blob: 146666527643f66f262ab27ee750c95701f40ed2 [file] [log] [blame]
//
//Copyright (C) 2014-2016 LunarG, Inc.
//Copyright (C) 2015-2016 Google, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
// Visit the nodes in the glslang intermediate tree representation to
// translate them to SPIR-V.
//
#include "spirv.hpp"
#include "GlslangToSpv.h"
#include "SpvBuilder.h"
namespace spv {
#include "GLSL.std.450.h"
#ifdef AMD_EXTENSIONS
#include "GLSL.ext.AMD.h"
#endif
}
// Glslang includes
#include "../glslang/MachineIndependent/localintermediate.h"
#include "../glslang/MachineIndependent/SymbolTable.h"
#include "../glslang/Include/Common.h"
#include "../glslang/Include/revision.h"
#include <fstream>
#include <iomanip>
#include <list>
#include <map>
#include <stack>
#include <string>
#include <vector>
namespace {
// For low-order part of the generator's magic number. Bump up
// when there is a change in the style (e.g., if SSA form changes,
// or a different instruction sequence to do something gets used).
const int GeneratorVersion = 1;
namespace {
class SpecConstantOpModeGuard {
public:
SpecConstantOpModeGuard(spv::Builder* builder)
: builder_(builder) {
previous_flag_ = builder->isInSpecConstCodeGenMode();
}
~SpecConstantOpModeGuard() {
previous_flag_ ? builder_->setToSpecConstCodeGenMode()
: builder_->setToNormalCodeGenMode();
}
void turnOnSpecConstantOpMode() {
builder_->setToSpecConstCodeGenMode();
}
private:
spv::Builder* builder_;
bool previous_flag_;
};
}
//
// The main holder of information for translating glslang to SPIR-V.
//
// Derives from the AST walking base class.
//
class TGlslangToSpvTraverser : public glslang::TIntermTraverser {
public:
TGlslangToSpvTraverser(const glslang::TIntermediate*, spv::SpvBuildLogger* logger);
virtual ~TGlslangToSpvTraverser();
bool visitAggregate(glslang::TVisit, glslang::TIntermAggregate*);
bool visitBinary(glslang::TVisit, glslang::TIntermBinary*);
void visitConstantUnion(glslang::TIntermConstantUnion*);
bool visitSelection(glslang::TVisit, glslang::TIntermSelection*);
bool visitSwitch(glslang::TVisit, glslang::TIntermSwitch*);
void visitSymbol(glslang::TIntermSymbol* symbol);
bool visitUnary(glslang::TVisit, glslang::TIntermUnary*);
bool visitLoop(glslang::TVisit, glslang::TIntermLoop*);
bool visitBranch(glslang::TVisit visit, glslang::TIntermBranch*);
void dumpSpv(std::vector<unsigned int>& out);
protected:
spv::Decoration TranslateAuxiliaryStorageDecoration(const glslang::TQualifier& qualifier);
spv::BuiltIn TranslateBuiltInDecoration(glslang::TBuiltInVariable, bool memberDeclaration);
spv::ImageFormat TranslateImageFormat(const glslang::TType& type);
spv::Id createSpvVariable(const glslang::TIntermSymbol*);
spv::Id getSampledType(const glslang::TSampler&);
spv::Id getInvertedSwizzleType(const glslang::TIntermTyped&);
spv::Id createInvertedSwizzle(spv::Decoration precision, const glslang::TIntermTyped&, spv::Id parentResult);
void convertSwizzle(const glslang::TIntermAggregate&, std::vector<unsigned>& swizzle);
spv::Id convertGlslangToSpvType(const glslang::TType& type);
spv::Id convertGlslangToSpvType(const glslang::TType& type, glslang::TLayoutPacking, const glslang::TQualifier&);
spv::Id convertGlslangStructToSpvType(const glslang::TType&, const glslang::TTypeList* glslangStruct,
glslang::TLayoutPacking, const glslang::TQualifier&);
void decorateStructType(const glslang::TType&, const glslang::TTypeList* glslangStruct, glslang::TLayoutPacking,
const glslang::TQualifier&, spv::Id);
spv::Id makeArraySizeId(const glslang::TArraySizes&, int dim);
spv::Id accessChainLoad(const glslang::TType& type);
void accessChainStore(const glslang::TType& type, spv::Id rvalue);
glslang::TLayoutPacking getExplicitLayout(const glslang::TType& type) const;
int getArrayStride(const glslang::TType& arrayType, glslang::TLayoutPacking, glslang::TLayoutMatrix);
int getMatrixStride(const glslang::TType& matrixType, glslang::TLayoutPacking, glslang::TLayoutMatrix);
void updateMemberOffset(const glslang::TType& structType, const glslang::TType& memberType, int& currentOffset, int& nextOffset, glslang::TLayoutPacking, glslang::TLayoutMatrix);
void declareUseOfStructMember(const glslang::TTypeList& members, int glslangMember);
bool isShaderEntrypoint(const glslang::TIntermAggregate* node);
void makeFunctions(const glslang::TIntermSequence&);
void makeGlobalInitializers(const glslang::TIntermSequence&);
void visitFunctions(const glslang::TIntermSequence&);
void handleFunctionEntry(const glslang::TIntermAggregate* node);
void translateArguments(const glslang::TIntermAggregate& node, std::vector<spv::Id>& arguments);
void translateArguments(glslang::TIntermUnary& node, std::vector<spv::Id>& arguments);
spv::Id createImageTextureFunctionCall(glslang::TIntermOperator* node);
spv::Id handleUserFunctionCall(const glslang::TIntermAggregate*);
spv::Id createBinaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id left, spv::Id right, glslang::TBasicType typeProxy, bool reduceComparison = true);
spv::Id createBinaryMatrixOperation(spv::Op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id left, spv::Id right);
spv::Id createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand,glslang::TBasicType typeProxy);
spv::Id createUnaryMatrixOperation(spv::Op op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand,glslang::TBasicType typeProxy);
spv::Id createConversion(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id destTypeId, spv::Id operand, glslang::TBasicType typeProxy);
spv::Id makeSmearedConstant(spv::Id constant, int vectorSize);
spv::Id createAtomicOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy);
spv::Id createInvocationsOperation(glslang::TOperator op, spv::Id typeId, spv::Id operand, glslang::TBasicType typeProxy);
#ifdef AMD_EXTENSIONS
spv::Id CreateInvocationsVectorOperation(spv::Op op, spv::Id typeId, spv::Id operand);
#endif
spv::Id createMiscOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy);
spv::Id createNoArgOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId);
spv::Id getSymbolId(const glslang::TIntermSymbol* node);
void addDecoration(spv::Id id, spv::Decoration dec);
void addDecoration(spv::Id id, spv::Decoration dec, unsigned value);
void addMemberDecoration(spv::Id id, int member, spv::Decoration dec);
void addMemberDecoration(spv::Id id, int member, spv::Decoration dec, unsigned value);
spv::Id createSpvConstant(const glslang::TIntermTyped&);
spv::Id createSpvConstantFromConstUnionArray(const glslang::TType& type, const glslang::TConstUnionArray&, int& nextConst, bool specConstant);
bool isTrivialLeaf(const glslang::TIntermTyped* node);
bool isTrivial(const glslang::TIntermTyped* node);
spv::Id createShortCircuit(glslang::TOperator, glslang::TIntermTyped& left, glslang::TIntermTyped& right);
spv::Id getExtBuiltins(const char* name);
spv::Function* shaderEntry;
spv::Instruction* entryPoint;
int sequenceDepth;
spv::SpvBuildLogger* logger;
// There is a 1:1 mapping between a spv builder and a module; this is thread safe
spv::Builder builder;
bool inMain;
bool mainTerminated;
bool linkageOnly; // true when visiting the set of objects in the AST present only for establishing interface, whether or not they were statically used
std::set<spv::Id> iOSet; // all input/output variables from either static use or declaration of interface
const glslang::TIntermediate* glslangIntermediate;
spv::Id stdBuiltins;
std::unordered_map<const char*, spv::Id> extBuiltinMap;
std::unordered_map<int, spv::Id> symbolValues;
std::unordered_set<int> constReadOnlyParameters; // set of formal function parameters that have glslang qualifier constReadOnly, so we know they are not local function "const" that are write-once
std::unordered_map<std::string, spv::Function*> functionMap;
std::unordered_map<const glslang::TTypeList*, spv::Id> structMap[glslang::ElpCount][glslang::ElmCount];
std::unordered_map<const glslang::TTypeList*, std::vector<int> > memberRemapper; // for mapping glslang block indices to spv indices (e.g., due to hidden members)
std::stack<bool> breakForLoop; // false means break for switch
};
//
// Helper functions for translating glslang representations to SPIR-V enumerants.
//
// Translate glslang profile to SPIR-V source language.
spv::SourceLanguage TranslateSourceLanguage(glslang::EShSource source, EProfile profile)
{
switch (source) {
case glslang::EShSourceGlsl:
switch (profile) {
case ENoProfile:
case ECoreProfile:
case ECompatibilityProfile:
return spv::SourceLanguageGLSL;
case EEsProfile:
return spv::SourceLanguageESSL;
default:
return spv::SourceLanguageUnknown;
}
case glslang::EShSourceHlsl:
//Use SourceLanguageUnknown instead of SourceLanguageHLSL for now, until Vulkan knows what HLSL is
return spv::SourceLanguageUnknown;
default:
return spv::SourceLanguageUnknown;
}
}
// Translate glslang language (stage) to SPIR-V execution model.
spv::ExecutionModel TranslateExecutionModel(EShLanguage stage)
{
switch (stage) {
case EShLangVertex: return spv::ExecutionModelVertex;
case EShLangTessControl: return spv::ExecutionModelTessellationControl;
case EShLangTessEvaluation: return spv::ExecutionModelTessellationEvaluation;
case EShLangGeometry: return spv::ExecutionModelGeometry;
case EShLangFragment: return spv::ExecutionModelFragment;
case EShLangCompute: return spv::ExecutionModelGLCompute;
default:
assert(0);
return spv::ExecutionModelFragment;
}
}
// Translate glslang type to SPIR-V storage class.
spv::StorageClass TranslateStorageClass(const glslang::TType& type)
{
if (type.getQualifier().isPipeInput())
return spv::StorageClassInput;
else if (type.getQualifier().isPipeOutput())
return spv::StorageClassOutput;
else if (type.getBasicType() == glslang::EbtSampler)
return spv::StorageClassUniformConstant;
else if (type.getBasicType() == glslang::EbtAtomicUint)
return spv::StorageClassAtomicCounter;
else if (type.getQualifier().isUniformOrBuffer()) {
if (type.getQualifier().layoutPushConstant)
return spv::StorageClassPushConstant;
if (type.getBasicType() == glslang::EbtBlock)
return spv::StorageClassUniform;
else
return spv::StorageClassUniformConstant;
// TODO: how are we distinguishing between default and non-default non-writable uniforms? Do default uniforms even exist?
