blob: 547dd48a1474462835107b26cb3703bc1fc709b6 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package ir
import (
// A Node is the abstract interface to an IR node.
type Node interface {
// Formatting
Format(s fmt.State, verb rune)
// Source position.
Pos() src.XPos
SetPos(x src.XPos)
// For making copies. For Copy and SepCopy.
copy() Node
doChildren(func(Node) bool) bool
editChildren(func(Node) Node)
editChildrenWithHidden(func(Node) Node)
// Abstract graph structure, for generic traversals.
Op() Op
Init() Nodes
// Fields specific to certain Ops only.
Type() *types.Type
SetType(t *types.Type)
Name() *Name
Sym() *types.Sym
Val() constant.Value
SetVal(v constant.Value)
// Storage for analysis passes.
Esc() uint16
SetEsc(x uint16)
// Typecheck values:
// 0 means the node is not typechecked
// 1 means the node is completely typechecked
// 2 means typechecking of the node is in progress
// 3 means the node has its type from types2, but may need transformation
Typecheck() uint8
SetTypecheck(x uint8)
NonNil() bool
// Line returns n's position as a string. If n has been inlined,
// it uses the outermost position where n has been inlined.
func Line(n Node) string {
return base.FmtPos(n.Pos())
func IsSynthetic(n Node) bool {
name := n.Sym().Name
return name[0] == '.' || name[0] == '~'
// IsAutoTmp indicates if n was created by the compiler as a temporary,
// based on the setting of the .AutoTemp flag in n's Name.
func IsAutoTmp(n Node) bool {
if n == nil || n.Op() != ONAME {
return false
return n.Name().AutoTemp()
// MayBeShared reports whether n may occur in multiple places in the AST.
// Extra care must be taken when mutating such a node.
func MayBeShared(n Node) bool {
switch n.Op() {
return true
return false
type InitNode interface {
PtrInit() *Nodes
SetInit(x Nodes)
func TakeInit(n Node) Nodes {
init := n.Init()
if len(init) != 0 {
return init
//go:generate stringer -type=Op -trimprefix=O node.go
type Op uint8
// Node ops.
const (
OXXX Op = iota
// names
ONAME // var or func name
// Unnamed arg or return value: f(int, string) (int, error) { etc }
// Also used for a qualified package identifier that hasn't been resolved yet.
OTYPE // type name
OLITERAL // literal
ONIL // nil
// expressions
OADD // X + Y
OSUB // X - Y
OOR // X | Y
OXOR // X ^ Y
OADDSTR // +{List} (string addition, list elements are strings)
OAPPEND // append(Args); after walk, X may contain elem type descriptor
OBYTES2STR // Type(X) (Type is string, X is a []byte)
OBYTES2STRTMP // Type(X) (Type is string, X is a []byte, ephemeral)
ORUNES2STR // Type(X) (Type is string, X is a []rune)
OSTR2BYTES // Type(X) (Type is []byte, X is a string)
OSTR2BYTESTMP // Type(X) (Type is []byte, X is a string, ephemeral)
OSTR2RUNES // Type(X) (Type is []rune, X is a string)
OSLICE2ARR // Type(X) (Type is [N]T, X is a []T)
OSLICE2ARRPTR // Type(X) (Type is *[N]T, X is a []T)
// X = Y or (if Def=true) X := Y
// If Def, then Init includes a DCL node for X.
// Lhs = Rhs (x, y, z = a, b, c) or (if Def=true) Lhs := Rhs
// If Def, then Init includes DCL nodes for Lhs
OAS2DOTTYPE // Lhs = Rhs (x, ok = I.(int))
OAS2FUNC // Lhs = Rhs (x, y = f())
OAS2MAPR // Lhs = Rhs (x, ok = m["foo"])
OAS2RECV // Lhs = Rhs (x, ok = <-c)
OASOP // X AsOp= Y (x += y)
OCALL // X(Args) (function call, method call or type conversion)
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
// Prior to walk, they are: X(Args), where Args is all regular arguments.
// After walk, if any argument whose evaluation might requires temporary variable,
// that temporary variable will be pushed to Init, Args will contains an updated
// set of arguments.
