blob: f928b7aedfc80136c9f979e72fd92bddcaca56e4 [file] [log] [blame]
//
// Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
// Copyright (C) 2013 LunarG, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#ifndef _SYMBOL_TABLE_INCLUDED_
#define _SYMBOL_TABLE_INCLUDED_
//
// Symbol table for parsing. Has these design characteristics:
//
// * Same symbol table can be used to compile many shaders, to preserve
// effort of creating and loading with the large numbers of built-in
// symbols.
//
// --> This requires a copy mechanism, so initial pools used to create
// the shared information can be popped. Done through "clone"
// methods.
//
// * Name mangling will be used to give each function a unique name
// so that symbol table lookups are never ambiguous. This allows
// a simpler symbol table structure.
//
// * Pushing and popping of scope, so symbol table will really be a stack
// of symbol tables. Searched from the top, with new inserts going into
// the top.
//
// * Constants: Compile time constant symbols will keep their values
// in the symbol table. The parser can substitute constants at parse
// time, including doing constant folding and constant propagation.
//
// * No temporaries: Temporaries made from operations (+, --, .xy, etc.)
// are tracked in the intermediate representation, not the symbol table.
//
#include "../Include/Common.h"
#include "../Include/intermediate.h"
#include "../Include/InfoSink.h"
namespace glslang {
//
// Symbol base class. (Can build functions or variables out of these...)
//
class TVariable;
class TFunction;
class TAnonMember;
class TSymbol {
public:
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
explicit TSymbol(const TString *n) : name(n), numExtensions(0), extensions(0), writable(true) { }
virtual TSymbol* clone() const = 0;
virtual ~TSymbol() { } // rely on all symbol owned memory coming from the pool
virtual const TString& getName() const { return *name; }
virtual void changeName(const TString* newName) { name = newName; }
virtual void addPrefix(const char* prefix)
{
TString newName(prefix);
newName.append(*name);
changeName(NewPoolTString(newName.c_str()));
}
virtual const TString& getMangledName() const { return getName(); }
virtual TFunction* getAsFunction() { return 0; }
virtual const TFunction* getAsFunction() const { return 0; }
virtual TVariable* getAsVariable() { return 0; }
virtual const TVariable* getAsVariable() const { return 0; }
virtual const TAnonMember* getAsAnonMember() const { return 0; }
virtual const TType& getType() const = 0;
virtual TType& getWritableType() = 0;
virtual void setUniqueId(int id) { uniqueId = id; }
virtual int getUniqueId() const { return uniqueId; }
virtual void setExtensions(int num, const char* const exts[])
{
assert(extensions == 0);
assert(num > 0);
numExtensions = num;
extensions = NewPoolObject(exts[0], num);
for (int e = 0; e < num; ++e)
extensions[e] = exts[e];
}
virtual int getNumExtensions() const { return numExtensions; }
virtual const char** getExtensions() const { return extensions; }
virtual void dump(TInfoSink &infoSink) const = 0;
virtual bool isReadOnly() const { return ! writable; }
virtual void makeReadOnly() { writable = false; }
protected:
explicit TSymbol(const TSymbol&);
TSymbol& operator=(const TSymbol&);
const TString *name;
unsigned int uniqueId; // For cross-scope comparing during code generation
// For tracking what extensions must be present
// (don't use if correct version/profile is present).
int numExtensions;
const char** extensions; // an array of pointers to existing constant char strings
//
// N.B.: Non-const functions that will be generally used should assert on this,
// to avoid overwriting shared symbol-table information.
//
bool writable;
};
//
// Variable class, meaning a symbol that's not a function.
//
// There could be a separate class hierarchy for Constant variables;
// Only one of int, bool, or float, (or none) is correct for
// any particular use, but it's easy to do this way, and doesn't
// seem worth having separate classes, and "getConst" can't simply return
// different values for different types polymorphically, so this is
// just simple and pragmatic.