} else {
switch (type.getQualifier().storage) {
case glslang::EvqShared: return spv::StorageClassWorkgroup; break;
case glslang::EvqGlobal: return spv::StorageClassPrivate;
case glslang::EvqConstReadOnly: return spv::StorageClassFunction;
case glslang::EvqTemporary: return spv::StorageClassFunction;
default:
assert(0);
return spv::StorageClassFunction;
}
}
}
// Translate glslang sampler type to SPIR-V dimensionality.
spv::Dim TranslateDimensionality(const glslang::TSampler& sampler)
{
switch (sampler.dim) {
case glslang::Esd1D: return spv::Dim1D;
case glslang::Esd2D: return spv::Dim2D;
case glslang::Esd3D: return spv::Dim3D;
case glslang::EsdCube: return spv::DimCube;
case glslang::EsdRect: return spv::DimRect;
case glslang::EsdBuffer: return spv::DimBuffer;
case glslang::EsdSubpass: return spv::DimSubpassData;
default:
assert(0);
return spv::Dim2D;
}
}
// Translate glslang precision to SPIR-V precision decorations.
spv::Decoration TranslatePrecisionDecoration(glslang::TPrecisionQualifier glslangPrecision)
{
switch (glslangPrecision) {
case glslang::EpqLow: return spv::DecorationRelaxedPrecision;
case glslang::EpqMedium: return spv::DecorationRelaxedPrecision;
default:
return spv::NoPrecision;
}
}
// Translate glslang type to SPIR-V precision decorations.
spv::Decoration TranslatePrecisionDecoration(const glslang::TType& type)
{
return TranslatePrecisionDecoration(type.getQualifier().precision);
}
// Translate glslang type to SPIR-V block decorations.
spv::Decoration TranslateBlockDecoration(const glslang::TType& type)
{
if (type.getBasicType() == glslang::EbtBlock) {
switch (type.getQualifier().storage) {
case glslang::EvqUniform: return spv::DecorationBlock;
case glslang::EvqBuffer: return spv::DecorationBufferBlock;
case glslang::EvqVaryingIn: return spv::DecorationBlock;
case glslang::EvqVaryingOut: return spv::DecorationBlock;
default:
assert(0);
break;
}
}
return spv::DecorationMax;
}
// Translate glslang type to SPIR-V memory decorations.
void TranslateMemoryDecoration(const glslang::TQualifier& qualifier, std::vector<spv::Decoration>& memory)
{
if (qualifier.coherent)
memory.push_back(spv::DecorationCoherent);
if (qualifier.volatil)
memory.push_back(spv::DecorationVolatile);
if (qualifier.restrict)
memory.push_back(spv::DecorationRestrict);
if (qualifier.readonly)
memory.push_back(spv::DecorationNonWritable);
if (qualifier.writeonly)
memory.push_back(spv::DecorationNonReadable);
}
// Translate glslang type to SPIR-V layout decorations.
spv::Decoration TranslateLayoutDecoration(const glslang::TType& type, glslang::TLayoutMatrix matrixLayout)
{
if (type.isMatrix()) {
switch (matrixLayout) {
case glslang::ElmRowMajor:
return spv::DecorationRowMajor;
case glslang::ElmColumnMajor:
return spv::DecorationColMajor;
default:
// opaque layouts don't need a majorness
return spv::DecorationMax;
}
} else {
switch (type.getBasicType()) {
default:
return spv::DecorationMax;
break;
case glslang::EbtBlock:
switch (type.getQualifier().storage) {
case glslang::EvqUniform:
case glslang::EvqBuffer:
switch (type.getQualifier().layoutPacking) {
case glslang::ElpShared: return spv::DecorationGLSLShared;
case glslang::ElpPacked: return spv::DecorationGLSLPacked;
default:
return spv::DecorationMax;
}
case glslang::EvqVaryingIn:
case glslang::EvqVaryingOut:
assert(type.getQualifier().layoutPacking == glslang::ElpNone);
return spv::DecorationMax;
default:
assert(0);
return spv::DecorationMax;
}
}
}
}
// Translate glslang type to SPIR-V interpolation decorations.
// Returns spv::DecorationMax when no decoration
// should be applied.
spv::Decoration TranslateInterpolationDecoration(const glslang::TQualifier& qualifier)
{
if (qualifier.smooth)
// Smooth decoration doesn't exist in SPIR-V 1.0
return spv::DecorationMax;
else if (qualifier.nopersp)
return spv::DecorationNoPerspective;
else if (qualifier.flat)
return spv::DecorationFlat;
#ifdef AMD_EXTENSIONS
else if (qualifier.explicitInterp)
return spv::DecorationExplicitInterpAMD;
#endif
else
return spv::DecorationMax;
}
// Translate glslang type to SPIR-V auxiliary storage decorations.
// Returns spv::DecorationMax when no decoration
// should be applied.
spv::Decoration TGlslangToSpvTraverser::TranslateAuxiliaryStorageDecoration(const glslang::TQualifier& qualifier)
{
if (qualifier.patch)
return spv::DecorationPatch;
else if (qualifier.centroid)
return spv::DecorationCentroid;
else if (qualifier.sample) {
builder.addCapability(spv::CapabilitySampleRateShading);
return spv::DecorationSample;
} else
return spv::DecorationMax;
}
// If glslang type is invariant, return SPIR-V invariant decoration.
spv::Decoration TranslateInvariantDecoration(const glslang::TQualifier& qualifier)
{
if (qualifier.invariant)
return spv::DecorationInvariant;
else
return spv::DecorationMax;
}
// If glslang type is noContraction, return SPIR-V NoContraction decoration.
spv::Decoration TranslateNoContractionDecoration(const glslang::TQualifier& qualifier)
{
if (qualifier.noContraction)
return spv::DecorationNoContraction;
else
return spv::DecorationMax;
}
// Translate a glslang built-in variable to a SPIR-V built in decoration. Also generate
// associated capabilities when required. For some built-in variables, a capability
// is generated only when using the variable in an executable instruction, but not when
// just declaring a struct member variable with it. This is true for PointSize,
// ClipDistance, and CullDistance.
spv::BuiltIn TGlslangToSpvTraverser::TranslateBuiltInDecoration(glslang::TBuiltInVariable builtIn, bool memberDeclaration)
{
switch (builtIn) {
case glslang::EbvPointSize:
// Defer adding the capability until the built-in is actually used.
if (! memberDeclaration) {
switch (glslangIntermediate->getStage()) {
case EShLangGeometry:
builder.addCapability(spv::CapabilityGeometryPointSize);
break;
case EShLangTessControl:
case EShLangTessEvaluation:
builder.addCapability(spv::CapabilityTessellationPointSize);
break;
default:
break;
}
}
return spv::BuiltInPointSize;
// These *Distance capabilities logically belong here, but if the member is declared and
// then never used, consumers of SPIR-V prefer the capability not be declared.
// They are now generated when used, rather than here when declared.
// Potentially, the specification should be more clear what the minimum
// use needed is to trigger the capability.
//
case glslang::EbvClipDistance:
if (!memberDeclaration)
builder.addCapability(spv::CapabilityClipDistance);
return spv::BuiltInClipDistance;
case glslang::EbvCullDistance:
if (!memberDeclaration)
builder.addCapability(spv::CapabilityCullDistance);
return spv::BuiltInCullDistance;
case glslang::EbvViewportIndex:
builder.addCapability(spv::CapabilityMultiViewport);
return spv::BuiltInViewportIndex;
case glslang::EbvSampleId:
builder.addCapability(spv::CapabilitySampleRateShading);
return spv::BuiltInSampleId;
case glslang::EbvSamplePosition:
builder.addCapability(spv::CapabilitySampleRateShading);
return spv::BuiltInSamplePosition;
case glslang::EbvSampleMask:
builder.addCapability(spv::CapabilitySampleRateShading);
return spv::BuiltInSampleMask;
case glslang::EbvLayer:
builder.addCapability(spv::CapabilityGeometry);
return spv::BuiltInLayer;
case glslang::EbvPosition: return spv::BuiltInPosition;
case glslang::EbvVertexId: return spv::BuiltInVertexId;
case glslang::EbvInstanceId: return spv::BuiltInInstanceId;
case glslang::EbvVertexIndex: return spv::BuiltInVertexIndex;
case glslang::EbvInstanceIndex: return spv::BuiltInInstanceIndex;
case glslang::EbvBaseVertex:
case glslang::EbvBaseInstance:
case glslang::EbvDrawId:
// TODO: Add SPIR-V builtin ID.
logger->missingFunctionality("shader draw parameters");
return spv::BuiltInMax;
case glslang::EbvPrimitiveId: return spv::BuiltInPrimitiveId;
case glslang::EbvInvocationId: return spv::BuiltInInvocationId;
case glslang::EbvTessLevelInner: return spv::BuiltInTessLevelInner;
case glslang::EbvTessLevelOuter: return spv::BuiltInTessLevelOuter;
case glslang::EbvTessCoord: return spv::BuiltInTessCoord;
case glslang::EbvPatchVertices: return spv::BuiltInPatchVertices;
case glslang::EbvFragCoord: return spv::BuiltInFragCoord;
case glslang::EbvPointCoord: return spv::BuiltInPointCoord;
case glslang::EbvFace: return spv::BuiltInFrontFacing;
case glslang::EbvFragDepth: return spv::BuiltInFragDepth;
case glslang::EbvHelperInvocation: return spv::BuiltInHelperInvocation;
case glslang::EbvNumWorkGroups: return spv::BuiltInNumWorkgroups;
case glslang::EbvWorkGroupSize: return spv::BuiltInWorkgroupSize;
case glslang::EbvWorkGroupId: return spv::BuiltInWorkgroupId;
case glslang::EbvLocalInvocationId: return spv::BuiltInLocalInvocationId;
case glslang::EbvLocalInvocationIndex: return spv::BuiltInLocalInvocationIndex;
case glslang::EbvGlobalInvocationId: return spv::BuiltInGlobalInvocationId;
case glslang::EbvSubGroupSize:
case glslang::EbvSubGroupInvocation:
case glslang::EbvSubGroupEqMask:
case glslang::EbvSubGroupGeMask:
case glslang::EbvSubGroupGtMask:
case glslang::EbvSubGroupLeMask:
case glslang::EbvSubGroupLtMask:
// TODO: Add SPIR-V builtin ID.
logger->missingFunctionality("shader ballot");
return spv::BuiltInMax;
#ifdef AMD_EXTENSIONS
case glslang::EbvBaryCoordNoPersp: return spv::BuiltInBaryCoordNoPerspAMD;
case glslang::EbvBaryCoordNoPerspCentroid: return spv::BuiltInBaryCoordNoPerspCentroidAMD;
case glslang::EbvBaryCoordNoPerspSample: return spv::BuiltInBaryCoordNoPerspSampleAMD;
case glslang::EbvBaryCoordSmooth: return spv::BuiltInBaryCoordSmoothAMD;
case glslang::EbvBaryCoordSmoothCentroid: return spv::BuiltInBaryCoordSmoothCentroidAMD;
case glslang::EbvBaryCoordSmoothSample: return spv::BuiltInBaryCoordSmoothSampleAMD;
case glslang::EbvBaryCoordPullModel: return spv::BuiltInBaryCoordPullModelAMD;
#endif
default: return spv::BuiltInMax;
}
}
// Translate glslang image layout format to SPIR-V image format.
spv::ImageFormat TGlslangToSpvTraverser::TranslateImageFormat(const glslang::TType& type)
{
assert(type.getBasicType() == glslang::EbtSampler);
// Check for capabilities
switch (type.getQualifier().layoutFormat) {
case glslang::ElfRg32f:
case glslang::ElfRg16f:
case glslang::ElfR11fG11fB10f:
case glslang::ElfR16f:
case glslang::ElfRgba16:
case glslang::ElfRgb10A2:
case glslang::ElfRg16:
case glslang::ElfRg8:
case glslang::ElfR16:
case glslang::ElfR8:
case glslang::ElfRgba16Snorm:
case glslang::ElfRg16Snorm:
case glslang::ElfRg8Snorm:
case glslang::ElfR16Snorm:
case glslang::ElfR8Snorm:
case glslang::ElfRg32i:
case glslang::ElfRg16i:
case glslang::ElfRg8i:
case glslang::ElfR16i:
case glslang::ElfR8i:
case glslang::ElfRgb10a2ui:
case glslang::ElfRg32ui:
case glslang::ElfRg16ui:
case glslang::ElfRg8ui:
case glslang::ElfR16ui:
case glslang::ElfR8ui:
builder.addCapability(spv::CapabilityStorageImageExtendedFormats);
break;
default:
break;
}
// do the translation
switch (type.getQualifier().layoutFormat) {
case glslang::ElfNone: return spv::ImageFormatUnknown;
case glslang::ElfRgba32f: return spv::ImageFormatRgba32f;
case glslang::ElfRgba16f: return spv::ImageFormatRgba16f;
case glslang::ElfR32f: return spv::ImageFormatR32f;
case glslang::ElfRgba8: return spv::ImageFormatRgba8;
case glslang::ElfRgba8Snorm: return spv::ImageFormatRgba8Snorm;
case glslang::ElfRg32f: return spv::ImageFormatRg32f;
case glslang::ElfRg16f: return spv::ImageFormatRg16f;
case glslang::ElfR11fG11fB10f: return spv::ImageFormatR11fG11fB10f;
case glslang::ElfR16f: return spv::ImageFormatR16f;
case glslang::ElfRgba16: return spv::ImageFormatRgba16;
case glslang::ElfRgb10A2: return spv::ImageFormatRgb10A2;
case glslang::ElfRg16: return spv::ImageFormatRg16;
case glslang::ElfRg8: return spv::ImageFormatRg8;
case glslang::ElfR16: return spv::ImageFormatR16;
case glslang::ElfR8: return spv::ImageFormatR8;
case glslang::ElfRgba16Snorm: return spv::ImageFormatRgba16Snorm;
case glslang::ElfRg16Snorm: return spv::ImageFormatRg16Snorm;
case glslang::ElfRg8Snorm: return spv::ImageFormatRg8Snorm;
case glslang::ElfR16Snorm: return spv::ImageFormatR16Snorm;
case glslang::ElfR8Snorm: return spv::ImageFormatR8Snorm;
case glslang::ElfRgba32i: return spv::ImageFormatRgba32i;
case glslang::ElfRgba16i: return spv::ImageFormatRgba16i;
case glslang::ElfRgba8i: return spv::ImageFormatRgba8i;
case glslang::ElfR32i: return spv::ImageFormatR32i;
case glslang::ElfRg32i: return spv::ImageFormatRg32i;
case glslang::ElfRg16i: return spv::ImageFormatRg16i;
case glslang::ElfRg8i: return spv::ImageFormatRg8i;
case glslang::ElfR16i: return spv::ImageFormatR16i;
case glslang::ElfR8i: return spv::ImageFormatR8i;
case glslang::ElfRgba32ui: return spv::ImageFormatRgba32ui;
case glslang::ElfRgba16ui: return spv::ImageFormatRgba16ui;
case glslang::ElfRgba8ui: return spv::ImageFormatRgba8ui;
case glslang::ElfR32ui: return spv::ImageFormatR32ui;
case glslang::ElfRg32ui: return spv::ImageFormatRg32ui;
case glslang::ElfRg16ui: return spv::ImageFormatRg16ui;
case glslang::ElfRgb10a2ui: return spv::ImageFormatRgb10a2ui;
case glslang::ElfRg8ui: return spv::ImageFormatRg8ui;
case glslang::ElfR16ui: return spv::ImageFormatR16ui;
case glslang::ElfR8ui: return spv::ImageFormatR8ui;
default: return spv::ImageFormatMax;
}
}
// Return whether or not the given type is something that should be tied to a
// descriptor set.
bool IsDescriptorResource(const glslang::TType& type)
{
// uniform and buffer blocks are included, unless it is a push_constant
if (type.getBasicType() == glslang::EbtBlock)
return type.getQualifier().isUniformOrBuffer() && ! type.getQualifier().layoutPushConstant;
// non block...
