next).PrevSegment()
}
}
return prev
}
}
if next.Ok() && next.Start() == r.End {
if mval, ok := (addrSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok {
shrinkMaxGap := addrtrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get()
next.SetStartUnchecked(r.Start)
next.SetValue(mval)
if shrinkMaxGap {
gap.node.updateMaxGapLeaf()
}
return next
}
}
return s.InsertWithoutMergingUnchecked(gap, r, val)
}
// InsertWithoutMerging inserts the given segment into the given gap and
// returns an iterator to the inserted segment. All existing iterators
// (including gap, but not including the returned iterator) are invalidated.
//
// If the gap cannot accommodate the segment, or if r is invalid,
// InsertWithoutMerging panics.
func (s *addrSet) InsertWithoutMerging(gap addrGapIterator, r addrRange, val *objectEncodeState) addrIterator {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
if gr := gap.Range(); !gr.IsSupersetOf(r) {
panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr))
}
return s.InsertWithoutMergingUnchecked(gap, r, val)
}
// InsertWithoutMergingUnchecked inserts the given segment into the given gap
// and returns an iterator to the inserted segment. All existing iterators
// (including gap, but not including the returned iterator) are invalidated.
//
// Preconditions:
// * r.Start >= gap.Start().
// * r.End <= gap.End().
func (s *addrSet) InsertWithoutMergingUnchecked(gap addrGapIterator, r addrRange, val *objectEncodeState) addrIterator {
gap = gap.node.rebalanceBeforeInsert(gap)
splitMaxGap := addrtrackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get())
copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments])
copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments])
gap.node.keys[gap.index] = r
gap.node.values[gap.index] = val
gap.node.nrSegments++
if splitMaxGap {
gap.node.updateMaxGapLeaf()
}
return addrIterator{gap.node, gap.index}
}
// Remove removes the given segment and returns an iterator to the vacated gap.
// All existing iterators (including seg, but not including the returned
// iterator) are invalidated.
func (s *addrSet) Remove(seg addrIterator) addrGapIterator {
if seg.node.hasChildren {
victim := seg.PrevSegment()
seg.SetRangeUnchecked(victim.Range())
seg.SetValue(victim.Value())
nextAdjacentNode := seg.NextSegment().node
if addrtrackGaps != 0 {
nextAdjacentNode.updateMaxGapLeaf()
}
return s.Remove(victim).NextGap()
}
copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments])
copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments])
addrSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1])
seg.node.nrSegments--
if addrtrackGaps != 0 {
seg.node.updateMaxGapLeaf()
}
return seg.node.rebalanceAfterRemove(addrGapIterator{seg.node, seg.index})
}
// RemoveAll removes all segments from the set. All existing iterators are
// invalidated.
func (s *addrSet) RemoveAll() {
s.root = addrnode{}
}
// RemoveRange removes all segments in the given range. An iterator to the
// newly formed gap is returned, and all existing iterators are invalidated.
func (s *addrSet) RemoveRange(r addrRange) addrGapIterator {
seg, gap := s.Find(r.Start)
if seg.Ok() {
seg = s.Isolate(seg, r)
gap = s.Remove(seg)
}
for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() {
seg = s.Isolate(seg, r)
gap = s.Remove(seg)
}
return gap
}
// Merge attempts to merge two neighboring segments. If successful, Merge
// returns an iterator to the merged segment, and all existing iterators are
// invalidated. Otherwise, Merge returns a terminal iterator.
//
// If first is not the predecessor of second, Merge panics.
func (s *addrSet) Merge(first, second addrIterator) addrIterator {
if first.NextSegment() != second {
panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range()))
}
return s.MergeUnchecked(first, second)
}
// MergeUnchecked attempts to merge two neighboring segments. If successful,
// MergeUnchecked returns an iterator to the merged segment, and all existing
// iterators are invalidated. Otherwise, MergeUnchecked returns a terminal
// iterator.
//
// Precondition: first is the predecessor of second: first.NextSegment() ==
// second, first == second.PrevSegment().
func (s *addrSet) MergeUnchecked(first, second addrIterator) addrIterator {
if first.End() == second.Start() {
if mval, ok := (addrSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok {
first.SetEndUnchecked(second.End())
first.SetValue(mval)
return s.Remove(second).PrevSegment()
}
}
return addrIterator{}
}
// MergeAll attempts to merge all adjacent segments in the set. All existing
// iterators are invalidated.
func (s *addrSet) MergeAll() {
seg := s.FirstSegment()
if !seg.Ok() {
return
}
next := seg.NextSegment()
for next.Ok() {
if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
seg, next = mseg, mseg.NextSegment()
} else {
seg, next = next, next.NextSegment()
}
}
}
// MergeRange attempts to merge all adjacent segments that contain a key in the
// specific range. All existing iterators are invalidated.