OCALLFUNC // X(Args) (function call f(args))
OCALLMETH // X(Args) (direct method call x.Method(args))
OCALLINTER // X(Args) (interface method call x.Method(args))
OCAP // cap(X)
OCLOSE // close(X)
OCLOSURE // func Type { Func.Closure.Body } (func literal)
OCOMPLIT // Type{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array)
OSLICELIT // Type{List} (composite literal, Type is slice), Len is slice length.
OPTRLIT // &X (X is composite literal)
OCONV // Type(X) (type conversion)
OCONVIFACE // Type(X) (type conversion, to interface)
OCONVIDATA // Builds a data word to store X in an interface. Equivalent to IDATA(CONVIFACE(X)). Is an ir.ConvExpr.
OCONVNOP // Type(X) (type conversion, no effect)
OCOPY // copy(X, Y)
ODCL // var X (declares X of type X.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int or type Int = int
ODELETE // delete(Args)
ODOT // X.Sel (X is of struct type)
ODOTPTR // X.Sel (X is of pointer to struct type)
ODOTMETH // X.Sel (X is non-interface, Sel is method name)
ODOTINTER // X.Sel (X is interface, Sel is method name)
OXDOT // X.Sel (before rewrite to one of the preceding)
ODOTTYPE // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved); after walk, Itab contains address of interface type descriptor and Itab.X contains address of concrete type descriptor
ODOTTYPE2 // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, Itab contains address of interface type descriptor
OEQ // X == Y
ONE // X != Y
OLT // X < Y
OLE // X <= Y
OGE // X >= Y
OGT // X > Y
OINDEX // X[Index] (index of array or slice)
OINDEXMAP // X[Index] (index of map)
OKEY // Key:Value (key:value in struct/array/map literal)
OSTRUCTKEY // Field:Value (key:value in struct literal, after type checking)
OLEN // len(X)
OMAKE // make(Args) (before type checking converts to one of the following)
OMAKECHAN // make(Type[, Len]) (type is chan)
OMAKEMAP // make(Type[, Len]) (type is map)
OMAKESLICE // make(Type[, Len[, Cap]]) (type is slice)
OMAKESLICECOPY // makeslicecopy(Type, Len, Cap) (type is slice; Len is length and Cap is the copied from slice)
// OMAKESLICECOPY is created by the order pass and corresponds to:
// s = make(Type, Len); copy(s, Cap)
// Bounded can be set on the node when Len == len(Cap) is known at compile time.
// This node is created so the walk pass can optimize this pattern which would
// otherwise be hard to detect after the order pass.
OMUL // X * Y
ODIV // X / Y
OMOD // X % Y
OLSH // X << Y
ORSH // X >> Y
OAND // X & Y
ONEW // new(X); corresponds to calls to new in source code
ONOT // !X
ONEG // -X
OOROR // X || Y
OPANIC // panic(X)
OPRINT // print(List)
OPRINTN // println(List)
OSEND // Chan <- Value
OSLICE // X[Low : High] (X is untypechecked or slice)
OSLICEARR // X[Low : High] (X is pointer to array)
OSLICESTR // X[Low : High] (X is string)
OSLICE3 // X[Low : High : Max] (X is untypedchecked or slice)
OSLICE3ARR // X[Low : High : Max] (X is pointer to array)
OSLICEHEADER // sliceheader{Ptr, Len, Cap} (Ptr is unsafe.Pointer, Len is length, Cap is capacity)
OSTRINGHEADER // stringheader{Ptr, Len} (Ptr is unsafe.Pointer, Len is length)
ORECOVER // recover()
ORECOVERFP // recover(Args) w/ explicit FP argument
ORECV // <-X
ORUNESTR // Type(X) (Type is string, X is rune)
OSELRECV2 // like OAS2: Lhs = Rhs where len(Lhs)=2, len(Rhs)=1, Rhs[0].Op = ORECV (appears as .Var of OCASE)
OREAL // real(X)
OIMAG // imag(X)
OCOMPLEX // complex(X, Y)
OALIGNOF // unsafe.Alignof(X)
OOFFSETOF // unsafe.Offsetof(X)
OSIZEOF // unsafe.Sizeof(X)
OUNSAFEADD // unsafe.Add(X, Y)
OUNSAFESLICE // unsafe.Slice(X, Y)
OUNSAFESLICEDATA // unsafe.SliceData(X)
OUNSAFESTRING // unsafe.String(X, Y)
OUNSAFESTRINGDATA // unsafe.StringData(X)
OMETHEXPR // X(Args) (method expression T.Method(args), first argument is the method receiver)
OMETHVALUE // X.Sel (method expression t.Method, not called)
// statements
OBLOCK // { List } (block of code)
OBREAK // break [Label]
// OCASE: case List: Body (List==nil means default)
// For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
// for nil) or an ODYNAMICTYPE indicating a runtime type for generics.