// basically samplerXXX/subpass/sampler/texture are all included
// if they are the global-scope-class, not the function parameter
// (or local, if they ever exist) class.
if (type.getBasicType() == glslang::EbtSampler)
return type.getQualifier().isUniformOrBuffer();
// None of the above.
return false;
}
void InheritQualifiers(glslang::TQualifier& child, const glslang::TQualifier& parent)
{
if (child.layoutMatrix == glslang::ElmNone)
child.layoutMatrix = parent.layoutMatrix;
if (parent.invariant)
child.invariant = true;
if (parent.nopersp)
child.nopersp = true;
#ifdef AMD_EXTENSIONS
if (parent.explicitInterp)
child.explicitInterp = true;
#endif
if (parent.flat)
child.flat = true;
if (parent.centroid)
child.centroid = true;
if (parent.patch)
child.patch = true;
if (parent.sample)
child.sample = true;
if (parent.coherent)
child.coherent = true;
if (parent.volatil)
child.volatil = true;
if (parent.restrict)
child.restrict = true;
if (parent.readonly)
child.readonly = true;
if (parent.writeonly)
child.writeonly = true;
}
bool HasNonLayoutQualifiers(const glslang::TQualifier& qualifier)
{
// This should list qualifiers that simultaneous satisfy:
// - struct members can inherit from a struct declaration
// - affect decorations on the struct members (note smooth does not, and expecting something like volatile to effect the whole object)
// - are not part of the offset/st430/etc or row/column-major layout
return qualifier.invariant || qualifier.hasLocation();
}
//
// Implement the TGlslangToSpvTraverser class.
//
TGlslangToSpvTraverser::TGlslangToSpvTraverser(const glslang::TIntermediate* glslangIntermediate, spv::SpvBuildLogger* buildLogger)
: TIntermTraverser(true, false, true), shaderEntry(0), sequenceDepth(0), logger(buildLogger),
builder((glslang::GetKhronosToolId() << 16) | GeneratorVersion, logger),
inMain(false), mainTerminated(false), linkageOnly(false),
glslangIntermediate(glslangIntermediate)
{
spv::ExecutionModel executionModel = TranslateExecutionModel(glslangIntermediate->getStage());
builder.clearAccessChain();
builder.setSource(TranslateSourceLanguage(glslangIntermediate->getSource(), glslangIntermediate->getProfile()), glslangIntermediate->getVersion());
stdBuiltins = builder.import("GLSL.std.450");
builder.setMemoryModel(spv::AddressingModelLogical, spv::MemoryModelGLSL450);
shaderEntry = builder.makeEntrypoint(glslangIntermediate->getEntryPoint().c_str());
entryPoint = builder.addEntryPoint(executionModel, shaderEntry, glslangIntermediate->getEntryPoint().c_str());
// Add the source extensions
const auto& sourceExtensions = glslangIntermediate->getRequestedExtensions();
for (auto it = sourceExtensions.begin(); it != sourceExtensions.end(); ++it)
builder.addSourceExtension(it->c_str());
// Add the top-level modes for this shader.
if (glslangIntermediate->getXfbMode()) {
builder.addCapability(spv::CapabilityTransformFeedback);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeXfb);
}
unsigned int mode;
switch (glslangIntermediate->getStage()) {
case EShLangVertex:
builder.addCapability(spv::CapabilityShader);
break;
case EShLangTessControl:
builder.addCapability(spv::CapabilityTessellation);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOutputVertices, glslangIntermediate->getVertices());
break;
case EShLangTessEvaluation:
builder.addCapability(spv::CapabilityTessellation);
switch (glslangIntermediate->getInputPrimitive()) {
case glslang::ElgTriangles: mode = spv::ExecutionModeTriangles; break;
case glslang::ElgQuads: mode = spv::ExecutionModeQuads; break;
case glslang::ElgIsolines: mode = spv::ExecutionModeIsolines; break;
default: mode = spv::ExecutionModeMax; break;
}
if (mode != spv::ExecutionModeMax)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
switch (glslangIntermediate->getVertexSpacing()) {
case glslang::EvsEqual: mode = spv::ExecutionModeSpacingEqual; break;
case glslang::EvsFractionalEven: mode = spv::ExecutionModeSpacingFractionalEven; break;
case glslang::EvsFractionalOdd: mode = spv::ExecutionModeSpacingFractionalOdd; break;
default: mode = spv::ExecutionModeMax; break;
}
if (mode != spv::ExecutionModeMax)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
switch (glslangIntermediate->getVertexOrder()) {
case glslang::EvoCw: mode = spv::ExecutionModeVertexOrderCw; break;
case glslang::EvoCcw: mode = spv::ExecutionModeVertexOrderCcw; break;
default: mode = spv::ExecutionModeMax; break;
}
if (mode != spv::ExecutionModeMax)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
if (glslangIntermediate->getPointMode())
builder.addExecutionMode(shaderEntry, spv::ExecutionModePointMode);
break;
case EShLangGeometry:
builder.addCapability(spv::CapabilityGeometry);
switch (glslangIntermediate->getInputPrimitive()) {
case glslang::ElgPoints: mode = spv::ExecutionModeInputPoints; break;
case glslang::ElgLines: mode = spv::ExecutionModeInputLines; break;
case glslang::ElgLinesAdjacency: mode = spv::ExecutionModeInputLinesAdjacency; break;
case glslang::ElgTriangles: mode = spv::ExecutionModeTriangles; break;
case glslang::ElgTrianglesAdjacency: mode = spv::ExecutionModeInputTrianglesAdjacency; break;
default: mode = spv::ExecutionModeMax; break;
}
if (mode != spv::ExecutionModeMax)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeInvocations, glslangIntermediate->getInvocations());
switch (glslangIntermediate->getOutputPrimitive()) {
case glslang::ElgPoints: mode = spv::ExecutionModeOutputPoints; break;
case glslang::ElgLineStrip: mode = spv::ExecutionModeOutputLineStrip; break;
case glslang::ElgTriangleStrip: mode = spv::ExecutionModeOutputTriangleStrip; break;
default: mode = spv::ExecutionModeMax; break;
}
if (mode != spv::ExecutionModeMax)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOutputVertices, glslangIntermediate->getVertices());
break;
case EShLangFragment:
builder.addCapability(spv::CapabilityShader);
if (glslangIntermediate->getPixelCenterInteger())
builder.addExecutionMode(shaderEntry, spv::ExecutionModePixelCenterInteger);
if (glslangIntermediate->getOriginUpperLeft())
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOriginUpperLeft);
else
builder.addExecutionMode(shaderEntry, spv::ExecutionModeOriginLowerLeft);
if (glslangIntermediate->getEarlyFragmentTests())
builder.addExecutionMode(shaderEntry, spv::ExecutionModeEarlyFragmentTests);
switch(glslangIntermediate->getDepth()) {
case glslang::EldGreater: mode = spv::ExecutionModeDepthGreater; break;
case glslang::EldLess: mode = spv::ExecutionModeDepthLess; break;
default: mode = spv::ExecutionModeMax; break;
}
if (mode != spv::ExecutionModeMax)
builder.addExecutionMode(shaderEntry, (spv::ExecutionMode)mode);
if (glslangIntermediate->getDepth() != glslang::EldUnchanged && glslangIntermediate->isDepthReplacing())
builder.addExecutionMode(shaderEntry, spv::ExecutionModeDepthReplacing);
break;
case EShLangCompute:
builder.addCapability(spv::CapabilityShader);
builder.addExecutionMode(shaderEntry, spv::ExecutionModeLocalSize, glslangIntermediate->getLocalSize(0),
glslangIntermediate->getLocalSize(1),
glslangIntermediate->getLocalSize(2));
break;
default:
break;
}
}
// Finish everything and dump
void TGlslangToSpvTraverser::dumpSpv(std::vector<unsigned int>& out)
{
// finish off the entry-point SPV instruction by adding the Input/Output <id>
for (auto it = iOSet.cbegin(); it != iOSet.cend(); ++it)
entryPoint->addIdOperand(*it);
builder.eliminateDeadDecorations();
builder.dump(out);
}
TGlslangToSpvTraverser::~TGlslangToSpvTraverser()
{
if (! mainTerminated) {
spv::Block* lastMainBlock = shaderEntry->getLastBlock();
builder.setBuildPoint(lastMainBlock);
builder.leaveFunction();
}
}
//
// Implement the traversal functions.
//
// Return true from interior nodes to have the external traversal
// continue on to children. Return false if children were
// already processed.
//
//
// Symbols can turn into
// - uniform/input reads
// - output writes
// - complex lvalue base setups: foo.bar[3].... , where we see foo and start up an access chain
// - something simple that degenerates into the last bullet
//
void TGlslangToSpvTraverser::visitSymbol(glslang::TIntermSymbol* symbol)
{
SpecConstantOpModeGuard spec_constant_op_mode_setter(&builder);
if (symbol->getType().getQualifier().isSpecConstant())
spec_constant_op_mode_setter.turnOnSpecConstantOpMode();
// getSymbolId() will set up all the IO decorations on the first call.
// Formal function parameters were mapped during makeFunctions().
spv::Id id = getSymbolId(symbol);
// Include all "static use" and "linkage only" interface variables on the OpEntryPoint instruction
if (builder.isPointer(id)) {
spv::StorageClass sc = builder.getStorageClass(id);
if (sc == spv::StorageClassInput || sc == spv::StorageClassOutput)
iOSet.insert(id);
}
// Only process non-linkage-only nodes for generating actual static uses
if (! linkageOnly || symbol->getQualifier().isSpecConstant()) {
// Prepare to generate code for the access
// L-value chains will be computed left to right. We're on the symbol now,
// which is the left-most part of the access chain, so now is "clear" time,
// followed by setting the base.
builder.clearAccessChain();
// For now, we consider all user variables as being in memory, so they are pointers,
// except for
// A) "const in" arguments to a function, which are an intermediate object.
// See comments in handleUserFunctionCall().