func (s *addrSet) MergeRange(r addrRange) {
seg := s.LowerBoundSegment(r.Start)
if !seg.Ok() {
return
}
next := seg.NextSegment()
for next.Ok() && next.Range().Start < r.End {
if mseg := s.MergeUnchecked(seg, next); mseg.Ok() {
seg, next = mseg, mseg.NextSegment()
} else {
seg, next = next, next.NextSegment()
}
}
}
// MergeAdjacent attempts to merge the segment containing r.Start with its
// predecessor, and the segment containing r.End-1 with its successor.
func (s *addrSet) MergeAdjacent(r addrRange) {
first := s.FindSegment(r.Start)
if first.Ok() {
if prev := first.PrevSegment(); prev.Ok() {
s.Merge(prev, first)
}
}
last := s.FindSegment(r.End - 1)
if last.Ok() {
if next := last.NextSegment(); next.Ok() {
s.Merge(last, next)
}
}
}
// Split splits the given segment at the given key and returns iterators to the
// two resulting segments. All existing iterators (including seg, but not
// including the returned iterators) are invalidated.
//
// If the segment cannot be split at split (because split is at the start or
// end of the segment's range, so splitting would produce a segment with zero
// length, or because split falls outside the segment's range altogether),
// Split panics.
func (s *addrSet) Split(seg addrIterator, split uintptr) (addrIterator, addrIterator) {
if !seg.Range().CanSplitAt(split) {
panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split))
}
return s.SplitUnchecked(seg, split)
}
// SplitUnchecked splits the given segment at the given key and returns
// iterators to the two resulting segments. All existing iterators (including
// seg, but not including the returned iterators) are invalidated.
//
// Preconditions: seg.Start() < key < seg.End().
func (s *addrSet) SplitUnchecked(seg addrIterator, split uintptr) (addrIterator, addrIterator) {
val1, val2 := (addrSetFunctions{}).Split(seg.Range(), seg.Value(), split)
end2 := seg.End()
seg.SetEndUnchecked(split)
seg.SetValue(val1)
seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), addrRange{split, end2}, val2)
return seg2.PrevSegment(), seg2
}
// SplitAt splits the segment straddling split, if one exists. SplitAt returns
// true if a segment was split and false otherwise. If SplitAt splits a
// segment, all existing iterators are invalidated.
func (s *addrSet) SplitAt(split uintptr) bool {
if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) {
s.SplitUnchecked(seg, split)
return true
}
return false
}
// Isolate ensures that the given segment's range does not escape r by
// splitting at r.Start and r.End if necessary, and returns an updated iterator
// to the bounded segment. All existing iterators (including seg, but not
// including the returned iterators) are invalidated.
func (s *addrSet) Isolate(seg addrIterator, r addrRange) addrIterator {
if seg.Range().CanSplitAt(r.Start) {
_, seg = s.SplitUnchecked(seg, r.Start)
}
if seg.Range().CanSplitAt(r.End) {
seg, _ = s.SplitUnchecked(seg, r.End)
}
return seg
}
// ApplyContiguous applies a function to a contiguous range of segments,
// splitting if necessary. The function is applied until the first gap is
// encountered, at which point the gap is returned. If the function is applied
// across the entire range, a terminal gap is returned. All existing iterators
// are invalidated.
//
// N.B. The Iterator must not be invalidated by the function.
func (s *addrSet) ApplyContiguous(r addrRange, fn func(seg addrIterator)) addrGapIterator {
seg, gap := s.Find(r.Start)
if !seg.Ok() {
return gap
}
for {
seg = s.Isolate(seg, r)
fn(seg)
if seg.End() >= r.End {
return addrGapIterator{}
}
gap = seg.NextGap()
if !gap.IsEmpty() {
return gap
}
seg = gap.NextSegment()
if !seg.Ok() {
return addrGapIterator{}
}
}
}
// +stateify savable
type addrnode struct {
// An internal binary tree node looks like:
//
// K
// / \
// Cl Cr
//
// where all keys in the subtree rooted by Cl (the left subtree) are less
// than K (the key of the parent node), and all keys in the subtree rooted
// by Cr (the right subtree) are greater than K.
//
// An internal B-tree node's indexes work out to look like:
//
// K0 K1 K2 ... Kn-1
// / \/ \/ \ ... / \
// C0 C1 C2 C3 ... Cn-1 Cn
//
// where n is nrSegments.
nrSegments int
// parent is a pointer to this node's parent. If this node is root, parent
// is nil.
parent *addrnode
// parentIndex is the index of this node in parent.children.
parentIndex int
// Flag for internal nodes that is technically redundant with "children[0]
// != nil", but is stored in the first cache line. "hasChildren" rather
// than "isLeaf" because false must be the correct value for an empty root.
hasChildren bool
// The longest gap within this node. If the node is a leaf, it's simply the
// maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys
// including the 0th and nrSegments-th gap possibly shared with its upper-level
// nodes; if it's a non-leaf node, it's the max of all children's maxGap.
maxGap addrdynamicGap
// Nodes store keys and values in separate arrays to maximize locality in
// the common case (scanning keys for lookup).
keys [addrmaxDegree - 1]addrRange
values [addrmaxDegree - 1]*objectEncodeState
children [addrmaxDegree]*addrnode
}
// firstSegment returns the first segment in the subtree rooted by n.
