| // Copyright 2022 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package types |
| |
| // validType verifies that the given type does not "expand" indefinitely |
| // producing a cycle in the type graph. |
| // (Cycles involving alias types, as in "type A = [10]A" are detected |
| // earlier, via the objDecl cycle detection mechanism.) |
| func (check *Checker) validType(typ *Named) { |
| check.validType0(typ, nil, nil) |
| } |
| |
| // validType0 checks if the given type is valid. If typ is a type parameter |
| // its value is looked up in the type argument list of the instantiated |
| // (enclosing) type, if it exists. Otherwise the type parameter must be from |
| // an enclosing function and can be ignored. |
| // The nest list describes the stack (the "nest in memory") of types which |
| // contain (or embed in the case of interfaces) other types. For instance, a |
| // struct named S which contains a field of named type F contains (the memory |
| // of) F in S, leading to the nest S->F. If a type appears in its own nest |
| // (say S->F->S) we have an invalid recursive type. The path list is the full |
| // path of named types in a cycle, it is only needed for error reporting. |
| func (check *Checker) validType0(typ Type, nest, path []*Named) bool { |
| switch t := typ.(type) { |
| case nil: |
| // We should never see a nil type but be conservative and panic |
| // only in debug mode. |
| if debug { |
| panic("validType0(nil)") |
| } |
| |
| case *Array: |
| return check.validType0(t.elem, nest, path) |
| |
| case *Struct: |
| for _, f := range t.fields { |
| if !check.validType0(f.typ, nest, path) { |
| return false |
| } |
| } |
| |
| case *Union: |
| for _, t := range t.terms { |
| if !check.validType0(t.typ, nest, path) { |
| return false |
| } |
| } |
| |
| case *Interface: |
| for _, etyp := range t.embeddeds { |
| if !check.validType0(etyp, nest, path) { |
| return false |
| } |
| } |
| |
| case *Named: |
| // Exit early if we already know t is valid. |
| // This is purely an optimization but it prevents excessive computation |
| // times in pathological cases such as testdata/fixedbugs/issue6977.go. |
| // (Note: The valids map could also be allocated locally, once for each |
| // validType call.) |
| if check.valids.lookup(t) != nil { |
| break |
| } |
| |
| // Don't report a 2nd error if we already know the type is invalid |
| // (e.g., if a cycle was detected earlier, via under). |
| // Note: ensure that t.orig is fully resolved by calling Underlying(). |
| if t.Underlying() == Typ[Invalid] { |
| return false |
| } |
| |
| // If the current type t is also found in nest, (the memory of) t is |
| // embedded in itself, indicating an invalid recursive type. |
| for _, e := range nest { |
| if Identical(e, t) { |
| // We have a cycle. If t != t.Origin() then t is an instance of |
| // the generic type t.Origin(). Because t is in the nest, t must |
| // occur within the definition (RHS) of the generic type t.Origin(), |
| // directly or indirectly, after expansion of the RHS. |
| // Therefore t.Origin() must be invalid, no matter how it is |
| // instantiated since the instantiation t of t.Origin() happens |
| // inside t.Origin()'s RHS and thus is always the same and always |
| // present. |
| // Therefore we can mark the underlying of both t and t.Origin() |
| // as invalid. If t is not an instance of a generic type, t and |
| // t.Origin() are the same. |
| // Furthermore, because we check all types in a package for validity |
| // before type checking is complete, any exported type that is invalid |
| // will have an invalid underlying type and we can't reach here with |
| // such a type (invalid types are excluded above). |
| // Thus, if we reach here with a type t, both t and t.Origin() (if |
| // different in the first place) must be from the current package; |
| // they cannot have been imported. |
| // Therefore it is safe to change their underlying types; there is |
| // no chance for a race condition (the types of the current package |
| // are not yet available to other goroutines). |
| assert(t.obj.pkg == check.pkg) |
| assert(t.Origin().obj.pkg == check.pkg) |
| t.underlying = Typ[Invalid] |
| t.Origin().underlying = Typ[Invalid] |
| |
| // Find the starting point of the cycle and report it. |
| // Because each type in nest must also appear in path (see invariant below), |
| // type t must be in path since it was found in nest. But not every type in path |
| // is in nest. Specifically t may appear in path with an earlier index than the |
| // index of t in nest. Search again. |
| for start, p := range path { |
| if Identical(p, t) { |
| check.cycleError(makeObjList(path[start:])) |