//
class TVariable : public TSymbol {
public:
TVariable(const TString *name, const TType& t, bool uT = false )
: TSymbol(name),
userType(uT),
constSubtree(nullptr),
anonId(-1) { type.shallowCopy(t); }
virtual TVariable* clone() const;
virtual ~TVariable() { }
virtual TVariable* getAsVariable() { return this; }
virtual const TVariable* getAsVariable() const { return this; }
virtual const TType& getType() const { return type; }
virtual TType& getWritableType() { assert(writable); return type; }
virtual bool isUserType() const { return userType; }
virtual const TConstUnionArray& getConstArray() const { return constArray; }
virtual TConstUnionArray& getWritableConstArray() { assert(writable); return constArray; }
virtual void setConstArray(const TConstUnionArray& array) { constArray = array; }
virtual void setConstSubtree(TIntermTyped* subtree) { constSubtree = subtree; }
virtual TIntermTyped* getConstSubtree() const { return constSubtree; }
virtual void setAnonId(int i) { anonId = i; }
virtual int getAnonId() const { return anonId; }
virtual void dump(TInfoSink &infoSink) const;
protected:
explicit TVariable(const TVariable&);
TVariable& operator=(const TVariable&);
TType type;
bool userType;
// we are assuming that Pool Allocator will free the memory allocated to unionArray
// when this object is destroyed
// TODO: these two should be a union
// A variable could be a compile-time constant, or a specialization
// constant, or neither, but never both.
TConstUnionArray constArray; // for compile-time constant value
TIntermTyped* constSubtree; // for specialization constant computation
int anonId; // the ID used for anonymous blocks: TODO: see if uniqueId could serve a dual purpose
};
//
// The function sub-class of symbols and the parser will need to
// share this definition of a function parameter.
//
struct TParameter {
TString *name;
TType* type;
TIntermTyped* defaultValue;
void copyParam(const TParameter& param)
{
if (param.name)
name = NewPoolTString(param.name->c_str());
else
name = 0;
type = param.type->clone();
defaultValue = param.defaultValue;
}
TBuiltInVariable getDeclaredBuiltIn() const { return type->getQualifier().declaredBuiltIn; }
};
//
// The function sub-class of a symbol.
//
class TFunction : public TSymbol {
public:
explicit TFunction(TOperator o) :
TSymbol(0),
op(o),
defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0) { }
TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull) :
TSymbol(name),
mangledName(*name + '('),
op(tOp),
defined(false), prototyped(false), implicitThis(false), illegalImplicitThis(false), defaultParamCount(0)
{
returnType.shallowCopy(retType);
declaredBuiltIn = retType.getQualifier().builtIn;
}
virtual TFunction* clone() const override;
virtual ~TFunction();
virtual TFunction* getAsFunction() override { return this; }
virtual const TFunction* getAsFunction() const override { return this; }
// Install 'p' as the (non-'this') last parameter.
// Non-'this' parameters are reflected in both the list of parameters and the
// mangled name.
virtual void addParameter(TParameter& p)
{
assert(writable);
parameters.push_back(p);
p.type->appendMangledName(mangledName);
if (p.defaultValue != nullptr)
defaultParamCount++;
}
// Install 'this' as the first parameter.
// 'this' is reflected in the list of parameters, but not the mangled name.
virtual void addThisParameter(TType& type, const char* name)
{
TParameter p = { NewPoolTString(name), new TType, nullptr };
p.type->shallowCopy(type);
parameters.insert(parameters.begin(), p);
}
virtual void addPrefix(const char* prefix) override
{
TSymbol::addPrefix(prefix);
mangledName.insert(0, prefix);
}
virtual void removePrefix(const TString& prefix)
{
assert(mangledName.compare(0, prefix.size(), prefix) == 0);
mangledName.erase(0, prefix.size());
}
virtual const TString& getMangledName() const override { return mangledName; }
virtual const TType& getType() const override { return returnType; }
virtual TBuiltInVariable getDeclaredBuiltInType() const { return declaredBuiltIn; }
virtual TType& getWritableType() override { return returnType; }
virtual void relateToOperator(TOperator o) { assert(writable); op = o; }
virtual TOperator getBuiltInOp() const { return op; }
virtual void setDefined() { assert(writable); defined = true; }
virtual bool isDefined() const { return defined; }
virtual void setPrototyped() { assert(writable); prototyped = true; }
virtual bool isPrototyped() const { return prototyped; }
virtual void setImplicitThis() { assert(writable); implicitThis = true; }
virtual bool hasImplicitThis() const { return implicitThis; }
virtual void setIllegalImplicitThis() { assert(writable); illegalImplicitThis = true; }
virtual bool hasIllegalImplicitThis() const { return illegalImplicitThis; }
// Return total number of parameters
virtual int getParamCount() const { return static_cast<int>(parameters.size()); }
// Return number of parameters with default values.