// If a type-switch variable is specified, Var is an
// ONAME for the version of the type-switch variable with the specified
// type.
OCONTINUE // continue [Label]
ODEFER // defer Call
OFALL // fallthrough
OFOR // for Init; Cond; Post { Body }
OGOTO // goto Label
OIF // if Init; Cond { Then } else { Else }
OLABEL // Label:
OGO // go Call
ORANGE // for Key, Value = range X { Body }
ORETURN // return Results
OSELECT // select { Cases }
OSWITCH // switch Init; Expr { Cases }
// OTYPESW: X := Y.(type) (appears as .Tag of OSWITCH)
// X is nil if there is no type-switch variable
OFUNCINST // instantiation of a generic function
// misc
// intermediate representation of an inlined call. Uses Init (assignments
// for the captured variables, parameters, retvars, & INLMARK op),
// Body (body of the inlined function), and ReturnVars (list of
// return values)
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OIDATA // data word of an interface value in X
OSPTR // base pointer of a slice or string. Bounded==1 means known non-nil.
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
ORESULT // result of a function call; Xoffset is stack offset
OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
OLINKSYMOFFSET // offset within a name
OJUMPTABLE // A jump table structure for implementing dense expression switches
// opcodes for generics
ODYNAMICDOTTYPE // x = i.(T) where T is a type parameter (or derived from a type parameter)
ODYNAMICDOTTYPE2 // x, ok = i.(T) where T is a type parameter (or derived from a type parameter)
ODYNAMICTYPE // a type node for type switches (represents a dynamic target type for a type switch)
// arch-specific opcodes
OTAILCALL // tail call to another function
OGETG // runtime.getg() (read g pointer)
OGETCALLERPC // runtime.getcallerpc() (continuation PC in caller frame)
OGETCALLERSP // runtime.getcallersp() (stack pointer in caller frame)
// IsCmp reports whether op is a comparison operation (==, !=, <, <=,
// >, or >=).
func (op Op) IsCmp() bool {
switch op {
return true
return false
// Nodes is a pointer to a slice of *Node.
// For fields that are not used in most nodes, this is used instead of
// a slice to save space.
type Nodes []Node
// Append appends entries to Nodes.
func (n *Nodes) Append(a ...Node) {
if len(a) == 0 {
*n = append(*n, a...)
// Prepend prepends entries to Nodes.
// If a slice is passed in, this will take ownership of it.
func (n *Nodes) Prepend(a ...Node) {
if len(a) == 0 {
*n = append(a, *n...)
// Take clears n, returning its former contents.
func (n *Nodes) Take() []Node {
ret := *n
*n = nil
return ret
// Copy returns a copy of the content of the slice.
func (n Nodes) Copy() Nodes {
if n == nil {
return nil
c := make(Nodes, len(n))
copy(c, n)
return c
// NameQueue is a FIFO queue of *Name. The zero value of NameQueue is
// a ready-to-use empty queue.
type NameQueue struct {
ring []*Name
head, tail int
// Empty reports whether q contains no Names.
func (q *NameQueue) Empty() bool {
return q.head == q.tail
// PushRight appends n to the right of the queue.
func (q *NameQueue) PushRight(n *Name) {
if len(q.ring) == 0 {
q.ring = make([]*Name, 16)
} else if q.head+len(q.ring) == q.tail {
// Grow the ring.
nring := make([]*Name, len(q.ring)*2)
// Copy the old elements.
part := q.ring[q.head%len(q.ring):]
if q.tail-q.head <= len(part) {
part = part[:q.tail-q.head]
copy(nring, part)
} else {
pos := copy(nring, part)
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
q.ring[q.tail%len(q.ring)] = n
// PopLeft pops a Name from the left of the queue. It panics if q is
// empty.