//
// Preconditions: n.nrSegments != 0.
func (n *addrnode) firstSegment() addrIterator {
for n.hasChildren {
n = n.children[0]
}
return addrIterator{n, 0}
}
// lastSegment returns the last segment in the subtree rooted by n.
//
// Preconditions: n.nrSegments != 0.
func (n *addrnode) lastSegment() addrIterator {
for n.hasChildren {
n = n.children[n.nrSegments]
}
return addrIterator{n, n.nrSegments - 1}
}
func (n *addrnode) prevSibling() *addrnode {
if n.parent == nil || n.parentIndex == 0 {
return nil
}
return n.parent.children[n.parentIndex-1]
}
func (n *addrnode) nextSibling() *addrnode {
if n.parent == nil || n.parentIndex == n.parent.nrSegments {
return nil
}
return n.parent.children[n.parentIndex+1]
}
// rebalanceBeforeInsert splits n and its ancestors if they are full, as
// required for insertion, and returns an updated iterator to the position
// represented by gap.
func (n *addrnode) rebalanceBeforeInsert(gap addrGapIterator) addrGapIterator {
if n.nrSegments < addrmaxDegree-1 {
return gap
}
if n.parent != nil {
gap = n.parent.rebalanceBeforeInsert(gap)
}
if n.parent == nil {
left := &addrnode{
nrSegments: addrminDegree - 1,
parent: n,
parentIndex: 0,
hasChildren: n.hasChildren,
}
right := &addrnode{
nrSegments: addrminDegree - 1,
parent: n,
parentIndex: 1,
hasChildren: n.hasChildren,
}
copy(left.keys[:addrminDegree-1], n.keys[:addrminDegree-1])
copy(left.values[:addrminDegree-1], n.values[:addrminDegree-1])
copy(right.keys[:addrminDegree-1], n.keys[addrminDegree:])
copy(right.values[:addrminDegree-1], n.values[addrminDegree:])
n.keys[0], n.values[0] = n.keys[addrminDegree-1], n.values[addrminDegree-1]
addrzeroValueSlice(n.values[1:])
if n.hasChildren {
copy(left.children[:addrminDegree], n.children[:addrminDegree])
copy(right.children[:addrminDegree], n.children[addrminDegree:])
addrzeroNodeSlice(n.children[2:])
for i := 0; i < addrminDegree; i++ {
left.children[i].parent = left
left.children[i].parentIndex = i
right.children[i].parent = right
right.children[i].parentIndex = i
}
}
n.nrSegments = 1
n.hasChildren = true
n.children[0] = left
n.children[1] = right
if addrtrackGaps != 0 {
left.updateMaxGapLocal()
right.updateMaxGapLocal()
}
if gap.node != n {
return gap
}
if gap.index < addrminDegree {
return addrGapIterator{left, gap.index}
}
return addrGapIterator{right, gap.index - addrminDegree}
}
copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments])
copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments])
n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[addrminDegree-1], n.values[addrminDegree-1]
copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1])
for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ {
n.parent.children[i].parentIndex = i
}
sibling := &addrnode{
nrSegments: addrminDegree - 1,
parent: n.parent,
parentIndex: n.parentIndex + 1,
hasChildren: n.hasChildren,
}
n.parent.children[n.parentIndex+1] = sibling
n.parent.nrSegments++
copy(sibling.keys[:addrminDegree-1], n.keys[addrminDegree:])
copy(sibling.values[:addrminDegree-1], n.values[addrminDegree:])
addrzeroValueSlice(n.values[addrminDegree-1:])
if n.hasChildren {
copy(sibling.children[:addrminDegree], n.children[addrminDegree:])
addrzeroNodeSlice(n.children[addrminDegree:])
for i := 0; i < addrminDegree; i++ {
sibling.children[i].parent = sibling
sibling.children[i].parentIndex = i
}
}
n.nrSegments = addrminDegree - 1
if addrtrackGaps != 0 {
n.updateMaxGapLocal()
sibling.updateMaxGapLocal()
}
if gap.node != n {
return gap
}
if gap.index < addrminDegree {
return gap
}
return addrGapIterator{sibling, gap.index - addrminDegree}
}
// rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient
// (contain fewer segments than required by B-tree invariants), as required for
// removal, and returns an updated iterator to the position represented by gap.