virtual int getDefaultParamCount() const { return defaultParamCount; }
// Return number of fixed parameters (without default values)
virtual int getFixedParamCount() const { return getParamCount() - getDefaultParamCount(); }
virtual TParameter& operator[](int i) { assert(writable); return parameters[i]; }
virtual const TParameter& operator[](int i) const { return parameters[i]; }
virtual void dump(TInfoSink &infoSink) const override;
protected:
explicit TFunction(const TFunction&);
TFunction& operator=(const TFunction&);
typedef TVector<TParameter> TParamList;
TParamList parameters;
TType returnType;
TBuiltInVariable declaredBuiltIn;
TString mangledName;
TOperator op;
bool defined;
bool prototyped;
bool implicitThis; // True if this function is allowed to see all members of 'this'
bool illegalImplicitThis; // True if this function is not supposed to have access to dynamic members of 'this',
// even if it finds member variables in the symbol table.
// This is important for a static member function that has member variables in scope,
// but is not allowed to use them, or see hidden symbols instead.
int defaultParamCount;
};
//
// Members of anonymous blocks are a kind of TSymbol. They are not hidden in
// the symbol table behind a container; rather they are visible and point to
// their anonymous container. (The anonymous container is found through the
// member, not the other way around.)
//
class TAnonMember : public TSymbol {
public:
TAnonMember(const TString* n, unsigned int m, const TVariable& a, int an) : TSymbol(n), anonContainer(a), memberNumber(m), anonId(an) { }
virtual TAnonMember* clone() const;
virtual ~TAnonMember() { }
virtual const TAnonMember* getAsAnonMember() const { return this; }
virtual const TVariable& getAnonContainer() const { return anonContainer; }
virtual unsigned int getMemberNumber() const { return memberNumber; }
virtual const TType& getType() const
{
const TTypeList& types = *anonContainer.getType().getStruct();
return *types[memberNumber].type;
}
virtual TType& getWritableType()
{
assert(writable);
const TTypeList& types = *anonContainer.getType().getStruct();
return *types[memberNumber].type;
}
virtual int getAnonId() const { return anonId; }
virtual void dump(TInfoSink &infoSink) const;
protected:
explicit TAnonMember(const TAnonMember&);
TAnonMember& operator=(const TAnonMember&);
const TVariable& anonContainer;
unsigned int memberNumber;
int anonId;
};
class TSymbolTableLevel {
public:
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
TSymbolTableLevel() : defaultPrecision(0), anonId(0), thisLevel(false) { }
~TSymbolTableLevel();
bool insert(TSymbol& symbol, bool separateNameSpaces)
{
//
// returning true means symbol was added to the table with no semantic errors
//
const TString& name = symbol.getName();
if (name == "") {
symbol.getAsVariable()->setAnonId(anonId++);
// An empty name means an anonymous container, exposing its members to the external scope.
// Give it a name and insert its members in the symbol table, pointing to the container.
char buf[20];
snprintf(buf, 20, "%s%d", AnonymousPrefix, symbol.getAsVariable()->getAnonId());
symbol.changeName(NewPoolTString(buf));
return insertAnonymousMembers(symbol, 0);
} else {
// Check for redefinition errors:
// - STL itself will tell us if there is a direct name collision, with name mangling, at this level
// - additionally, check for function-redefining-variable name collisions
const TString& insertName = symbol.getMangledName();
if (symbol.getAsFunction()) {
// make sure there isn't a variable of this name
if (! separateNameSpaces && level.find(name) != level.end())
return false;
// insert, and whatever happens is okay
level.insert(tLevelPair(insertName, &symbol));
return true;
} else
return level.insert(tLevelPair(insertName, &symbol)).second;
}
}
// Add more members to an already inserted aggregate object
bool amend(TSymbol& symbol, int firstNewMember)
{
// See insert() for comments on basic explanation of insert.
// This operates similarly, but more simply.