// B) Specialization constants (normal constant don't even come in as a variable),
// These are also pure R-values.
glslang::TQualifier qualifier = symbol->getQualifier();
if ((qualifier.storage == glslang::EvqConstReadOnly && constReadOnlyParameters.find(symbol->getId()) != constReadOnlyParameters.end()) ||
qualifier.isSpecConstant())
builder.setAccessChainRValue(id);
else
builder.setAccessChainLValue(id);
}
}
bool TGlslangToSpvTraverser::visitBinary(glslang::TVisit /* visit */, glslang::TIntermBinary* node)
{
SpecConstantOpModeGuard spec_constant_op_mode_setter(&builder);
if (node->getType().getQualifier().isSpecConstant())
spec_constant_op_mode_setter.turnOnSpecConstantOpMode();
// First, handle special cases
switch (node->getOp()) {
case glslang::EOpAssign:
case glslang::EOpAddAssign:
case glslang::EOpSubAssign:
case glslang::EOpMulAssign:
case glslang::EOpVectorTimesMatrixAssign:
case glslang::EOpVectorTimesScalarAssign:
case glslang::EOpMatrixTimesScalarAssign:
case glslang::EOpMatrixTimesMatrixAssign:
case glslang::EOpDivAssign:
case glslang::EOpModAssign:
case glslang::EOpAndAssign:
case glslang::EOpInclusiveOrAssign:
case glslang::EOpExclusiveOrAssign:
case glslang::EOpLeftShiftAssign:
case glslang::EOpRightShiftAssign:
// A bin-op assign "a += b" means the same thing as "a = a + b"
// where a is evaluated before b. For a simple assignment, GLSL
// says to evaluate the left before the right. So, always, left
// node then right node.
{
// get the left l-value, save it away
builder.clearAccessChain();
node->getLeft()->traverse(this);
spv::Builder::AccessChain lValue = builder.getAccessChain();
// evaluate the right
builder.clearAccessChain();
node->getRight()->traverse(this);
spv::Id rValue = accessChainLoad(node->getRight()->getType());
if (node->getOp() != glslang::EOpAssign) {
// the left is also an r-value
builder.setAccessChain(lValue);
spv::Id leftRValue = accessChainLoad(node->getLeft()->getType());
// do the operation
rValue = createBinaryOperation(node->getOp(), TranslatePrecisionDecoration(node->getOperationPrecision()),
TranslateNoContractionDecoration(node->getType().getQualifier()),
convertGlslangToSpvType(node->getType()), leftRValue, rValue,
node->getType().getBasicType());
// these all need their counterparts in createBinaryOperation()
assert(rValue != spv::NoResult);
}
// store the result
builder.setAccessChain(lValue);
accessChainStore(node->getType(), rValue);
// assignments are expressions having an rValue after they are evaluated...
builder.clearAccessChain();
builder.setAccessChainRValue(rValue);
}
return false;
case glslang::EOpIndexDirect:
case glslang::EOpIndexDirectStruct:
{
// Get the left part of the access chain.
node->getLeft()->traverse(this);
// Add the next element in the chain
const int glslangIndex = node->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
if (! node->getLeft()->getType().isArray() &&
node->getLeft()->getType().isVector() &&
node->getOp() == glslang::EOpIndexDirect) {
// This is essentially a hard-coded vector swizzle of size 1,
// so short circuit the access-chain stuff with a swizzle.
std::vector<unsigned> swizzle;
swizzle.push_back(glslangIndex);
builder.accessChainPushSwizzle(swizzle, convertGlslangToSpvType(node->getLeft()->getType()));
} else {
int spvIndex = glslangIndex;
if (node->getLeft()->getBasicType() == glslang::EbtBlock &&
node->getOp() == glslang::EOpIndexDirectStruct)
{
// This may be, e.g., an anonymous block-member selection, which generally need
// index remapping due to hidden members in anonymous blocks.
std::vector<int>& remapper = memberRemapper[node->getLeft()->getType().getStruct()];
assert(remapper.size() > 0);
spvIndex = remapper[glslangIndex];
}
// normal case for indexing array or structure or block
builder.accessChainPush(builder.makeIntConstant(spvIndex));
// Add capabilities here for accessing PointSize and clip/cull distance.
// We have deferred generation of associated capabilities until now.
if (node->getLeft()->getType().isStruct() && ! node->getLeft()->getType().isArray())
declareUseOfStructMember(*(node->getLeft()->getType().getStruct()), glslangIndex);
}
}
return false;
case glslang::EOpIndexIndirect:
{
// Structure or array or vector indirection.
// Will use native SPIR-V access-chain for struct and array indirection;
// matrices are arrays of vectors, so will also work for a matrix.
// Will use the access chain's 'component' for variable index into a vector.
// This adapter is building access chains left to right.
// Set up the access chain to the left.
node->getLeft()->traverse(this);
// save it so that computing the right side doesn't trash it
spv::Builder::AccessChain partial = builder.getAccessChain();
// compute the next index in the chain
builder.clearAccessChain();
node->getRight()->traverse(this);
spv::Id index = accessChainLoad(node->getRight()->getType());
// restore the saved access chain
builder.setAccessChain(partial);
if (! node->getLeft()->getType().isArray() && node->getLeft()->getType().isVector())
builder.accessChainPushComponent(index, convertGlslangToSpvType(node->getLeft()->getType()));
else
builder.accessChainPush(index);
}
return false;
case glslang::EOpVectorSwizzle:
{
node->getLeft()->traverse(this);
std::vector<unsigned> swizzle;
convertSwizzle(*node->getRight()->getAsAggregate(), swizzle);
builder.accessChainPushSwizzle(swizzle, convertGlslangToSpvType(node->getLeft()->getType()));
}
return false;
case glslang::EOpLogicalOr:
case glslang::EOpLogicalAnd:
{
// These may require short circuiting, but can sometimes be done as straight
// binary operations. The right operand must be short circuited if it has
// side effects, and should probably be if it is complex.
if (isTrivial(node->getRight()->getAsTyped()))
break; // handle below as a normal binary operation
// otherwise, we need to do dynamic short circuiting on the right operand
spv::Id result = createShortCircuit(node->getOp(), *node->getLeft()->getAsTyped(), *node->getRight()->getAsTyped());
builder.clearAccessChain();
builder.setAccessChainRValue(result);
}
return false;
default:
break;
}
// Assume generic binary op...
// get right operand
builder.clearAccessChain();
node->getLeft()->traverse(this);
spv::Id left = accessChainLoad(node->getLeft()->getType());
// get left operand
builder.clearAccessChain();
node->getRight()->traverse(this);
spv::Id right = accessChainLoad(node->getRight()->getType());
// get result
spv::Id result = createBinaryOperation(node->getOp(), TranslatePrecisionDecoration(node->getOperationPrecision()),
TranslateNoContractionDecoration(node->getType().getQualifier()),
convertGlslangToSpvType(node->getType()), left, right,
node->getLeft()->getType().getBasicType());
builder.clearAccessChain();
if (! result) {
logger->missingFunctionality("unknown glslang binary operation");
return true; // pick up a child as the place-holder result
} else {
builder.setAccessChainRValue(result);
return false;
}
}
bool TGlslangToSpvTraverser::visitUnary(glslang::TVisit /* visit */, glslang::TIntermUnary* node)
{
SpecConstantOpModeGuard spec_constant_op_mode_setter(&builder);
if (node->getType().getQualifier().isSpecConstant())
spec_constant_op_mode_setter.turnOnSpecConstantOpMode();
spv::Id result = spv::NoResult;
// try texturing first
result = createImageTextureFunctionCall(node);
if (result != spv::NoResult) {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false; // done with this node
}
// Non-texturing.
if (node->getOp() == glslang::EOpArrayLength) {
// Quite special; won't want to evaluate the operand.
// Normal .length() would have been constant folded by the front-end.
// So, this has to be block.lastMember.length().
// SPV wants "block" and member number as the operands, go get them.
assert(node->getOperand()->getType().isRuntimeSizedArray());
glslang::TIntermTyped* block = node->getOperand()->getAsBinaryNode()->getLeft();
block->traverse(this);
unsigned int member = node->getOperand()->getAsBinaryNode()->getRight()->getAsConstantUnion()->getConstArray()[0].getUConst();
spv::Id length = builder.createArrayLength(builder.accessChainGetLValue(), member);
builder.clearAccessChain();
builder.setAccessChainRValue(length);
return false;
}
// Start by evaluating the operand
// Does it need a swizzle inversion? If so, evaluation is inverted;
// operate first on the swizzle base, then apply the swizzle.
spv::Id invertedType = spv::NoType;
auto resultType = [&invertedType, &node, this](){ return invertedType != spv::NoType ? invertedType : convertGlslangToSpvType(node->getType()); };
if (node->getOp() == glslang::EOpInterpolateAtCentroid)
invertedType = getInvertedSwizzleType(*node->getOperand());
builder.clearAccessChain();
if (invertedType != spv::NoType)
node->getOperand()->getAsBinaryNode()->getLeft()->traverse(this);
else
node->getOperand()->traverse(this);
spv::Id operand = spv::NoResult;
if (node->getOp() == glslang::EOpAtomicCounterIncrement ||
node->getOp() == glslang::EOpAtomicCounterDecrement ||
node->getOp() == glslang::EOpAtomicCounter ||
node->getOp() == glslang::EOpInterpolateAtCentroid)
operand = builder.accessChainGetLValue(); // Special case l-value operands
else
operand = accessChainLoad(node->getOperand()->getType());
spv::Decoration precision = TranslatePrecisionDecoration(node->getOperationPrecision());
spv::Decoration noContraction = TranslateNoContractionDecoration(node->getType().getQualifier());
// it could be a conversion
if (! result)
result = createConversion(node->getOp(), precision, noContraction, resultType(), operand, node->getOperand()->getBasicType());
// if not, then possibly an operation
if (! result)
result = createUnaryOperation(node->getOp(), precision, noContraction, resultType(), operand, node->getOperand()->getBasicType());
if (result) {
if (invertedType)
result = createInvertedSwizzle(precision, *node->getOperand(), result);
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false; // done with this node
}
// it must be a special case, check...
switch (node->getOp()) {
case glslang::EOpPostIncrement:
case glslang::EOpPostDecrement:
case glslang::EOpPreIncrement:
case glslang::EOpPreDecrement:
{
// we need the integer value "1" or the floating point "1.0" to add/subtract
spv::Id one = 0;
if (node->getBasicType() == glslang::EbtFloat)
one = builder.makeFloatConstant(1.0F);
else if (node->getBasicType() == glslang::EbtDouble)
one = builder.makeDoubleConstant(1.0);
else if (node->getBasicType() == glslang::EbtInt64 || node->getBasicType() == glslang::EbtUint64)
one = builder.makeInt64Constant(1);
else
one = builder.makeIntConstant(1);
glslang::TOperator op;
if (node->getOp() == glslang::EOpPreIncrement ||
node->getOp() == glslang::EOpPostIncrement)
op = glslang::EOpAdd;
else
op = glslang::EOpSub;
spv::Id result = createBinaryOperation(op, precision,
TranslateNoContractionDecoration(node->getType().getQualifier()),
convertGlslangToSpvType(node->getType()), operand, one,
node->getType().getBasicType());
assert(result != spv::NoResult);
// The result of operation is always stored, but conditionally the
// consumed result. The consumed result is always an r-value.
builder.accessChainStore(result);
builder.clearAccessChain();
if (node->getOp() == glslang::EOpPreIncrement ||
node->getOp() == glslang::EOpPreDecrement)
builder.setAccessChainRValue(result);
else
builder.setAccessChainRValue(operand);
}
return false;
case glslang::EOpEmitStreamVertex:
builder.createNoResultOp(spv::OpEmitStreamVertex, operand);
return false;
case glslang::EOpEndStreamPrimitive:
builder.createNoResultOp(spv::OpEndStreamPrimitive, operand);
return false;
default:
logger->missingFunctionality("unknown glslang unary");
return true; // pick up operand as placeholder result
}
}
bool TGlslangToSpvTraverser::visitAggregate(glslang::TVisit visit, glslang::TIntermAggregate* node)
{
SpecConstantOpModeGuard spec_constant_op_mode_setter(&builder);
if (node->getType().getQualifier().isSpecConstant())
spec_constant_op_mode_setter.turnOnSpecConstantOpMode();
spv::Id result = spv::NoResult;
spv::Id invertedType = spv::NoType; // to use to override the natural type of the node
auto resultType = [&invertedType, &node, this](){ return invertedType != spv::NoType ? invertedType : convertGlslangToSpvType(node->getType()); };
// try texturing
result = createImageTextureFunctionCall(node);
if (result != spv::NoResult) {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
} else if (node->getOp() == glslang::EOpImageStore) {
// "imageStore" is a special case, which has no result
return false;
}
glslang::TOperator binOp = glslang::EOpNull;
bool reduceComparison = true;
bool isMatrix = false;
bool noReturnValue = false;
bool atomic = false;
assert(node->getOp());
spv::Decoration precision = TranslatePrecisionDecoration(node->getOperationPrecision());
switch (node->getOp()) {
case glslang::EOpSequence:
{
if (preVisit)
++sequenceDepth;
else
--sequenceDepth;
if (sequenceDepth == 1) {
// If this is the parent node of all the functions, we want to see them
// early, so all call points have actual SPIR-V functions to reference.