//
// Precondition: n is the only node in the tree that may currently violate a
// B-tree invariant.
func (n *addrnode) rebalanceAfterRemove(gap addrGapIterator) addrGapIterator {
for {
if n.nrSegments >= addrminDegree-1 {
return gap
}
if n.parent == nil {
return gap
}
if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= addrminDegree {
copy(n.keys[1:], n.keys[:n.nrSegments])
copy(n.values[1:], n.values[:n.nrSegments])
n.keys[0] = n.parent.keys[n.parentIndex-1]
n.values[0] = n.parent.values[n.parentIndex-1]
n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1]
n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1]
addrSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
if n.hasChildren {
copy(n.children[1:], n.children[:n.nrSegments+1])
n.children[0] = sibling.children[sibling.nrSegments]
sibling.children[sibling.nrSegments] = nil
n.children[0].parent = n
n.children[0].parentIndex = 0
for i := 1; i < n.nrSegments+2; i++ {
n.children[i].parentIndex = i
}
}
n.nrSegments++
sibling.nrSegments--
if addrtrackGaps != 0 {
n.updateMaxGapLocal()
sibling.updateMaxGapLocal()
}
if gap.node == sibling && gap.index == sibling.nrSegments {
return addrGapIterator{n, 0}
}
if gap.node == n {
return addrGapIterator{n, gap.index + 1}
}
return gap
}
if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= addrminDegree {
n.keys[n.nrSegments] = n.parent.keys[n.parentIndex]
n.values[n.nrSegments] = n.parent.values[n.parentIndex]
n.parent.keys[n.parentIndex] = sibling.keys[0]
n.parent.values[n.parentIndex] = sibling.values[0]
copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:])
copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:])
addrSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1])
if n.hasChildren {
n.children[n.nrSegments+1] = sibling.children[0]
copy(sibling.children[:sibling.nrSegments], sibling.children[1:])
sibling.children[sibling.nrSegments] = nil
n.children[n.nrSegments+1].parent = n
n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1
for i := 0; i < sibling.nrSegments; i++ {
sibling.children[i].parentIndex = i
}
}
n.nrSegments++
sibling.nrSegments--
if addrtrackGaps != 0 {
n.updateMaxGapLocal()
sibling.updateMaxGapLocal()
}
if gap.node == sibling {
if gap.index == 0 {
return addrGapIterator{n, n.nrSegments}
}
return addrGapIterator{sibling, gap.index - 1}
}
return gap
}
p := n.parent
if p.nrSegments == 1 {
left, right := p.children[0], p.children[1]
p.nrSegments = left.nrSegments + right.nrSegments + 1
p.hasChildren = left.hasChildren
p.keys[left.nrSegments] = p.keys[0]
p.values[left.nrSegments] = p.values[0]
copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments])
copy(p.values[:left.nrSegments], left.values[:left.nrSegments])
copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments])
if left.hasChildren {
copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1])
copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
for i := 0; i < p.nrSegments+1; i++ {
p.children[i].parent = p
p.children[i].parentIndex = i
}
} else {
p.children[0] = nil
p.children[1] = nil
}
if gap.node == left {
return addrGapIterator{p, gap.index}
}
if gap.node == right {
return addrGapIterator{p, gap.index + left.nrSegments + 1}
}
return gap
}
// Merge n and either sibling, along with the segment separating the
// two, into whichever of the two nodes comes first. This is the
// reverse of the non-root splitting case in
// node.rebalanceBeforeInsert.
var left, right *addrnode
if n.parentIndex > 0 {
left = n.prevSibling()
right = n
} else {
left = n
right = n.nextSibling()
}
if gap.node == right {
gap = addrGapIterator{left, gap.index + left.nrSegments + 1}
}
left.keys[left.nrSegments] = p.keys[left.parentIndex]
left.values[left.nrSegments] = p.values[left.parentIndex]
copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments])
copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments])
if left.hasChildren {
copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1])
for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ {
left.children[i].parent = left
left.children[i].parentIndex = i
}
}
left.nrSegments += right.nrSegments + 1
copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments])
copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments])
addrSetFunctions{}.ClearValue(&p.values[p.nrSegments-1])
copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1])
for i := 0; i < p.nrSegments; i++ {
p.children[i].parentIndex = i
}
p.children[p.nrSegments] = nil
p.nrSegments--
if addrtrackGaps != 0 {
left.updateMaxGapLocal()
}
n = p
}
}
// updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no
// necessary update.
//
// Preconditions: n must be a leaf node, trackGaps must be 1.
func (n *addrnode) updateMaxGapLeaf() {
if n.hasChildren {
panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n))
}
max := n.calculateMaxGapLeaf()
if max == n.maxGap.Get() {
return
}
oldMax := n.maxGap.Get()
n.maxGap.Set(max)
if max > oldMax {
for p := n.parent; p != nil; p = p.parent {
if p.maxGap.Get() >= max {
break
}
p.maxGap.Set(max)
}
return
}
for p := n.parent; p != nil; p = p.parent {
if p.maxGap.Get() > oldMax {
break
}
parentNewMax := p.calculateMaxGapInternal()
if p.maxGap.Get() == parentNewMax {
break
}
p.maxGap.Set(parentNewMax)
}
}
// updateMaxGapLocal updates maxGap of the calling node solely with no
// propagation to ancestor nodes.
//
// Precondition: trackGaps must be 1.
func (n *addrnode) updateMaxGapLocal() {
if !n.hasChildren {
n.maxGap.Set(n.calculateMaxGapLeaf())
} else {
n.maxGap.Set(n.calculateMaxGapInternal())
}
}
// calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the
// max.