// Only supporting amend of anonymous blocks so far.
if (IsAnonymous(symbol.getName()))
return insertAnonymousMembers(symbol, firstNewMember);
else
return false;
}
bool insertAnonymousMembers(TSymbol& symbol, int firstMember)
{
const TTypeList& types = *symbol.getAsVariable()->getType().getStruct();
for (unsigned int m = firstMember; m < types.size(); ++m) {
TAnonMember* member = new TAnonMember(&types[m].type->getFieldName(), m, *symbol.getAsVariable(), symbol.getAsVariable()->getAnonId());
if (! level.insert(tLevelPair(member->getMangledName(), member)).second)
return false;
}
return true;
}
TSymbol* find(const TString& name) const
{
tLevel::const_iterator it = level.find(name);
if (it == level.end())
return 0;
else
return (*it).second;
}
void findFunctionNameList(const TString& name, TVector<const TFunction*>& list)
{
size_t parenAt = name.find_first_of('(');
TString base(name, 0, parenAt + 1);
tLevel::const_iterator begin = level.lower_bound(base);
base[parenAt] = ')'; // assume ')' is lexically after '('
tLevel::const_iterator end = level.upper_bound(base);
for (tLevel::const_iterator it = begin; it != end; ++it)
list.push_back(it->second->getAsFunction());
}
// See if there is already a function in the table having the given non-function-style name.
bool hasFunctionName(const TString& name) const
{
tLevel::const_iterator candidate = level.lower_bound(name);
if (candidate != level.end()) {
const TString& candidateName = (*candidate).first;
TString::size_type parenAt = candidateName.find_first_of('(');
if (parenAt != candidateName.npos && candidateName.compare(0, parenAt, name) == 0)
return true;
}
return false;
}
// See if there is a variable at this level having the given non-function-style name.
// Return true if name is found, and set variable to true if the name was a variable.
bool findFunctionVariableName(const TString& name, bool& variable) const
{
tLevel::const_iterator candidate = level.lower_bound(name);
if (candidate != level.end()) {
const TString& candidateName = (*candidate).first;
TString::size_type parenAt = candidateName.find_first_of('(');
if (parenAt == candidateName.npos) {
// not a mangled name
if (candidateName == name) {
// found a variable name match
variable = true;
return true;
}
} else {
// a mangled name
if (candidateName.compare(0, parenAt, name) == 0) {
// found a function name match
variable = false;
return true;
}
}
}
return false;
}
// Use this to do a lazy 'push' of precision defaults the first time
// a precision statement is seen in a new scope. Leave it at 0 for
// when no push was needed. Thus, it is not the current defaults,
// it is what to restore the defaults to when popping a level.
void setPreviousDefaultPrecisions(const TPrecisionQualifier *p)
{
// can call multiple times at one scope, will only latch on first call,
// as we're tracking the previous scope's values, not the current values
if (defaultPrecision != 0)
return;
defaultPrecision = new TPrecisionQualifier[EbtNumTypes];
for (int t = 0; t < EbtNumTypes; ++t)
defaultPrecision[t] = p[t];
}
void getPreviousDefaultPrecisions(TPrecisionQualifier *p)
{
// can be called for table level pops that didn't set the
// defaults
if (defaultPrecision == 0 || p == 0)
return;
for (int t = 0; t < EbtNumTypes; ++t)
p[t] = defaultPrecision[t];
}
void relateToOperator(const char* name, TOperator op);
void setFunctionExtensions(const char* name, int num, const char* const extensions[]);
void dump(TInfoSink &infoSink) const;
TSymbolTableLevel* clone() const;
void readOnly();
void setThisLevel() { thisLevel = true; }
bool isThisLevel() const { return thisLevel; }
protected:
explicit TSymbolTableLevel(TSymbolTableLevel&);
TSymbolTableLevel& operator=(TSymbolTableLevel&);
typedef std::map<TString, TSymbol*, std::less<TString>, pool_allocator<std::pair<const TString, TSymbol*> > > tLevel;
typedef const tLevel::value_type tLevelPair;
typedef std::pair<tLevel::iterator, bool> tInsertResult;
tLevel level; // named mappings
TPrecisionQualifier *defaultPrecision;
int anonId;
bool thisLevel; // True if this level of the symbol table is a structure scope containing member function
// that are supposed to see anonymous access to member variables.