func (q *NameQueue) PopLeft() *Name {
if q.Empty() {
panic("dequeue empty")
n := q.ring[q.head%len(q.ring)]
return n
// NameSet is a set of Names.
type NameSet map[*Name]struct{}
// Has reports whether s contains n.
func (s NameSet) Has(n *Name) bool {
_, isPresent := s[n]
return isPresent
// Add adds n to s.
func (s *NameSet) Add(n *Name) {
if *s == nil {
*s = make(map[*Name]struct{})
(*s)[n] = struct{}{}
// Sorted returns s sorted according to less.
func (s NameSet) Sorted(less func(*Name, *Name) bool) []*Name {
var res []*Name
for n := range s {
res = append(res, n)
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
return res
type PragmaFlag uint16
const (
// Func pragmas.
Nointerface PragmaFlag = 1 << iota
Noescape // func parameters don't escape
Norace // func must not have race detector annotations
Nosplit // func should not execute on separate stack
Noinline // func should not be inlined
NoCheckPtr // func should not be instrumented by checkptr
CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
UintptrKeepAlive // pointers converted to uintptr must be kept alive
UintptrEscapes // pointers converted to uintptr escape
// Runtime-only func pragmas.
// See ../../../../runtime/ for detailed descriptions.
Systemstack // func must run on system stack
Nowritebarrier // emit compiler error instead of write barrier
Nowritebarrierrec // error on write barrier in this or recursive callees
Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
// Go command pragmas
RegisterParams // TODO(register args) remove after register abi is working
func AsNode(n types.Object) Node {
if n == nil {
return nil
return n.(Node)
var BlankNode Node
func IsConst(n Node, ct constant.Kind) bool {
return ConstType(n) == ct
// IsNil reports whether n represents the universal untyped zero value "nil".
func IsNil(n Node) bool {
// Check n.Orig because constant propagation may produce typed nil constants,
// which don't exist in the Go spec.
return n != nil && Orig(n).Op() == ONIL
func IsBlank(n Node) bool {
if n == nil {
return false
return n.Sym().IsBlank()
// IsMethod reports whether n is a method.
// n must be a function or a method.
func IsMethod(n Node) bool {
return n.Type().Recv() != nil
func HasNamedResults(fn *Func) bool {
typ := fn.Type()
return typ.NumResults() > 0 && types.OrigSym(typ.Results().Field(0).Sym) != nil
// HasUniquePos reports whether n has a unique position that can be
// used for reporting error messages.
// It's primarily used to distinguish references to named objects,
// whose Pos will point back to their declaration position rather than
// their usage position.
func HasUniquePos(n Node) bool {
switch n.Op() {
case ONAME:
return false
if n.Sym() != nil {
return false
if !n.Pos().IsKnown() {
if base.Flag.K != 0 {
base.Warn("setlineno: unknown position (line 0)")
return false
return true
func SetPos(n Node) src.XPos {
lno := base.Pos
if n != nil && HasUniquePos(n) {
base.Pos = n.Pos()
return lno
// The result of InitExpr MUST be assigned back to n, e.g.
// n.X = InitExpr(init, n.X)
func InitExpr(init []Node, expr Node) Node {
if len(init) == 0 {
return expr
n, ok := expr.(InitNode)
if !ok || MayBeShared(n) {
// Introduce OCONVNOP to hold init list.
n = NewConvExpr(base.Pos, OCONVNOP, nil, expr)
return n
// what's the outer value that a write to n affects?
// outer value means containing struct or array.
func OuterValue(n Node) Node {
for {
switch nn := n; nn.Op() {
case OXDOT:
base.FatalfAt(n.Pos(), "OXDOT in OuterValue: %v", n)
case ODOT:
nn := nn.(*SelectorExpr)
n = nn.X
case OPAREN:
nn := nn.(*ParenExpr)
n = nn.X
nn := nn.(*ConvExpr)
n = nn.X
case OINDEX:
nn := nn.(*IndexExpr)
if nn.X.Type() == nil {
base.Fatalf("OuterValue needs type for %v", nn.X)
if nn.X.Type().IsArray() {
n = nn.X
return n
const (
EscUnknown = iota
EscNone // Does not escape to heap, result, or parameters.
EscHeap // Reachable from the heap
EscNever // By construction will not escape.