//
// Preconditions: n must be a leaf node.
func (n *addrnode) calculateMaxGapLeaf() uintptr {
max := addrGapIterator{n, 0}.Range().Length()
for i := 1; i <= n.nrSegments; i++ {
if current := (addrGapIterator{n, i}).Range().Length(); current > max {
max = current
}
}
return max
}
// calculateMaxGapInternal iterates children's maxGap within an internal node n
// and calculate the max.
//
// Preconditions: n must be a non-leaf node.
func (n *addrnode) calculateMaxGapInternal() uintptr {
max := n.children[0].maxGap.Get()
for i := 1; i <= n.nrSegments; i++ {
if current := n.children[i].maxGap.Get(); current > max {
max = current
}
}
return max
}
// searchFirstLargeEnoughGap returns the first gap having at least minSize length
// in the subtree rooted by n. If not found, return a terminal gap iterator.
func (n *addrnode) searchFirstLargeEnoughGap(minSize uintptr) addrGapIterator {
if n.maxGap.Get() < minSize {
return addrGapIterator{}
}
if n.hasChildren {
for i := 0; i <= n.nrSegments; i++ {
if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
return largeEnoughGap
}
}
} else {
for i := 0; i <= n.nrSegments; i++ {
currentGap := addrGapIterator{n, i}
if currentGap.Range().Length() >= minSize {
return currentGap
}
}
}
panic(fmt.Sprintf("invalid maxGap in %v", n))
}
// searchLastLargeEnoughGap returns the last gap having at least minSize length
// in the subtree rooted by n. If not found, return a terminal gap iterator.
func (n *addrnode) searchLastLargeEnoughGap(minSize uintptr) addrGapIterator {
if n.maxGap.Get() < minSize {
return addrGapIterator{}
}
if n.hasChildren {
for i := n.nrSegments; i >= 0; i-- {
if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
return largeEnoughGap
}
}
} else {
for i := n.nrSegments; i >= 0; i-- {
currentGap := addrGapIterator{n, i}
if currentGap.Range().Length() >= minSize {
return currentGap
}
}
}
panic(fmt.Sprintf("invalid maxGap in %v", n))
}
// A Iterator is conceptually one of:
//
// - A pointer to a segment in a set; or
//
// - A terminal iterator, which is a sentinel indicating that the end of
// iteration has been reached.
//
// Iterators are copyable values and are meaningfully equality-comparable. The
// zero value of Iterator is a terminal iterator.
//
// Unless otherwise specified, any mutation of a set invalidates all existing
// iterators into the set.
type addrIterator struct {
// node is the node containing the iterated segment. If the iterator is
// terminal, node is nil.
node *addrnode
// index is the index of the segment in node.keys/values.
index int
}
// Ok returns true if the iterator is not terminal. All other methods are only
// valid for non-terminal iterators.
func (seg addrIterator) Ok() bool {
return seg.node != nil
}
// Range returns the iterated segment's range key.
func (seg addrIterator) Range() addrRange {
return seg.node.keys[seg.index]
}
// Start is equivalent to Range().Start, but should be preferred if only the
// start of the range is needed.
func (seg addrIterator) Start() uintptr {
return seg.node.keys[seg.index].Start
}
// End is equivalent to Range().End, but should be preferred if only the end of
// the range is needed.
func (seg addrIterator) End() uintptr {
return seg.node.keys[seg.index].End
}
// SetRangeUnchecked mutates the iterated segment's range key. This operation
// does not invalidate any iterators.
//
// Preconditions:
// * r.Length() > 0.
// * The new range must not overlap an existing one:
// * If seg.NextSegment().Ok(), then r.end <= seg.NextSegment().Start().
// * If seg.PrevSegment().Ok(), then r.start >= seg.PrevSegment().End().
func (seg addrIterator) SetRangeUnchecked(r addrRange) {
seg.node.keys[seg.index] = r
}
// SetRange mutates the iterated segment's range key. If the new range would
// cause the iterated segment to overlap another segment, or if the new range
// is invalid, SetRange panics. This operation does not invalidate any
// iterators.
func (seg addrIterator) SetRange(r addrRange) {
if r.Length() <= 0 {
panic(fmt.Sprintf("invalid segment range %v", r))
}
if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() {
panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range()))
}
if next := seg.NextSegment(); next.Ok() && r.End > next.Start() {
panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range()))
}
seg.SetRangeUnchecked(r)
}
// SetStartUnchecked mutates the iterated segment's start. This operation does
// not invalidate any iterators.
//
// Preconditions: The new start must be valid:
// * start < seg.End()
// * If seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End().
func (seg addrIterator) SetStartUnchecked(start uintptr) {
seg.node.keys[seg.index].Start = start
}
// SetStart mutates the iterated segment's start. If the new start value would
// cause the iterated segment to overlap another segment, or would result in an
// invalid range, SetStart panics. This operation does not invalidate any
// iterators.
func (seg addrIterator) SetStart(start uintptr) {
if start >= seg.End() {
panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range()))
}
if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() {
panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range()))
}
seg.SetStartUnchecked(start)
}
// SetEndUnchecked mutates the iterated segment's end. This operation does not
// invalidate any iterators.
