blob: 8f6e71e82b2e1383a83b9c9c9e3a3167b29d4e15 [file] [log] [blame] [edit]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
/*
Floating-point tangent.
*/
// The original C code, the long comment, and the constants
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
// available from http://www.netlib.org/cephes/cmath.tgz.
// The go code is a simplified version of the original C.
//
// tan.c
//
// Circular tangent
//
// SYNOPSIS:
//
// double x, y, tan();
// y = tan( x );
//
// DESCRIPTION:
//
// Returns the circular tangent of the radian argument x.
//
// Range reduction is modulo pi/4. A rational function
// x + x**3 P(x**2)/Q(x**2)
// is employed in the basic interval [0, pi/4].
//
// ACCURACY:
// Relative error:
// arithmetic domain # trials peak rms
// DEC +-1.07e9 44000 4.1e-17 1.0e-17
// IEEE +-1.07e9 30000 2.9e-16 8.1e-17
//
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
// be meaningless for x > 2**49 = 5.6e14.
// [Accuracy loss statement from sin.go comments.]
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
// tan coefficients
var _tanP = [...]float64{
-1.30936939181383777646e4, // 0xc0c992d8d24f3f38
1.15351664838587416140e6, // 0x413199eca5fc9ddd
-1.79565251976484877988e7, // 0xc1711fead3299176
}
var _tanQ = [...]float64{
1.00000000000000000000e0,
1.36812963470692954678e4, // 0x40cab8a5eeb36572
-1.32089234440210967447e6, // 0xc13427bc582abc96
2.50083801823357915839e7, // 0x4177d98fc2ead8ef
-5.38695755929454629881e7, // 0xc189afe03cbe5a31
}
// Tan returns the tangent of the radian argument x.
//
// Special cases are:
//
// Tan(±0) = ±0
// Tan(±Inf) = NaN
// Tan(NaN) = NaN
func Tan(x float64) float64 {
if haveArchTan {
return archTan(x)
}
return tan(x)
}
func tan(x float64) float64 {
const (
PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000,
PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170,
)
// special cases
switch {
case x == 0 || IsNaN(x):
return x // return ±0 || NaN()
case IsInf(x, 0):
return NaN()
}
// make argument positive but save the sign
sign := false
if x < 0 {
x = -x
sign = true
}
var j uint64
var y, z float64
if x >= reduceThreshold {
j, z = trigReduce(x)
} else {
j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle
y = float64(j) // integer part of x/(Pi/4), as float
/* map zeros and singularities to origin */
if j&1 == 1 {
j++
y++
}
z = ((x - y*PI4A) - y*PI4B) - y*PI4C
}
zz := z * z
if zz > 1e-14 {
y = z + z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4]))
} else {
y = z
}
if j&2 == 2 {
y = -1 / y
}
if sign {
y = -y
}
return y
}