};
class TSymbolTable {
public:
TSymbolTable() : uniqueId(0), noBuiltInRedeclarations(false), separateNameSpaces(false), adoptedLevels(0)
{
//
// This symbol table cannot be used until push() is called.
//
}
~TSymbolTable()
{
// this can be called explicitly; safest to code it so it can be called multiple times
// don't deallocate levels passed in from elsewhere
while (table.size() > adoptedLevels)
pop(0);
}
void adoptLevels(TSymbolTable& symTable)
{
for (unsigned int level = 0; level < symTable.table.size(); ++level) {
table.push_back(symTable.table[level]);
++adoptedLevels;
}
uniqueId = symTable.uniqueId;
noBuiltInRedeclarations = symTable.noBuiltInRedeclarations;
separateNameSpaces = symTable.separateNameSpaces;
}
//
// While level adopting is generic, the methods below enact a the following
// convention for levels:
// 0: common built-ins shared across all stages, all compiles, only one copy for all symbol tables
// 1: per-stage built-ins, shared across all compiles, but a different copy per stage
// 2: built-ins specific to a compile, like resources that are context-dependent, or redeclared built-ins
// 3: user-shader globals
//
protected:
static const int globalLevel = 3;
bool isSharedLevel(int level) { return level <= 1; } // exclude all per-compile levels
bool isBuiltInLevel(int level) { return level <= 2; } // exclude user globals
bool isGlobalLevel(int level) { return level <= globalLevel; } // include user globals
public:
bool isEmpty() { return table.size() == 0; }
bool atBuiltInLevel() { return isBuiltInLevel(currentLevel()); }
bool atGlobalLevel() { return isGlobalLevel(currentLevel()); }
void setNoBuiltInRedeclarations() { noBuiltInRedeclarations = true; }
void setSeparateNameSpaces() { separateNameSpaces = true; }
void push()
{
table.push_back(new TSymbolTableLevel);
}
// Make a new symbol-table level to represent the scope introduced by a structure
// containing member functions, such that the member functions can find anonymous
// references to member variables.
//
// 'thisSymbol' should have a name of "" to trigger anonymous structure-member
// symbol finds.
void pushThis(TSymbol& thisSymbol)
{
assert(thisSymbol.getName().size() == 0);
table.push_back(new TSymbolTableLevel);
table.back()->setThisLevel();
insert(thisSymbol);
}
void pop(TPrecisionQualifier *p)
{
table[currentLevel()]->getPreviousDefaultPrecisions(p);
delete table.back();
table.pop_back();
}
//
// Insert a visible symbol into the symbol table so it can
// be found later by name.
//
// Returns false if the was a name collision.
//
bool insert(TSymbol& symbol)
{
symbol.setUniqueId(++uniqueId);
// make sure there isn't a function of this variable name
if (! separateNameSpaces && ! symbol.getAsFunction() && table[currentLevel()]->hasFunctionName(symbol.getName()))
return false;
// check for not overloading or redefining a built-in function
if (noBuiltInRedeclarations) {
if (atGlobalLevel() && currentLevel() > 0) {
if (table[0]->hasFunctionName(symbol.getName()))
return false;
if (currentLevel() > 1 && table[1]->hasFunctionName(symbol.getName()))
return false;
}
}
return table[currentLevel()]->insert(symbol, separateNameSpaces);
}
// Add more members to an already inserted aggregate object
bool amend(TSymbol& symbol, int firstNewMember)
{
// See insert() for comments on basic explanation of insert.
// This operates similarly, but more simply.
return table[currentLevel()]->amend(symbol, firstNewMember);
}
//
// To allocate an internal temporary, which will need to be uniquely
// identified by the consumer of the AST, but never need to
// found by doing a symbol table search by name, hence allowed an
// arbitrary name in the symbol with no worry of collision.
//
void makeInternalVariable(TSymbol& symbol)
{
symbol.setUniqueId(++uniqueId);
}
//
// Copy a variable or anonymous member's structure from a shared level so that
// it can be added (soon after return) to the symbol table where it can be
// modified without impacting other users of the shared table.
