blob: 1975f1a443cb103bf5e4d201db9de5cc3cd5ce0a [file] [log] [blame]
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"math"
"time"
)
// cubicState stores the variables related to TCP CUBIC congestion
// control algorithm state.
//
// See: https://tools.ietf.org/html/rfc8312.
// +stateify savable
type cubicState struct {
// wLastMax is the previous wMax value.
wLastMax float64
// wMax is the value of the congestion window at the
// time of last congestion event.
wMax float64
// t denotes the time when the current congestion avoidance
// was entered.
t time.Time `state:".(unixTime)"`
// numCongestionEvents tracks the number of congestion events since last
// RTO.
numCongestionEvents int
// c is the cubic constant as specified in RFC8312. It's fixed at 0.4 as
// per RFC.
c float64
// k is the time period that the above function takes to increase the
// current window size to W_max if there are no further congestion
// events and is calculated using the following equation:
//
// K = cubic_root(W_max*(1-beta_cubic)/C) (Eq. 2)
k float64
// beta is the CUBIC multiplication decrease factor. that is, when a
// congestion event is detected, CUBIC reduces its cwnd to
// W_cubic(0)=W_max*beta_cubic.
beta float64
// wC is window computed by CUBIC at time t. It's calculated using the
// formula:
//
// W_cubic(t) = C*(t-K)^3 + W_max (Eq. 1)
wC float64
// wEst is the window computed by CUBIC at time t+RTT i.e
// W_cubic(t+RTT).
wEst float64
s *sender
}
// newCubicCC returns a partially initialized cubic state with the constants
// beta and c set and t set to current time.
func newCubicCC(s *sender) *cubicState {
return &cubicState{
t: time.Now(),
beta: 0.7,
c: 0.4,
s: s,
}
}
// enterCongestionAvoidance is used to initialize cubic in cases where we exit
// SlowStart without a real congestion event taking place. This can happen when
// a connection goes back to slow start due to a retransmit and we exceed the
// previously lowered ssThresh without experiencing packet loss.
//
// Refer: https://tools.ietf.org/html/rfc8312#section-4.8
func (c *cubicState) enterCongestionAvoidance() {
// See: https://tools.ietf.org/html/rfc8312#section-4.7 &
// https://tools.ietf.org/html/rfc8312#section-4.8
if c.numCongestionEvents == 0 {
c.k = 0
c.t = time.Now()
c.wLastMax = c.wMax
c.wMax = float64(c.s.sndCwnd)
}
}
// updateSlowStart will update the congestion window as per the slow-start
// algorithm used by NewReno. If after adjusting the congestion window we cross
// the ssThresh then it will return the number of packets that must be consumed
// in congestion avoidance mode.
func (c *cubicState) updateSlowStart(packetsAcked int) int {
// Don't let the congestion window cross into the congestion
// avoidance range.
newcwnd := c.s.sndCwnd + packetsAcked
enterCA := false
if newcwnd >= c.s.sndSsthresh {
newcwnd = c.s.sndSsthresh
c.s.sndCAAckCount = 0
enterCA = true
}
packetsAcked -= newcwnd - c.s.sndCwnd
c.s.sndCwnd = newcwnd
if enterCA {
c.enterCongestionAvoidance()
}
return packetsAcked
}
// Update updates cubic's internal state variables. It must be called on every
// ACK received.
// Refer: https://tools.ietf.org/html/rfc8312#section-4
func (c *cubicState) Update(packetsAcked int) {
if c.s.sndCwnd < c.s.sndSsthresh {
packetsAcked = c.updateSlowStart(packetsAcked)
if packetsAcked == 0 {
return
}
} else {
c.s.rtt.Lock()
srtt := c.s.rtt.srtt
c.s.rtt.Unlock()
c.s.sndCwnd = c.getCwnd(packetsAcked, c.s.sndCwnd, srtt)
}
}
// cubicCwnd computes the CUBIC congestion window after t seconds from last
// congestion event.
func (c *cubicState) cubicCwnd(t float64) float64 {
return c.c*math.Pow(t, 3.0) + c.wMax
}
// getCwnd returns the current congestion window as computed by CUBIC.
// Refer: https://tools.ietf.org/html/rfc8312#section-4
func (c *cubicState) getCwnd(packetsAcked, sndCwnd int, srtt time.Duration) int {
elapsed := time.Since(c.t).Seconds()
// Compute the window as per Cubic after 'elapsed' time
// since last congestion event.
c.wC = c.cubicCwnd(elapsed - c.k)
// Compute the TCP friendly estimate of the congestion window.
c.wEst = c.wMax*c.beta + (3.0*((1.0-c.beta)/(1.0+c.beta)))*(elapsed/srtt.Seconds())
// Make sure in the TCP friendly region CUBIC performs at least
// as well as Reno.
if c.wC < c.wEst && float64(sndCwnd) < c.wEst {
// TCP Friendly region of cubic.
return int(c.wEst)
}
// In Concave/Convex region of CUBIC, calculate what CUBIC window
// will be after 1 RTT and use that to grow congestion window
// for every ack.
tEst := (time.Since(c.t) + srtt).Seconds()
wtRtt := c.cubicCwnd(tEst - c.k)
// As per 4.3 for each received ACK cwnd must be incremented
// by (w_cubic(t+RTT) - cwnd/cwnd.
cwnd := float64(sndCwnd)
for i := 0; i < packetsAcked; i++ {
// Concave/Convex regions of cubic have the same formulas.
// See: https://tools.ietf.org/html/rfc8312#section-4.3
cwnd += (wtRtt - cwnd) / cwnd
}
return int(cwnd)
}
// HandleLossDetected implements congestionControl.HandleLossDetected.
func (c *cubicState) HandleLossDetected() {
// See: https://tools.ietf.org/html/rfc8312#section-4.5
c.numCongestionEvents++
c.t = time.Now()
c.wLastMax = c.wMax
c.wMax = float64(c.s.sndCwnd)
c.fastConvergence()
c.reduceSlowStartThreshold()
}
// HandleRTOExpired implements congestionContrl.HandleRTOExpired.
func (c *cubicState) HandleRTOExpired() {
// See: https://tools.ietf.org/html/rfc8312#section-4.6
c.t = time.Now()
c.numCongestionEvents = 0
c.wLastMax = c.wMax
c.wMax = float64(c.s.sndCwnd)
c.fastConvergence()
// We lost a packet, so reduce ssthresh.
c.reduceSlowStartThreshold()
// Reduce the congestion window to 1, i.e., enter slow-start. Per
// RFC 5681, page 7, we must use 1 regardless of the value of the
// initial congestion window.
c.s.sndCwnd = 1
}
// fastConvergence implements the logic for Fast Convergence algorithm as
// described in https://tools.ietf.org/html/rfc8312#section-4.6.
func (c *cubicState) fastConvergence() {
if c.wMax < c.wLastMax {
c.wLastMax = c.wMax
c.wMax = c.wMax * (1.0 + c.beta) / 2.0
} else {
c.wLastMax = c.wMax
}
// Recompute k as wMax may have changed.
c.k = math.Cbrt(c.wMax * (1 - c.beta) / c.c)
}
// PostRecovery implemements congestionControl.PostRecovery.
func (c *cubicState) PostRecovery() {
c.t = time.Now()
}
// reduceSlowStartThreshold returns new SsThresh as described in
// https://tools.ietf.org/html/rfc8312#section-4.7.
func (c *cubicState) reduceSlowStartThreshold() {
c.s.sndSsthresh = int(math.Max(float64(c.s.sndCwnd)*c.beta, 2.0))
}