//
// Preconditions: The new end must be valid:
// * end > seg.Start().
// * If seg.NextSegment().Ok(), then end <= seg.NextSegment().Start().
func (seg addrIterator) SetEndUnchecked(end uintptr) {
seg.node.keys[seg.index].End = end
}
// SetEnd mutates the iterated segment's end. If the new end value would cause
// the iterated segment to overlap another segment, or would result in an
// invalid range, SetEnd panics. This operation does not invalidate any
// iterators.
func (seg addrIterator) SetEnd(end uintptr) {
if end <= seg.Start() {
panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range()))
}
if next := seg.NextSegment(); next.Ok() && end > next.Start() {
panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range()))
}
seg.SetEndUnchecked(end)
}
// Value returns a copy of the iterated segment's value.
func (seg addrIterator) Value() *objectEncodeState {
return seg.node.values[seg.index]
}
// ValuePtr returns a pointer to the iterated segment's value. The pointer is
// invalidated if the iterator is invalidated. This operation does not
// invalidate any iterators.
func (seg addrIterator) ValuePtr() **objectEncodeState {
return &seg.node.values[seg.index]
}
// SetValue mutates the iterated segment's value. This operation does not
// invalidate any iterators.
func (seg addrIterator) SetValue(val *objectEncodeState) {
seg.node.values[seg.index] = val
}
// PrevSegment returns the iterated segment's predecessor. If there is no
// preceding segment, PrevSegment returns a terminal iterator.
func (seg addrIterator) PrevSegment() addrIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index].lastSegment()
}
if seg.index > 0 {
return addrIterator{seg.node, seg.index - 1}
}
if seg.node.parent == nil {
return addrIterator{}
}
return addrsegmentBeforePosition(seg.node.parent, seg.node.parentIndex)
}
// NextSegment returns the iterated segment's successor. If there is no
// succeeding segment, NextSegment returns a terminal iterator.
func (seg addrIterator) NextSegment() addrIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index+1].firstSegment()
}
if seg.index < seg.node.nrSegments-1 {
return addrIterator{seg.node, seg.index + 1}
}
if seg.node.parent == nil {
return addrIterator{}
}
return addrsegmentAfterPosition(seg.node.parent, seg.node.parentIndex)
}
// PrevGap returns the gap immediately before the iterated segment.
func (seg addrIterator) PrevGap() addrGapIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index].lastSegment().NextGap()
}
return addrGapIterator{seg.node, seg.index}
}
// NextGap returns the gap immediately after the iterated segment.
func (seg addrIterator) NextGap() addrGapIterator {
if seg.node.hasChildren {
return seg.node.children[seg.index+1].firstSegment().PrevGap()
}
return addrGapIterator{seg.node, seg.index + 1}
}
// PrevNonEmpty returns the iterated segment's predecessor if it is adjacent,
// or the gap before the iterated segment otherwise. If seg.Start() ==
// Functions.MinKey(), PrevNonEmpty will return two terminal iterators.
// Otherwise, exactly one of the iterators returned by PrevNonEmpty will be
// non-terminal.
func (seg addrIterator) PrevNonEmpty() (addrIterator, addrGapIterator) {
gap := seg.PrevGap()
if gap.Range().Length() != 0 {
return addrIterator{}, gap
}
return gap.PrevSegment(), addrGapIterator{}
}
// NextNonEmpty returns the iterated segment's successor if it is adjacent, or
// the gap after the iterated segment otherwise. If seg.End() ==
// Functions.MaxKey(), NextNonEmpty will return two terminal iterators.
// Otherwise, exactly one of the iterators returned by NextNonEmpty will be
// non-terminal.
func (seg addrIterator) NextNonEmpty() (addrIterator, addrGapIterator) {
gap := seg.NextGap()
if gap.Range().Length() != 0 {
return addrIterator{}, gap
}
return gap.NextSegment(), addrGapIterator{}
}
// A GapIterator is conceptually one of:
//
// - A pointer to a position between two segments, before the first segment, or
// after the last segment in a set, called a *gap*; or
//
// - A terminal iterator, which is a sentinel indicating that the end of
// iteration has been reached.
//
// Note that the gap between two adjacent segments exists (iterators to it are
// non-terminal), but has a length of zero. GapIterator.IsEmpty returns true
// for such gaps. An empty set contains a single gap, spanning the entire range
// of the set's keys.
//
// GapIterators are copyable values and are meaningfully equality-comparable.
// The zero value of GapIterator is a terminal iterator.