| return false |
| } |
| } |
| panic("cycle start not found") |
| } |
| } |
| |
| // No cycle was found. Check the RHS of t. |
| // Every type added to nest is also added to path; thus every type that is in nest |
| // must also be in path (invariant). But not every type in path is in nest, since |
| // nest may be pruned (see below, *TypeParam case). |
| if !check.validType0(t.Origin().fromRHS, append(nest, t), append(path, t)) { |
| return false |
| } |
| |
| check.valids.add(t) // t is valid |
| |
| case *TypeParam: |
| // A type parameter stands for the type (argument) it was instantiated with. |
| // Check the corresponding type argument for validity if we are in an |
| // instantiated type. |
| if len(nest) > 0 { |
| inst := nest[len(nest)-1] // the type instance |
| // Find the corresponding type argument for the type parameter |
| // and proceed with checking that type argument. |
| for i, tparam := range inst.TypeParams().list() { |
| // The type parameter and type argument lists should |
| // match in length but be careful in case of errors. |
| if t == tparam && i < inst.TypeArgs().Len() { |
| targ := inst.TypeArgs().At(i) |
| // The type argument must be valid in the enclosing |
| // type (where inst was instantiated), hence we must |
| // check targ's validity in the type nest excluding |
| // the current (instantiated) type (see the example |
| // at the end of this file). |
| // For error reporting we keep the full path. |
| return check.validType0(targ, nest[:len(nest)-1], path) |
| } |
| } |
| } |
| } |
| |
| return true |
| } |
| |
| // makeObjList returns the list of type name objects for the given |
| // list of named types. |
| func makeObjList(tlist []*Named) []Object { |
| olist := make([]Object, len(tlist)) |
| for i, t := range tlist { |
| olist[i] = t.obj |
| } |
| return olist |
| } |
| |
| // Here is an example illustrating why we need to exclude the |
| // instantiated type from nest when evaluating the validity of |
| // a type parameter. Given the declarations |
| // |
| // var _ A[A[string]] |
| // |
| // type A[P any] struct { _ B[P] } |
| // type B[P any] struct { _ P } |
| // |
| // we want to determine if the type A[A[string]] is valid. |
| // We start evaluating A[A[string]] outside any type nest: |
| // |
| // A[A[string]] |
| // nest = |
| // path = |
| // |
| // The RHS of A is now evaluated in the A[A[string]] nest: |
| // |
| // struct{_ B[P₁]} |
| // nest = A[A[string]] |
| // path = A[A[string]] |
| // |
| // The struct has a single field of type B[P₁] with which |
| // we continue: |
| // |
| // B[P₁] |
| // nest = A[A[string]] |
| // path = A[A[string]] |
| // |
| // struct{_ P₂} |
| // nest = A[A[string]]->B[P] |
| // path = A[A[string]]->B[P] |
| // |
| // Eventually we reach the type parameter P of type B (P₂): |
| // |
| // P₂ |
| // nest = A[A[string]]->B[P] |
| // path = A[A[string]]->B[P] |
| // |
| // The type argument for P of B is the type parameter P of A (P₁). |
| // It must be evaluated in the type nest that existed when B was |
| // instantiated: |
| // |
| // P₁ |
| // nest = A[A[string]] <== type nest at B's instantiation time |
| // path = A[A[string]]->B[P] |
| // |
| // If we'd use the current nest it would correspond to the path |
| // which will be wrong as we will see shortly. P's type argument |
| // is A[string], which again must be evaluated in the type nest |
| // that existed when A was instantiated with A[string]. That type |
| // nest is empty: |
| // |
| // A[string] |
| // nest = <== type nest at A's instantiation time |
| // path = A[A[string]]->B[P] |
| // |
| // Evaluation then proceeds as before for A[string]: |
| // |
| // struct{_ B[P₁]} |
| // nest = A[string] |
| // path = A[A[string]]->B[P]->A[string] |
| // |
| // Now we reach B[P] again. If we had not adjusted nest, it would |
| // correspond to path, and we would find B[P] in nest, indicating |
| // a cycle, which would clearly be wrong since there's no cycle in |
| // A[string]: |
| // |
| // B[P₁] |
| // nest = A[string] |
| // path = A[A[string]]->B[P]->A[string] <== path contains B[P]! |
| // |
| // But because we use the correct type nest, evaluation proceeds without |
| // errors and we get the evaluation sequence: |
| // |
| // struct{_ P₂} |
| // nest = A[string]->B[P] |
| // path = A[A[string]]->B[P]->A[string]->B[P] |
| // P₂ |
| // nest = A[string]->B[P] |
| // path = A[A[string]]->B[P]->A[string]->B[P] |
| // P₁ |
| // nest = A[string] |
| // path = A[A[string]]->B[P]->A[string]->B[P] |
| // string |
| // nest = |
| // path = A[A[string]]->B[P]->A[string]->B[P] |
| // |
| // At this point we're done and A[A[string]] and is valid. |