//
TSymbol* copyUpDeferredInsert(TSymbol* shared)
{
if (shared->getAsVariable()) {
TSymbol* copy = shared->clone();
copy->setUniqueId(shared->getUniqueId());
return copy;
} else {
const TAnonMember* anon = shared->getAsAnonMember();
assert(anon);
TVariable* container = anon->getAnonContainer().clone();
container->changeName(NewPoolTString(""));
container->setUniqueId(anon->getAnonContainer().getUniqueId());
return container;
}
}
TSymbol* copyUp(TSymbol* shared)
{
TSymbol* copy = copyUpDeferredInsert(shared);
table[globalLevel]->insert(*copy, separateNameSpaces);
if (shared->getAsVariable())
return copy;
else {
// return the copy of the anonymous member
return table[globalLevel]->find(shared->getName());
}
}
// Normal find of a symbol, that can optionally say whether the symbol was found
// at a built-in level or the current top-scope level.
TSymbol* find(const TString& name, bool* builtIn = 0, bool* currentScope = 0, int* thisDepthP = 0)
{
int level = currentLevel();
TSymbol* symbol;
int thisDepth = 0;
do {
if (table[level]->isThisLevel())
++thisDepth;
symbol = table[level]->find(name);
--level;
} while (symbol == nullptr && level >= 0);
level++;
if (builtIn)
*builtIn = isBuiltInLevel(level);
if (currentScope)
*currentScope = isGlobalLevel(currentLevel()) || level == currentLevel(); // consider shared levels as "current scope" WRT user globals
if (thisDepthP != nullptr) {
if (! table[level]->isThisLevel())
thisDepth = 0;
*thisDepthP = thisDepth;
}
return symbol;
}
// Find of a symbol that returns how many layers deep of nested
// structures-with-member-functions ('this' scopes) deep the symbol was
// found in.
TSymbol* find(const TString& name, int& thisDepth)
{
int level = currentLevel();
TSymbol* symbol;
thisDepth = 0;
do {
if (table[level]->isThisLevel())
++thisDepth;
symbol = table[level]->find(name);
--level;
} while (symbol == 0 && level >= 0);
if (! table[level + 1]->isThisLevel())
thisDepth = 0;
return symbol;
}
bool isFunctionNameVariable(const TString& name) const
{
if (separateNameSpaces)
return false;
int level = currentLevel();
do {
bool variable;
bool found = table[level]->findFunctionVariableName(name, variable);
if (found)
return variable;
--level;
} while (level >= 0);
return false;
}
void findFunctionNameList(const TString& name, TVector<const TFunction*>& list, bool& builtIn)
{
// For user levels, return the set found in the first scope with a match
builtIn = false;
int level = currentLevel();
do {
table[level]->findFunctionNameList(name, list);
--level;
} while (list.empty() && level >= globalLevel);
if (! list.empty())
return;
// Gather across all built-in levels; they don't hide each other
builtIn = true;
do {
table[level]->findFunctionNameList(name, list);
--level;
} while (level >= 0);
}
void relateToOperator(const char* name, TOperator op)
{
for (unsigned int level = 0; level < table.size(); ++level)
table[level]->relateToOperator(name, op);
}
void setFunctionExtensions(const char* name, int num, const char* const extensions[])
{
for (unsigned int level = 0; level < table.size(); ++level)
table[level]->setFunctionExtensions(name, num, extensions);
}
void setVariableExtensions(const char* name, int num, const char* const extensions[])
{
TSymbol* symbol = find(TString(name));
if (symbol)
symbol->setExtensions(num, extensions);
}
int getMaxSymbolId() { return uniqueId; }
void dump(TInfoSink &infoSink) const;
void copyTable(const TSymbolTable& copyOf);
void setPreviousDefaultPrecisions(TPrecisionQualifier *p) { table[currentLevel()]->setPreviousDefaultPrecisions(p); }
void readOnly()
{
for (unsigned int level = 0; level < table.size(); ++level)
table[level]->readOnly();
}
protected:
TSymbolTable(TSymbolTable&);
TSymbolTable& operator=(TSymbolTableLevel&);
int currentLevel() const { return static_cast<int>(table.size()) - 1; }
std::vector<TSymbolTableLevel*> table;
int uniqueId; // for unique identification in code generation
bool noBuiltInRedeclarations;
bool separateNameSpaces;
unsigned int adoptedLevels;
};
} // end namespace glslang
#endif // _SYMBOL_TABLE_INCLUDED_