//
// Unless otherwise specified, any mutation of a set invalidates all existing
// iterators into the set.
type addrGapIterator struct {
// The representation of a GapIterator is identical to that of an Iterator,
// except that index corresponds to positions between segments in the same
// way as for node.children (see comment for node.nrSegments).
node *addrnode
index int
}
// Ok returns true if the iterator is not terminal. All other methods are only
// valid for non-terminal iterators.
func (gap addrGapIterator) Ok() bool {
return gap.node != nil
}
// Range returns the range spanned by the iterated gap.
func (gap addrGapIterator) Range() addrRange {
return addrRange{gap.Start(), gap.End()}
}
// Start is equivalent to Range().Start, but should be preferred if only the
// start of the range is needed.
func (gap addrGapIterator) Start() uintptr {
if ps := gap.PrevSegment(); ps.Ok() {
return ps.End()
}
return addrSetFunctions{}.MinKey()
}
// End is equivalent to Range().End, but should be preferred if only the end of
// the range is needed.
func (gap addrGapIterator) End() uintptr {
if ns := gap.NextSegment(); ns.Ok() {
return ns.Start()
}
return addrSetFunctions{}.MaxKey()
}
// IsEmpty returns true if the iterated gap is empty (that is, the "gap" is
// between two adjacent segments.)
func (gap addrGapIterator) IsEmpty() bool {
return gap.Range().Length() == 0
}
// PrevSegment returns the segment immediately before the iterated gap. If no
// such segment exists, PrevSegment returns a terminal iterator.
func (gap addrGapIterator) PrevSegment() addrIterator {
return addrsegmentBeforePosition(gap.node, gap.index)
}
// NextSegment returns the segment immediately after the iterated gap. If no
// such segment exists, NextSegment returns a terminal iterator.
func (gap addrGapIterator) NextSegment() addrIterator {
return addrsegmentAfterPosition(gap.node, gap.index)
}
// PrevGap returns the iterated gap's predecessor. If no such gap exists,
// PrevGap returns a terminal iterator.
func (gap addrGapIterator) PrevGap() addrGapIterator {
seg := gap.PrevSegment()
if !seg.Ok() {
return addrGapIterator{}
}
return seg.PrevGap()
}
// NextGap returns the iterated gap's successor. If no such gap exists, NextGap
// returns a terminal iterator.
func (gap addrGapIterator) NextGap() addrGapIterator {
seg := gap.NextSegment()
if !seg.Ok() {
return addrGapIterator{}
}
return seg.NextGap()
}
// NextLargeEnoughGap returns the iterated gap's first next gap with larger
// length than minSize. If not found, return a terminal gap iterator (does NOT
// include this gap itself).
//
// Precondition: trackGaps must be 1.
func (gap addrGapIterator) NextLargeEnoughGap(minSize uintptr) addrGapIterator {
if addrtrackGaps != 1 {
panic("set is not tracking gaps")
}
if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments {
gap.node = gap.NextSegment().node
gap.index = 0
return gap.nextLargeEnoughGapHelper(minSize)
}
return gap.nextLargeEnoughGapHelper(minSize)
}
// nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap
// to do the real recursions.
//
// Preconditions: gap is NOT the trailing gap of a non-leaf node.
func (gap addrGapIterator) nextLargeEnoughGapHelper(minSize uintptr) addrGapIterator {
for gap.node != nil &&
(gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) {
gap.node, gap.index = gap.node.parent, gap.node.parentIndex
}
if gap.node == nil {
return addrGapIterator{}
}
gap.index++
for gap.index <= gap.node.nrSegments {
if gap.node.hasChildren {
if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() {
return largeEnoughGap
}
} else {
if gap.Range().Length() >= minSize {
return gap
}
}
gap.index++
}
gap.node, gap.index = gap.node.parent, gap.node.parentIndex
if gap.node != nil && gap.index == gap.node.nrSegments {
gap.node, gap.index = gap.node.parent, gap.node.parentIndex
}
return gap.nextLargeEnoughGapHelper(minSize)
}
// PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or
// equal length than minSize. If not found, return a terminal gap iterator
// (does NOT include this gap itself).
//
// Precondition: trackGaps must be 1.
func (gap addrGapIterator) PrevLargeEnoughGap(minSize uintptr) addrGapIterator {
if addrtrackGaps != 1 {
panic("set is not tracking gaps")
}
if gap.node != nil && gap.node.hasChildren && gap.index == 0 {
gap.node = gap.PrevSegment().node
gap.index = gap.node.nrSegments
return gap.prevLargeEnoughGapHelper(minSize)
}
return gap.prevLargeEnoughGapHelper(minSize)
}
// prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap
// to do the real recursions.