// In all cases, still let the traverser visit the children for us.
makeFunctions(node->getAsAggregate()->getSequence());
// Also, we want all globals initializers to go into the entry of main(), before
// anything else gets there, so visit out of order, doing them all now.
makeGlobalInitializers(node->getAsAggregate()->getSequence());
// Initializers are done, don't want to visit again, but functions link objects need to be processed,
// so do them manually.
visitFunctions(node->getAsAggregate()->getSequence());
return false;
}
return true;
}
case glslang::EOpLinkerObjects:
{
if (visit == glslang::EvPreVisit)
linkageOnly = true;
else
linkageOnly = false;
return true;
}
case glslang::EOpComma:
{
// processing from left to right naturally leaves the right-most
// lying around in the access chain
glslang::TIntermSequence& glslangOperands = node->getSequence();
for (int i = 0; i < (int)glslangOperands.size(); ++i)
glslangOperands[i]->traverse(this);
return false;
}
case glslang::EOpFunction:
if (visit == glslang::EvPreVisit) {
if (isShaderEntrypoint(node)) {
inMain = true;
builder.setBuildPoint(shaderEntry->getLastBlock());
} else {
handleFunctionEntry(node);
}
} else {
if (inMain)
mainTerminated = true;
builder.leaveFunction();
inMain = false;
}
return true;
case glslang::EOpParameters:
// Parameters will have been consumed by EOpFunction processing, but not
// the body, so we still visited the function node's children, making this
// child redundant.
return false;
case glslang::EOpFunctionCall:
{
if (node->isUserDefined())
result = handleUserFunctionCall(node);
//assert(result); // this can happen for bad shaders because the call graph completeness checking is not yet done
if (result) {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
} else
logger->missingFunctionality("missing user function; linker needs to catch that");
return false;
}
case glslang::EOpConstructMat2x2:
case glslang::EOpConstructMat2x3:
case glslang::EOpConstructMat2x4:
case glslang::EOpConstructMat3x2:
case glslang::EOpConstructMat3x3:
case glslang::EOpConstructMat3x4:
case glslang::EOpConstructMat4x2:
case glslang::EOpConstructMat4x3:
case glslang::EOpConstructMat4x4:
case glslang::EOpConstructDMat2x2:
case glslang::EOpConstructDMat2x3:
case glslang::EOpConstructDMat2x4:
case glslang::EOpConstructDMat3x2:
case glslang::EOpConstructDMat3x3:
case glslang::EOpConstructDMat3x4:
case glslang::EOpConstructDMat4x2:
case glslang::EOpConstructDMat4x3:
case glslang::EOpConstructDMat4x4:
isMatrix = true;
// fall through
case glslang::EOpConstructFloat:
case glslang::EOpConstructVec2:
case glslang::EOpConstructVec3:
case glslang::EOpConstructVec4:
case glslang::EOpConstructDouble:
case glslang::EOpConstructDVec2:
case glslang::EOpConstructDVec3:
case glslang::EOpConstructDVec4:
case glslang::EOpConstructBool:
case glslang::EOpConstructBVec2:
case glslang::EOpConstructBVec3:
case glslang::EOpConstructBVec4:
case glslang::EOpConstructInt:
case glslang::EOpConstructIVec2:
case glslang::EOpConstructIVec3:
case glslang::EOpConstructIVec4:
case glslang::EOpConstructUint:
case glslang::EOpConstructUVec2:
case glslang::EOpConstructUVec3:
case glslang::EOpConstructUVec4:
case glslang::EOpConstructInt64:
case glslang::EOpConstructI64Vec2:
case glslang::EOpConstructI64Vec3:
case glslang::EOpConstructI64Vec4:
case glslang::EOpConstructUint64:
case glslang::EOpConstructU64Vec2:
case glslang::EOpConstructU64Vec3:
case glslang::EOpConstructU64Vec4:
case glslang::EOpConstructStruct:
case glslang::EOpConstructTextureSampler:
{
std::vector<spv::Id> arguments;
translateArguments(*node, arguments);
spv::Id constructed;
if (node->getOp() == glslang::EOpConstructTextureSampler)
constructed = builder.createOp(spv::OpSampledImage, resultType(), arguments);
else if (node->getOp() == glslang::EOpConstructStruct || node->getType().isArray()) {
std::vector<spv::Id> constituents;
for (int c = 0; c < (int)arguments.size(); ++c)
constituents.push_back(arguments[c]);
constructed = builder.createCompositeConstruct(resultType(), constituents);
} else if (isMatrix)
constructed = builder.createMatrixConstructor(precision, arguments, resultType());
else
constructed = builder.createConstructor(precision, arguments, resultType());
builder.clearAccessChain();
builder.setAccessChainRValue(constructed);
return false;
}
// These six are component-wise compares with component-wise results.
// Forward on to createBinaryOperation(), requesting a vector result.
case glslang::EOpLessThan:
case glslang::EOpGreaterThan:
case glslang::EOpLessThanEqual:
case glslang::EOpGreaterThanEqual:
case glslang::EOpVectorEqual:
case glslang::EOpVectorNotEqual:
{
// Map the operation to a binary
binOp = node->getOp();
reduceComparison = false;
switch (node->getOp()) {
case glslang::EOpVectorEqual: binOp = glslang::EOpVectorEqual; break;
case glslang::EOpVectorNotEqual: binOp = glslang::EOpVectorNotEqual; break;
default: binOp = node->getOp(); break;
}
break;
}
case glslang::EOpMul:
// component-wise matrix multiply
binOp = glslang::EOpMul;
break;
case glslang::EOpOuterProduct:
// two vectors multiplied to make a matrix
binOp = glslang::EOpOuterProduct;
break;
case glslang::EOpDot:
{
// for scalar dot product, use multiply
glslang::TIntermSequence& glslangOperands = node->getSequence();
if (glslangOperands[0]->getAsTyped()->getVectorSize() == 1)
binOp = glslang::EOpMul;
break;
}
case glslang::EOpMod:
// when an aggregate, this is the floating-point mod built-in function,
// which can be emitted by the one in createBinaryOperation()
binOp = glslang::EOpMod;
break;
case glslang::EOpEmitVertex:
case glslang::EOpEndPrimitive:
case glslang::EOpBarrier:
case glslang::EOpMemoryBarrier:
case glslang::EOpMemoryBarrierAtomicCounter:
case glslang::EOpMemoryBarrierBuffer:
case glslang::EOpMemoryBarrierImage:
case glslang::EOpMemoryBarrierShared:
case glslang::EOpGroupMemoryBarrier:
case glslang::EOpAllMemoryBarrierWithGroupSync:
case glslang::EOpGroupMemoryBarrierWithGroupSync:
case glslang::EOpWorkgroupMemoryBarrier:
case glslang::EOpWorkgroupMemoryBarrierWithGroupSync:
noReturnValue = true;
// These all have 0 operands and will naturally finish up in the code below for 0 operands
break;
case glslang::EOpAtomicAdd:
case glslang::EOpAtomicMin:
case glslang::EOpAtomicMax:
case glslang::EOpAtomicAnd:
case glslang::EOpAtomicOr:
case glslang::EOpAtomicXor:
case glslang::EOpAtomicExchange:
case glslang::EOpAtomicCompSwap:
atomic = true;
break;
default:
break;
}
//
// See if it maps to a regular operation.
//
if (binOp != glslang::EOpNull) {
glslang::TIntermTyped* left = node->getSequence()[0]->getAsTyped();
glslang::TIntermTyped* right = node->getSequence()[1]->getAsTyped();
assert(left && right);
builder.clearAccessChain();
left->traverse(this);
spv::Id leftId = accessChainLoad(left->getType());
builder.clearAccessChain();
right->traverse(this);
spv::Id rightId = accessChainLoad(right->getType());
result = createBinaryOperation(binOp, precision, TranslateNoContractionDecoration(node->getType().getQualifier()),
resultType(), leftId, rightId,
left->getType().getBasicType(), reduceComparison);
// code above should only make binOp that exists in createBinaryOperation
assert(result != spv::NoResult);
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
}
//
// Create the list of operands.
//
glslang::TIntermSequence& glslangOperands = node->getSequence();
std::vector<spv::Id> operands;
for (int arg = 0; arg < (int)glslangOperands.size(); ++arg) {
// special case l-value operands; there are just a few
bool lvalue = false;
switch (node->getOp()) {
case glslang::EOpFrexp:
case glslang::EOpModf:
if (arg == 1)
lvalue = true;
break;
case glslang::EOpInterpolateAtSample:
case glslang::EOpInterpolateAtOffset:
#ifdef AMD_EXTENSIONS
case glslang::EOpInterpolateAtVertex:
#endif
if (arg == 0) {
lvalue = true;
// Does it need a swizzle inversion? If so, evaluation is inverted;
// operate first on the swizzle base, then apply the swizzle.
if (glslangOperands[0]->getAsOperator() &&
glslangOperands[0]->getAsOperator()->getOp() == glslang::EOpVectorSwizzle)
invertedType = convertGlslangToSpvType(glslangOperands[0]->getAsBinaryNode()->getLeft()->getType());
}
break;
case glslang::EOpAtomicAdd:
case glslang::EOpAtomicMin:
case glslang::EOpAtomicMax:
case glslang::EOpAtomicAnd:
case glslang::EOpAtomicOr:
case glslang::EOpAtomicXor:
case glslang::EOpAtomicExchange:
case glslang::EOpAtomicCompSwap:
if (arg == 0)
lvalue = true;
break;
case glslang::EOpAddCarry:
case glslang::EOpSubBorrow:
if (arg == 2)
lvalue = true;
break;
case glslang::EOpUMulExtended:
case glslang::EOpIMulExtended:
if (arg >= 2)
lvalue = true;
break;
default:
break;
}
builder.clearAccessChain();
if (invertedType != spv::NoType && arg == 0)
glslangOperands[0]->getAsBinaryNode()->getLeft()->traverse(this);
else
glslangOperands[arg]->traverse(this);
if (lvalue)
operands.push_back(builder.accessChainGetLValue());
else
operands.push_back(accessChainLoad(glslangOperands[arg]->getAsTyped()->getType()));
}
if (atomic) {
// Handle all atomics
result = createAtomicOperation(node->getOp(), precision, resultType(), operands, node->getBasicType());
} else {
// Pass through to generic operations.