//
// Preconditions: gap is NOT the first gap of a non-leaf node.
func (gap addrGapIterator) prevLargeEnoughGapHelper(minSize uintptr) addrGapIterator {
for gap.node != nil &&
(gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) {
gap.node, gap.index = gap.node.parent, gap.node.parentIndex
}
if gap.node == nil {
return addrGapIterator{}
}
gap.index--
for gap.index >= 0 {
if gap.node.hasChildren {
if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() {
return largeEnoughGap
}
} else {
if gap.Range().Length() >= minSize {
return gap
}
}
gap.index--
}
gap.node, gap.index = gap.node.parent, gap.node.parentIndex
if gap.node != nil && gap.index == 0 {
gap.node, gap.index = gap.node.parent, gap.node.parentIndex
}
return gap.prevLargeEnoughGapHelper(minSize)
}
// segmentBeforePosition returns the predecessor segment of the position given
// by n.children[i], which may or may not contain a child. If no such segment
// exists, segmentBeforePosition returns a terminal iterator.
func addrsegmentBeforePosition(n *addrnode, i int) addrIterator {
for i == 0 {
if n.parent == nil {
return addrIterator{}
}
n, i = n.parent, n.parentIndex
}
return addrIterator{n, i - 1}
}
// segmentAfterPosition returns the successor segment of the position given by
// n.children[i], which may or may not contain a child. If no such segment
// exists, segmentAfterPosition returns a terminal iterator.
func addrsegmentAfterPosition(n *addrnode, i int) addrIterator {
for i == n.nrSegments {
if n.parent == nil {
return addrIterator{}
}
n, i = n.parent, n.parentIndex
}
return addrIterator{n, i}
}
func addrzeroValueSlice(slice []*objectEncodeState) {
for i := range slice {
addrSetFunctions{}.ClearValue(&slice[i])
}
}
func addrzeroNodeSlice(slice []*addrnode) {
for i := range slice {
slice[i] = nil
}
}
// String stringifies a Set for debugging.
func (s *addrSet) String() string {
return s.root.String()
}
// String stringifies a node (and all of its children) for debugging.
func (n *addrnode) String() string {
var buf bytes.Buffer
n.writeDebugString(&buf, "")
return buf.String()
}
func (n *addrnode) writeDebugString(buf *bytes.Buffer, prefix string) {
if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) {
buf.WriteString(prefix)
buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren))
}
for i := 0; i < n.nrSegments; i++ {
if child := n.children[i]; child != nil {
cprefix := fmt.Sprintf("%s- % 3d ", prefix, i)
if child.parent != n || child.parentIndex != i {
buf.WriteString(cprefix)
buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i))
}
child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i))
}
buf.WriteString(prefix)
if n.hasChildren {
if addrtrackGaps != 0 {
buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get()))
} else {
buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
}
} else {
buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i]))
}
}
if child := n.children[n.nrSegments]; child != nil {
child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments))
}
}
// SegmentDataSlices represents segments from a set as slices of start, end, and
// values. SegmentDataSlices is primarily used as an intermediate representation
// for save/restore and the layout here is optimized for that.
//
// +stateify savable
type addrSegmentDataSlices struct {
Start []uintptr
End []uintptr
Values []*objectEncodeState
}
// ExportSortedSlices returns a copy of all segments in the given set, in
// ascending key order.
func (s *addrSet) ExportSortedSlices() *addrSegmentDataSlices {
var sds addrSegmentDataSlices
for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
sds.Start = append(sds.Start, seg.Start())
sds.End = append(sds.End, seg.End())
sds.Values = append(sds.Values, seg.Value())
}
sds.Start = sds.Start[:len(sds.Start):len(sds.Start)]
sds.End = sds.End[:len(sds.End):len(sds.End)]
sds.Values = sds.Values[:len(sds.Values):len(sds.Values)]
return &sds
}
// ImportSortedSlices initializes the given set from the given slice.
//
// Preconditions:
// * s must be empty.
// * sds must represent a valid set (the segments in sds must have valid
// lengths that do not overlap).
// * The segments in sds must be sorted in ascending key order.
func (s *addrSet) ImportSortedSlices(sds *addrSegmentDataSlices) error {
if !s.IsEmpty() {
return fmt.Errorf("cannot import into non-empty set %v", s)
}
gap := s.FirstGap()
for i := range sds.Start {
r := addrRange{sds.Start[i], sds.End[i]}
if !gap.Range().IsSupersetOf(r) {
return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i])
}
gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap()
}
return nil
}
// segmentTestCheck returns an error if s is incorrectly sorted, does not
// contain exactly expectedSegments segments, or contains a segment which
// fails the passed check.
//
// This should be used only for testing, and has been added to this package for
// templating convenience.
func (s *addrSet) segmentTestCheck(expectedSegments int, segFunc func(int, addrRange, *objectEncodeState) error) error {
havePrev := false
prev := uintptr(0)
nrSegments := 0
for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
next := seg.Start()
if havePrev && prev >= next {
return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments)
}
if segFunc != nil {
if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil {
return err
}
}
prev = next
havePrev = true
nrSegments++
}
if nrSegments != expectedSegments {
return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments)
}
return nil
}
// countSegments counts the number of segments in the set.
//
// Similar to Check, this should only be used for testing.
func (s *addrSet) countSegments() (segments int) {
for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() {
segments++
}
return segments
}
func (s *addrSet) saveRoot() *addrSegmentDataSlices {
return s.ExportSortedSlices()
}
func (s *addrSet) loadRoot(sds *addrSegmentDataSlices) {
if err := s.ImportSortedSlices(sds); err != nil {
panic(err)
}
}