switch (glslangOperands.size()) {
case 0:
result = createNoArgOperation(node->getOp(), precision, resultType());
break;
case 1:
result = createUnaryOperation(
node->getOp(), precision,
TranslateNoContractionDecoration(node->getType().getQualifier()),
resultType(), operands.front(),
glslangOperands[0]->getAsTyped()->getBasicType());
break;
default:
result = createMiscOperation(node->getOp(), precision, resultType(), operands, node->getBasicType());
break;
}
if (invertedType)
result = createInvertedSwizzle(precision, *glslangOperands[0]->getAsBinaryNode(), result);
}
if (noReturnValue)
return false;
if (! result) {
logger->missingFunctionality("unknown glslang aggregate");
return true; // pick up a child as a placeholder operand
} else {
builder.clearAccessChain();
builder.setAccessChainRValue(result);
return false;
}
}
bool TGlslangToSpvTraverser::visitSelection(glslang::TVisit /* visit */, glslang::TIntermSelection* node)
{
// This path handles both if-then-else and ?:
// The if-then-else has a node type of void, while
// ?: has a non-void node type
spv::Id result = 0;
if (node->getBasicType() != glslang::EbtVoid) {
// don't handle this as just on-the-fly temporaries, because there will be two names
// and better to leave SSA to later passes
result = builder.createVariable(spv::StorageClassFunction, convertGlslangToSpvType(node->getType()));
}
// emit the condition before doing anything with selection
node->getCondition()->traverse(this);
// make an "if" based on the value created by the condition
spv::Builder::If ifBuilder(accessChainLoad(node->getCondition()->getType()), builder);
if (node->getTrueBlock()) {
// emit the "then" statement
node->getTrueBlock()->traverse(this);
if (result)
builder.createStore(accessChainLoad(node->getTrueBlock()->getAsTyped()->getType()), result);
}
if (node->getFalseBlock()) {
ifBuilder.makeBeginElse();
// emit the "else" statement
node->getFalseBlock()->traverse(this);
if (result)
builder.createStore(accessChainLoad(node->getFalseBlock()->getAsTyped()->getType()), result);
}
ifBuilder.makeEndIf();
if (result) {
// GLSL only has r-values as the result of a :?, but
// if we have an l-value, that can be more efficient if it will
// become the base of a complex r-value expression, because the
// next layer copies r-values into memory to use the access-chain mechanism
builder.clearAccessChain();
builder.setAccessChainLValue(result);
}
return false;
}
bool TGlslangToSpvTraverser::visitSwitch(glslang::TVisit /* visit */, glslang::TIntermSwitch* node)
{
// emit and get the condition before doing anything with switch
node->getCondition()->traverse(this);
spv::Id selector = accessChainLoad(node->getCondition()->getAsTyped()->getType());
// browse the children to sort out code segments
int defaultSegment = -1;
std::vector<TIntermNode*> codeSegments;
glslang::TIntermSequence& sequence = node->getBody()->getSequence();
std::vector<int> caseValues;
std::vector<int> valueIndexToSegment(sequence.size()); // note: probably not all are used, it is an overestimate
for (glslang::TIntermSequence::iterator c = sequence.begin(); c != sequence.end(); ++c) {
TIntermNode* child = *c;
if (child->getAsBranchNode() && child->getAsBranchNode()->getFlowOp() == glslang::EOpDefault)
defaultSegment = (int)codeSegments.size();
else if (child->getAsBranchNode() && child->getAsBranchNode()->getFlowOp() == glslang::EOpCase) {
valueIndexToSegment[caseValues.size()] = (int)codeSegments.size();
caseValues.push_back(child->getAsBranchNode()->getExpression()->getAsConstantUnion()->getConstArray()[0].getIConst());
} else
codeSegments.push_back(child);
}
// handle the case where the last code segment is missing, due to no code
// statements between the last case and the end of the switch statement
if ((caseValues.size() && (int)codeSegments.size() == valueIndexToSegment[caseValues.size() - 1]) ||
(int)codeSegments.size() == defaultSegment)
codeSegments.push_back(nullptr);
// make the switch statement
std::vector<spv::Block*> segmentBlocks; // returned, as the blocks allocated in the call
builder.makeSwitch(selector, (int)codeSegments.size(), caseValues, valueIndexToSegment, defaultSegment, segmentBlocks);
// emit all the code in the segments
breakForLoop.push(false);
for (unsigned int s = 0; s < codeSegments.size(); ++s) {
builder.nextSwitchSegment(segmentBlocks, s);
if (codeSegments[s])
codeSegments[s]->traverse(this);
else
builder.addSwitchBreak();
}
breakForLoop.pop();
builder.endSwitch(segmentBlocks);
return false;
}
void TGlslangToSpvTraverser::visitConstantUnion(glslang::TIntermConstantUnion* node)
{
int nextConst = 0;
spv::Id constant = createSpvConstantFromConstUnionArray(node->getType(), node->getConstArray(), nextConst, false);
builder.clearAccessChain();
builder.setAccessChainRValue(constant);
}
bool TGlslangToSpvTraverser::visitLoop(glslang::TVisit /* visit */, glslang::TIntermLoop* node)
{
auto blocks = builder.makeNewLoop();
builder.createBranch(&blocks.head);
// Spec requires back edges to target header blocks, and every header block
// must dominate its merge block. Make a header block first to ensure these
// conditions are met. By definition, it will contain OpLoopMerge, followed
// by a block-ending branch. But we don't want to put any other body/test
// instructions in it, since the body/test may have arbitrary instructions,
// including merges of its own.
builder.setBuildPoint(&blocks.head);
builder.createLoopMerge(&blocks.merge, &blocks.continue_target, spv::LoopControlMaskNone);
if (node->testFirst() && node->getTest()) {
spv::Block& test = builder.makeNewBlock();
builder.createBranch(&test);
builder.setBuildPoint(&test);
node->getTest()->traverse(this);
spv::Id condition =
accessChainLoad(node->getTest()->getType());
builder.createConditionalBranch(condition, &blocks.body, &blocks.merge);
builder.setBuildPoint(&blocks.body);
breakForLoop.push(true);
if (node->getBody())
node->getBody()->traverse(this);
builder.createBranch(&blocks.continue_target);
breakForLoop.pop();
builder.setBuildPoint(&blocks.continue_target);
if (node->getTerminal())
node->getTerminal()->traverse(this);
builder.createBranch(&blocks.head);
} else {
builder.createBranch(&blocks.body);
breakForLoop.push(true);
builder.setBuildPoint(&blocks.body);
if (node->getBody())
node->getBody()->traverse(this);
builder.createBranch(&blocks.continue_target);
breakForLoop.pop();
builder.setBuildPoint(&blocks.continue_target);
if (node->getTerminal())
node->getTerminal()->traverse(this);
if (node->getTest()) {
node->getTest()->traverse(this);
spv::Id condition =
accessChainLoad(node->getTest()->getType());
builder.createConditionalBranch(condition, &blocks.head, &blocks.merge);
} else {
// TODO: unless there was a break/return/discard instruction
// somewhere in the body, this is an infinite loop, so we should
// issue a warning.
builder.createBranch(&blocks.head);
}
}
builder.setBuildPoint(&blocks.merge);
builder.closeLoop();
return false;
}
bool TGlslangToSpvTraverser::visitBranch(glslang::TVisit /* visit */, glslang::TIntermBranch* node)
{
if (node->getExpression())
node->getExpression()->traverse(this);
switch (node->getFlowOp()) {
case glslang::EOpKill:
builder.makeDiscard();
break;
case glslang::EOpBreak:
if (breakForLoop.top())
builder.createLoopExit();
else
builder.addSwitchBreak();
break;
case glslang::EOpContinue:
builder.createLoopContinue();
break;
case glslang::EOpReturn:
if (node->getExpression())
builder.makeReturn(false, accessChainLoad(node->getExpression()->getType()));
else
builder.makeReturn(false);
builder.clearAccessChain();
break;
default:
assert(0);
break;
}
return false;
}
spv::Id TGlslangToSpvTraverser::createSpvVariable(const glslang::TIntermSymbol* node)
{
// First, steer off constants, which are not SPIR-V variables, but
// can still have a mapping to a SPIR-V Id.
// This includes specialization constants.
if (node->getQualifier().isConstant()) {
return createSpvConstant(*node);
}
// Now, handle actual variables
spv::StorageClass storageClass = TranslateStorageClass(node->getType());
spv::Id spvType = convertGlslangToSpvType(node->getType());
const char* name = node->getName().c_str();
if (glslang::IsAnonymous(name))
name = "";
return builder.createVariable(storageClass, spvType, name);
}
// Return type Id of the sampled type.
spv::Id TGlslangToSpvTraverser::getSampledType(const glslang::TSampler& sampler)
{
switch (sampler.type) {
case glslang::EbtFloat: return builder.makeFloatType(32);
case glslang::EbtInt: return builder.makeIntType(32);
case glslang::EbtUint: return builder.makeUintType(32);
default:
assert(0);
return builder.makeFloatType(32);
}
}
// If node is a swizzle operation, return the type that should be used if
// the swizzle base is first consumed by another operation, before the swizzle
// is applied.
spv::Id TGlslangToSpvTraverser::getInvertedSwizzleType(const glslang::TIntermTyped& node)
{
if (node.getAsOperator() &&
node.getAsOperator()->getOp() == glslang::EOpVectorSwizzle)
return convertGlslangToSpvType(node.getAsBinaryNode()->getLeft()->getType());
else
return spv::NoType;
}
// When inverting a swizzle with a parent op, this function
// will apply the swizzle operation to a completed parent operation.
spv::Id TGlslangToSpvTraverser::createInvertedSwizzle(spv::Decoration precision, const glslang::TIntermTyped& node, spv::Id parentResult)
{
std::vector<unsigned> swizzle;
convertSwizzle(*node.getAsBinaryNode()->getRight()->getAsAggregate(), swizzle);
return builder.createRvalueSwizzle(precision, convertGlslangToSpvType(node.getType()), parentResult, swizzle);
}
// Convert a glslang AST swizzle node to a swizzle vector for building SPIR-V.
void TGlslangToSpvTraverser::convertSwizzle(const glslang::TIntermAggregate& node, std::vector<unsigned>& swizzle)
{
const glslang::TIntermSequence& swizzleSequence = node.getSequence();
for (int i = 0; i < (int)swizzleSequence.size(); ++i)
swizzle.push_back(swizzleSequence[i]->getAsConstantUnion()->getConstArray()[0].getIConst());
}
// Convert from a glslang type to an SPV type, by calling into a
// recursive version of this function. This establishes the inherited
// layout state rooted from the top-level type.
spv::Id TGlslangToSpvTraverser::convertGlslangToSpvType(const glslang::TType& type)
{
return convertGlslangToSpvType(type, getExplicitLayout(type), type.getQualifier());
}
// Do full recursive conversion of an arbitrary glslang type to a SPIR-V Id.
// explicitLayout can be kept the same throughout the hierarchical recursive walk.
// Mutually recursive with convertGlslangStructToSpvType().
spv::Id TGlslangToSpvTraverser::convertGlslangToSpvType(const glslang::TType& type, glslang::TLayoutPacking explicitLayout, const glslang::TQualifier& qualifier)
{
spv::Id spvType = spv::NoResult;
switch (type.getBasicType()) {
case glslang::EbtVoid:
spvType = builder.makeVoidType();
assert (! type.isArray());
break;
case glslang::EbtFloat:
spvType = builder.makeFloatType(32);
break;
case glslang::EbtDouble:
spvType = builder.makeFloatType(64);
break;
case glslang::EbtBool:
// "transparent" bool doesn't exist in SPIR-V. The GLSL convention is
// a 32-bit int where non-0 means true.
if (explicitLayout != glslang::ElpNone)
spvType = builder.makeUintType(32);
else
spvType = builder.makeBoolType();
break;
case glslang::EbtInt:
spvType = builder.makeIntType(32);
break;
case glslang::EbtUint:
spvType = builder.makeUintType(32);
break;
case glslang::EbtInt64:
builder.addCapability(spv::CapabilityInt64);
spvType = builder.makeIntType(64);
break;
case glslang::EbtUint64:
builder.addCapability(spv::CapabilityInt64);
spvType = builder.makeUintType(64);
break;
case glslang::EbtAtomicUint:
builder.addCapability(spv::CapabilityAtomicStorage);
spvType = builder.makeUintType(32);
break;
case glslang::EbtSampler:
{
const glslang::TSampler& sampler = type.getSampler();
if (sampler.sampler) {
// pure sampler
spvType = builder.makeSamplerType();
} else {
// an image is present, make its type
spvType = builder.makeImageType(getSampledType(sampler), TranslateDimensionality(sampler), sampler.shadow, sampler.arrayed, sampler.ms,
sampler.image ? 2 : 1, TranslateImageFormat(type));
if (sampler.combined) {
// already has both image and sampler, make the combined type
spvType = builder.makeSampledImageType(spvType);
}
}
}
break;
case glslang::EbtStruct:
case glslang::EbtBlock:
{
// If we've seen this struct type, return it
const glslang::TTypeList* glslangMembers = type.getStruct();
// Try to share structs for different layouts, but not yet for other
// kinds of qualification (primarily not yet including interpolant qualification).
if (! HasNonLayoutQualifiers(qualifier))
spvType = structMap[explicitLayout][qualifier.layoutMatrix][glslangMembers];
if (spvType != spv::NoResult)
break;
// else, we haven't seen it...
if (type.getBasicType() == glslang::EbtBlock)
memberRemapper[glslangMembers].resize(glslangMembers->size());
spvType = convertGlslangStructToSpvType(type, glslangMembers, explicitLayout, qualifier);
}
break;
default:
assert(0);
break;
}
if (type.isMatrix())
spvType = builder.makeMatrixType(spvType, type.getMatrixCols(), type.getMatrixRows());
else {
// If this variable has a vector element count greater than 1, create a SPIR-V vector
if (type.getVectorSize() > 1)
spvType = builder.makeVectorType(spvType, type.getVectorSize());
}
if (type.isArray()) {
int stride = 0; // keep this 0 unless doing an explicit layout; 0 will mean no decoration, no stride
// Do all but the outer dimension
if (type.getArraySizes()->getNumDims() > 1) {
// We need to decorate array strides for types needing explicit layout, except blocks.
if (explicitLayout != glslang::ElpNone && type.getBasicType() != glslang::EbtBlock) {
// Use a dummy glslang type for querying internal strides of
// arrays of arrays, but using just a one-dimensional array.
glslang::TType simpleArrayType(type, 0); // deference type of the array
while (simpleArrayType.getArraySizes().getNumDims() > 1)
simpleArrayType.getArraySizes().dereference();
// Will compute the higher-order strides here, rather than making a whole
// pile of types and doing repetitive recursion on their contents.
stride = getArrayStride(simpleArrayType, explicitLayout, qualifier.layoutMatrix);
}
// make the arrays
for (int dim = type.getArraySizes()->getNumDims() - 1; dim > 0; --dim) {
spvType = builder.makeArrayType(spvType, makeArraySizeId(*type.getArraySizes(), dim), stride);
if (stride > 0)
builder.addDecoration(spvType, spv::DecorationArrayStride, stride);
stride *= type.getArraySizes()->getDimSize(dim);
}
} else {
// single-dimensional array, and don't yet have stride
// We need to decorate array strides for types needing explicit layout, except blocks.
if (explicitLayout != glslang::ElpNone && type.getBasicType() != glslang::EbtBlock)
stride = getArrayStride(type, explicitLayout, qualifier.layoutMatrix);
}
// Do the outer dimension, which might not be known for a runtime-sized array
if (type.isRuntimeSizedArray()) {
spvType = builder.makeRuntimeArray(spvType);
} else {
assert(type.getOuterArraySize() > 0);
spvType = builder.makeArrayType(spvType, makeArraySizeId(*type.getArraySizes(), 0), stride);
}
if (stride > 0)
builder.addDecoration(spvType, spv::DecorationArrayStride, stride);
}
return spvType;
}
// Do full recursive conversion of a glslang structure (or block) type to a SPIR-V Id.
// explicitLayout can be kept the same throughout the hierarchical recursive walk.
// Mutually recursive with convertGlslangToSpvType().
spv::Id TGlslangToSpvTraverser::convertGlslangStructToSpvType(const glslang::TType& type,
const glslang::TTypeList* glslangMembers,
glslang::TLayoutPacking explicitLayout,
const glslang::TQualifier& qualifier)
{
// Create a vector of struct types for SPIR-V to consume
std::vector<spv::Id> spvMembers;
int memberDelta = 0; // how much the member's index changes from glslang to SPIR-V, normally 0, except sometimes for blocks
int locationOffset = 0; // for use across struct members, when they are called recursively
for (int i = 0; i < (int)glslangMembers->size(); i++) {
glslang::TType& glslangMember = *(*glslangMembers)[i].type;
if (glslangMember.hiddenMember()) {
++memberDelta;
if (type.getBasicType() == glslang::EbtBlock)
memberRemapper[glslangMembers][i] = -1;
} else {
if (type.getBasicType() == glslang::EbtBlock)
memberRemapper[glslangMembers][i] = i - memberDelta;
// modify just this child's view of the qualifier
glslang::TQualifier memberQualifier = glslangMember.getQualifier();
InheritQualifiers(memberQualifier, qualifier);
// manually inherit location; it's more complex
if (! memberQualifier.hasLocation() && qualifier.hasLocation())
memberQualifier.layoutLocation = qualifier.layoutLocation + locationOffset;
if (qualifier.hasLocation())
locationOffset += glslangIntermediate->computeTypeLocationSize(glslangMember);
// recurse
spvMembers.push_back(convertGlslangToSpvType(glslangMember, explicitLayout, memberQualifier));
}
}
// Make the SPIR-V type
spv::Id spvType = builder.makeStructType(spvMembers, type.getTypeName().c_str());
if (! HasNonLayoutQualifiers(qualifier))
structMap[explicitLayout][qualifier.layoutMatrix][glslangMembers] = spvType;
// Decorate it
decorateStructType(type, glslangMembers, explicitLayout, qualifier, spvType);
return spvType;
}
void TGlslangToSpvTraverser::decorateStructType(const glslang::TType& type,
const glslang::TTypeList* glslangMembers,
glslang::TLayoutPacking explicitLayout,
const glslang::TQualifier& qualifier,
spv::Id spvType)
{
// Name and decorate the non-hidden members
int offset = -1;
int locationOffset = 0; // for use within the members of this struct
for (int i = 0; i < (int)glslangMembers->size(); i++) {
glslang::TType& glslangMember = *(*glslangMembers)[i].type;
int member = i;
if (type.getBasicType() == glslang::EbtBlock)
member = memberRemapper[glslangMembers][i];
// modify just this child's view of the qualifier
glslang::TQualifier memberQualifier = glslangMember.getQualifier();
InheritQualifiers(memberQualifier, qualifier);
// using -1 above to indicate a hidden member
if (member >= 0) {
builder.addMemberName(spvType, member, glslangMember.getFieldName().c_str());
addMemberDecoration(spvType, member, TranslateLayoutDecoration(glslangMember, memberQualifier.layoutMatrix));
addMemberDecoration(spvType, member, TranslatePrecisionDecoration(glslangMember));
// Add interpolation and auxiliary storage decorations only to top-level members of Input and Output storage classes
if (type.getQualifier().storage == glslang::EvqVaryingIn || type.getQualifier().storage == glslang::EvqVaryingOut) {
if (type.getBasicType() == glslang::EbtBlock) {
addMemberDecoration(spvType, member, TranslateInterpolationDecoration(memberQualifier));
addMemberDecoration(spvType, member, TranslateAuxiliaryStorageDecoration(memberQualifier));
}
}
addMemberDecoration(spvType, member, TranslateInvariantDecoration(memberQualifier));
if (qualifier.storage == glslang::EvqBuffer) {
std::vector<spv::Decoration> memory;
TranslateMemoryDecoration(memberQualifier, memory);
for (unsigned int i = 0; i < memory.size(); ++i)
addMemberDecoration(spvType, member, memory[i]);
}
// Compute location decoration; tricky based on whether inheritance is at play and
// what kind of container we have, etc.
// TODO: This algorithm (and it's cousin above doing almost the same thing) should
// probably move to the linker stage of the front end proper, and just have the
// answer sitting already distributed throughout the individual member locations.
int location = -1; // will only decorate if present or inherited
// Ignore member locations if the container is an array, as that's
// ill-specified and decisions have been made to not allow this anyway.
// The object itself must have a location, and that comes out from decorating the object,
// not the type (this code decorates types).
if (! type.isArray()) {
if (memberQualifier.hasLocation()) { // no inheritance, or override of inheritance
// struct members should not have explicit locations
assert(type.getBasicType() != glslang::EbtStruct);
location = memberQualifier.layoutLocation;
} else if (type.getBasicType() != glslang::EbtBlock) {
// If it is a not a Block, (...) Its members are assigned consecutive locations (...)
// The members, and their nested types, must not themselves have Location decorations.
} else if (qualifier.hasLocation()) // inheritance
location = qualifier.layoutLocation + locationOffset;
}
if (location >= 0)
builder.addMemberDecoration(spvType, member, spv::DecorationLocation, location);
if (qualifier.hasLocation()) // track for upcoming inheritance
locationOffset += glslangIntermediate->computeTypeLocationSize(glslangMember);
// component, XFB, others
if (glslangMember.getQualifier().hasComponent())
builder.addMemberDecoration(spvType, member, spv::DecorationComponent, glslangMember.getQualifier().layoutComponent);
if (glslangMember.getQualifier().hasXfbOffset())
builder.addMemberDecoration(spvType, member, spv::DecorationOffset, glslangMember.getQualifier().layoutXfbOffset);
else if (explicitLayout != glslang::ElpNone) {
// figure out what to do with offset, which is accumulating
int nextOffset;
updateMemberOffset(type, glslangMember, offset, nextOffset, explicitLayout, memberQualifier.layoutMatrix);
if (offset >= 0)
builder.addMemberDecoration(spvType, member, spv::DecorationOffset, offset);
offset = nextOffset;
}
if (glslangMember.isMatrix() && explicitLayout != glslang::ElpNone)
builder.addMemberDecoration(spvType, member, spv::DecorationMatrixStride, getMatrixStride(glslangMember, explicitLayout, memberQualifier.layoutMatrix));
// built-in variable decorations
spv::BuiltIn builtIn = TranslateBuiltInDecoration(glslangMember.getQualifier().builtIn, true);
if (builtIn != spv::BuiltInMax)
addMemberDecoration(spvType, member, spv::DecorationBuiltIn, (int)builtIn);
}
}
// Decorate the structure
addDecoration(spvType, TranslateLayoutDecoration(type, qualifier.layoutMatrix));
addDecoration(spvType, TranslateBlockDecoration(type));
if (type.getQualifier().hasStream() && glslangIntermediate->isMultiStream()) {
builder.addCapability(spv::CapabilityGeometryStreams);
builder.addDecoration(spvType, spv::DecorationStream, type.getQualifier().layoutStream);
}
if (glslangIntermediate->getXfbMode()) {
builder.addCapability(spv::CapabilityTransformFeedback);
if (type.getQualifier().hasXfbStride())
builder.addDecoration(spvType, spv::DecorationXfbStride, type.getQualifier().layoutXfbStride);
if (type.getQualifier().hasXfbBuffer())
builder.addDecoration(spvType, spv::DecorationXfbBuffer, type.getQualifier().layoutXfbBuffer);
}
}
// Turn the expression forming the array size into an id.
// This is not quite trivial, because of specialization constants.
// Sometimes, a raw constant is turned into an Id, and sometimes
// a specialization constant expression is.
spv::Id TGlslangToSpvTraverser::makeArraySizeId(const glslang::TArraySizes& arraySizes, int dim)
{
// First, see if this is sized with a node, meaning a specialization constant:
glslang::TIntermTyped* specNode = arraySizes.getDimNode(dim);
if (specNode != nullptr) {
builder.clearAccessChain();
specNode->traverse(this);
return accessChainLoad(specNode->getAsTyped()->getType());
}
// Otherwise, need a compile-time (front end) size, get it:
int size = arraySizes.getDimSize(dim);
assert(size > 0);
return builder.makeUintConstant(size);
}
// Wrap the builder's accessChainLoad to:
// - localize handling of RelaxedPrecision
// - use the SPIR-V inferred type instead of another conversion of the glslang type
// (avoids unnecessary work and possible type punning for structures)
// - do conversion of concrete to abstract type
spv::Id TGlslangToSpvTraverser::accessChainLoad(const glslang::TType& type)
{
spv::Id nominalTypeId = builder.accessChainGetInferredType();
spv::Id loadedId = builder.accessChainLoad(TranslatePrecisionDecoration(type), nominalTypeId);
// Need to convert to abstract types when necessary
if (type.getBasicType() == glslang::EbtBool) {
if (builder.isScalarType(nominalTypeId)) {
// Conversion for bool
spv::Id boolType = builder.makeBoolType();
if (nominalTypeId != boolType)
loadedId = builder.createBinOp(spv::OpINotEqual, boolType, loadedId, builder.makeUintConstant(0));
} else if (builder.isVectorType(nominalTypeId)) {
// Conversion for bvec
int vecSize = builder.getNumTypeComponents(nominalTypeId);
spv::Id bvecType = builder.makeVectorType(builder.makeBoolType(), vecSize);
if (nominalTypeId != bvecType)
loadedId = builder.createBinOp(spv::OpINotEqual, bvecType, loadedId, makeSmearedConstant(builder.makeUintConstant(0), vecSize));
}
}
return loadedId;
}
// Wrap the builder's accessChainStore to:
// - do conversion of concrete to abstract type
void TGlslangToSpvTraverser::accessChainStore(const glslang::TType& type, spv::Id rvalue)
{
// Need to convert to abstract types when necessary
if (type.getBasicType() == glslang::EbtBool) {
spv::Id nominalTypeId = builder.accessChainGetInferredType();
if (builder.isScalarType(nominalTypeId)) {
// Conversion for bool
spv::Id boolType = builder.makeBoolType();
if (nominalTypeId != boolType) {
spv::Id zero = builder.makeUintConstant(0);
spv::Id one = builder.makeUintConstant(1);
rvalue = builder.createTriOp(spv::OpSelect, nominalTypeId, rvalue, one, zero);
}
} else if (builder.isVectorType(nominalTypeId)) {
// Conversion for bvec
int vecSize = builder.getNumTypeComponents(nominalTypeId);
spv::Id bvecType = builder.makeVectorType(builder.makeBoolType(), vecSize);
if (nominalTypeId != bvecType) {
spv::Id zero = makeSmearedConstant(builder.makeUintConstant(0), vecSize);
spv::Id one = makeSmearedConstant(builder.makeUintConstant(1), vecSize);
rvalue = builder.createTriOp(spv::OpSelect, nominalTypeId, rvalue, one, zero);
}
}
}
builder.accessChainStore(rvalue);
}
// Decide whether or not this type should be
// decorated with offsets and strides, and if so
// whether std140 or std430 rules should be applied.
glslang::TLayoutPacking TGlslangToSpvTraverser::getExplicitLayout(const glslang::TType& type) const
{
// has to be a block
if (type.getBasicType() != glslang::EbtBlock)
return glslang::ElpNone;
// has to be a uniform or buffer block
if (type.getQualifier().storage != glslang::EvqUniform &&
type.getQualifier().storage != glslang::EvqBuffer)
return glslang::ElpNone;
// return the layout to use
switch (type.getQualifier().layoutPacking) {
case glslang::ElpStd140:
case glslang::ElpStd430:
return type.getQualifier().layoutPacking;
default:
return glslang::ElpNone;
}
}
// Given an array type, returns the integer stride required for that array
int TGlslangToSpvTraverser::getArrayStride(const glslang::TType& arrayType, glslang::TLayoutPacking explicitLayout, glslang::TLayoutMatrix matrixLayout)
{
int size;
int stride;
glslangIntermediate->getBaseAlignment(arrayType, size, stride, explicitLayout == glslang::ElpStd140, matrixLayout == glslang::ElmRowMajor);
return stride;
}
// Given a matrix type, or array (of array) of matrixes type, returns the integer stride required for that matrix
// when used as a member of an interface block
int TGlslangToSpvTraverser::getMatrixStride(const glslang::TType& matrixType, glslang::TLayoutPacking explicitLayout, glslang::TLayoutMatrix matrixLayout)
{
glslang::TType elementType;
elementType.shallowCopy(matrixType);
elementType.clearArraySizes();
int size;
int stride;
glslangIntermediate->getBaseAlignment(elementType, size, stride, explicitLayout == glslang::ElpStd140, matrixLayout == glslang::ElmRowMajor);
return stride;
}
// Given a member type of a struct, realign the current offset for it, and compute
// the next (not yet aligned) offset for the next member, which will get aligned
// on the next call.
// 'currentOffset' should be passed in already initialized, ready to modify, and reflecting
// the migration of data from nextOffset -> currentOffset. It should be -1 on the first call.
// -1 means a non-forced member offset (no decoration needed).
void TGlslangToSpvTraverser::updateMemberOffset(const glslang::TType& /*structType*/, const glslang::TType& memberType, int& currentOffset, int& nextOffset,
glslang::TLayoutPacking explicitLayout, glslang::TLayoutMatrix matrixLayout)
{
// this will get a positive value when deemed necessary
nextOffset = -1;
// override anything in currentOffset with user-set offset
if (memberType.getQualifier().hasOffset())
currentOffset = memberType.getQualifier().layoutOffset;
// It could be that current linker usage in glslang updated all the layoutOffset,
// in which case the following code does not matter. But, that's not quite right
// once cross-compilation unit GLSL validation is done, as the original user
// settings are needed in layoutOffset, and then the following will come into play.
if (explicitLayout == glslang::ElpNone) {
if (! memberType.getQualifier().hasOffset())
currentOffset = -1;
return;
}
// Getting this far means we need explicit offsets
if (currentOffset < 0)
currentOffset = 0;
// Now, currentOffset is valid (either 0, or from a previous nextOffset),
// but possibly not yet correctly aligned.
int memberSize;
int dummyStride;
int memberAlignment = glslangIntermediate->getBaseAlignment(memberType, memberSize, dummyStride, explicitLayout == glslang::ElpStd140, matrixLayout == glslang::ElmRowMajor);
glslang::RoundToPow2(currentOffset, memberAlignment);
nextOffset = currentOffset + memberSize;
}
void TGlslangToSpvTraverser::declareUseOfStructMember(const glslang::TTypeList& members, int glslangMember)
{
const glslang::TBuiltInVariable glslangBuiltIn = members[glslangMember].type->getQualifier().builtIn;
switch (glslangBuiltIn)
{
case glslang::EbvClipDistance:
case glslang::EbvCullDistance:
case glslang::EbvPointSize:
// Generate the associated capability. Delegate to TranslateBuiltInDecoration.
// Alternately, we could just call this for any glslang built-in, since the
// capability already guards against duplicates.
TranslateBuiltInDecoration(glslangBuiltIn, false);
break;
default:
// Capabilities were already generated when the struct was declared.
break;
}
}
bool TGlslangToSpvTraverser::isShaderEntrypoint(const glslang::TIntermAggregate* node)
{
// have to ignore mangling and just look at the base name
size_t firstOpen = node->getName().find('(');
return node->getName().compare(0, firstOpen, glslangIntermediate->getEntryPoint().c_str()) == 0;
}
// Make all the functions, skeletally, without actually visiting their bodies.
void TGlslangToSpvTraverser::makeFunctions(const glslang::TIntermSequence& glslFunctions)
{
for (int f = 0; f < (int)glslFunctions.size(); ++f) {
glslang::TIntermAggregate* glslFunction = glslFunctions[f]->getAsAggregate();
if (! glslFunction || glslFunction->getOp() != glslang::EOpFunction || isShaderEntrypoint(glslFunction))
continue;
// We're on a user function. Set up the basic interface for the function now,
// so that it's available to call.
// Translating the body will happen later.
//
// Typically (except for a "const in" parameter), an address will be passed to the
// function. What it is an address of varies:
//
// - "in" parameters not marked as "const" can be written to without modifying the argument,
// so that write needs to be to a copy, hence the address of a copy works.
//
// - "const in" parameters can just be the r-value, as no writes need occur.
//
// - "out" and "inout" arguments can't be done as direct pointers, because GLSL has
// copy-in/copy-out semantics. They can be handled though with a pointer to a copy.
std::vector<spv::Id> paramTypes;
std::vector<spv::Decoration> paramPrecisions;
glslang::TIntermSequence& parameters = glslFunction->getSequence()[0]->getAsAggregate()->getSequence();
for (int p = 0; p < (int)parameters.size(); ++p) {
const glslang::TType& paramType = parameters[p]->getAsTyped()->getType();
spv::Id typeId = convertGlslangToSpvType(paramType);
if (paramType.isOpaque())
typeId = builder.makePointer(TranslateStorageClass(paramType), typeId);
else if (paramType.getQualifier().storage != glslang::EvqConstReadOnly)
typeId = builder.makePointer(spv::StorageClassFunction, typeId);
else
constReadOnlyParameters.insert(parameters[p]->getAsSymbolNode()->getId());
paramPrecisions.push_back(TranslatePrecisionDecoration(paramType));
paramTypes.push_back(typeId);
}
spv::Block* functionBlock;
spv::Function *function = builder.makeFunctionEntry(TranslatePrecisionDecoration(glslFunction->getType()),
convertGlslangToSpvType(glslFunction->getType()),
glslFunction->getName().c_str(), paramTypes, paramPrecisions, &functionBlock);
// Track function to emit/call later
functionMap[glslFunction->getName().c_str()] = function;
// Set the parameter id's
for (int p = 0; p < (int)parameters.size(); ++p) {
symbolValues[parameters[p]->getAsSymbolNode()->getId()] = function->getParamId(p);
// give a name too
builder.addName(function->getParamId(p), parameters[p]->getAsSymbolNode()->getName().c_str());
}
}
}
// Process all the initializers, while skipping the functions and link objects
void TGlslangToSpvTraverser::makeGlobalInitializers(const glslang::TIntermSequence& initializers)
{
builder.setBuildPoint(shaderEntry->getLastBlock());
for (int i = 0; i < (int)initializers.size(); ++i) {
glslang::TIntermAggregate* initializer = initializers[i]->getAsAggregate();
if (initializer && initializer->getOp() != glslang::EOpFunction && initializer->getOp() != glslang::EOpLinkerObjects) {
// We're on a top-level node that's not a function. Treat as an initializer, whose
// code goes into the beginning of main.
initializer->traverse(this);
}
}
}
// Process all the functions, while skipping initializers.
void TGlslangToSpvTraverser::visitFunctions(const glslang::TIntermSequence& glslFunctions)
{
for (int f = 0; f < (int)glslFunctions.size(); ++f) {
glslang::TIntermAggregate* node = glslFunctions[f]->getAsAggregate();
if (node && (node->getOp() == glslang::EOpFunction || node->getOp() == glslang ::EOpLinkerObjects))
node->traverse(this);
}
}
void TGlslangToSpvTraverser::handleFunctionEntry(const glslang::TIntermAggregate* node)
{
// SPIR-V functions should already be in the functionMap from the prepass
// that called makeFunctions().
spv::Function* function = functionMap[node->getName().c_str()];
spv::Block* functionBlock = function->getEntryBlock();
builder.setBuildPoint(functionBlock);
}
void TGlslangToSpvTraverser::translateArguments(const glslang::TIntermAggregate& node, std::vector<spv::Id>& arguments)
{
const glslang::TIntermSequence& glslangArguments = node.getSequence();
glslang::TSampler sampler = {};
bool cubeCompare = false;
if (node.isTexture() || node.isImage()) {
sampler = glslangArguments[0]->getAsTyped()->getType().getSampler();
cubeCompare = sampler.dim == glslang::EsdCube && sampler.arrayed && sampler.shadow;
}
for (int i = 0; i < (int)glslangArguments.size(); ++i) {
builder.clearAccessChain();
glslangArguments[i]->traverse(this);
// Special case l-value operands
bool lvalue = false;
switch (node.getOp()) {
case glslang::EOpImageAtomicAdd:
case glslang::EOpImageAtomicMin:
case glslang::EOpImageAtomicMax:
case glslang::EOpImageAtomicAnd:
case glslang::EOpImageAtomicOr:
case glslang::EOpImageAtomicXor:
case glslang::EOpImageAtomicExchange:
case glslang::EOpImageAtomicCompSwap:
if (i == 0)
lvalue = true;
break;
case glslang::EOpSparseImageLoad:
if ((sampler.ms && i == 3) || (! sampler.ms && i == 2))
lvalue = true;
break;
case glslang::EOpSparseTexture:
if ((cubeCompare && i == 3) || (! cubeCompare && i == 2))
lvalue = true;
break;
case glslang::EOpSparseTextureClamp:
if ((cubeCompare && i == 4) || (! cubeCompare && i == 3))
lvalue = true;
break;
case glslang::EOpSparseTextureLod:
case glslang::EOpSparseTextureOffset:
if (i == 3)
lvalue = true;
break;
case glslang::EOpSparseTextureFetch:
if ((sampler.dim != glslang::EsdRect && i == 3) || (sampler.dim == glslang::EsdRect && i == 2))
lvalue = true;
break;
case glslang::EOpSparseTextureFetchOffset:
if ((sampler.dim != glslang::EsdRect && i == 4) || (sampler.dim == glslang::EsdRect && i == 3))
lvalue = true;
break;
case glslang::EOpSparseTextureLodOffset:
case glslang::EOpSparseTextureGrad:
case glslang::EOpSparseTextureOffsetClamp:
if (i == 4)
lvalue = true;
break;
case glslang::EOpSparseTextureGradOffset:
case glslang::EOpSparseTextureGradClamp:
if (i == 5)
lvalue = true;
break;
case glslang::EOpSparseTextureGradOffsetClamp:
if (i == 6)
lvalue = true;
break;
case glslang::EOpSparseTextureGather:
if ((sampler.shadow && i == 3) || (! sampler.shadow && i == 2))
lvalue = true;
break;
case glslang::EOpSparseTextureGatherOffset:
case glslang::EOpSparseTextureGatherOffsets:
if ((sampler.shadow && i == 4) || (! sampler.shadow && i == 3))
lvalue = true;
break;
default:
break;
}
if (lvalue)
arguments.push_back(builder.accessChainGetLValue());
else
arguments.push_back(accessChainLoad(glslangArguments[i]->getAsTyped()->getType()));
}
}
void TGlslangToSpvTraverser::translateArguments(glslang::TIntermUnary& node, std::vector<spv::Id>& arguments)
{
builder.clearAccessChain();
node.getOperand()->traverse(this);
arguments.push_back(accessChainLoad(node.getOperand()->getType()));
}
spv::Id TGlslangToSpvTraverser::createImageTextureFunctionCall(glslang::TIntermOperator* node)
{
if (! node->isImage() && ! node->isTexture()) {
return spv::NoResult;
}
auto resultType = [&node,this]{ return convertGlslangToSpvType(node->getType()); };
// Process a GLSL texturing op (will be SPV image)
const glslang::TSampler sampler = node->getAsAggregate() ? node->getAsAggregate()->getSequence()[0]->getAsTyped()->getType().getSampler()
: node->getAsUnaryNode()->getOperand()->getAsTyped()->getType().getSampler();
std::vector<spv::Id> arguments;
if (node->getAsAggregate())
translateArguments(*node->getAsAggregate(), arguments);
else
translateArguments(*node->getAsUnaryNode(), arguments);
spv::Decoration precision = TranslatePrecisionDecoration(node->getOperationPrecision());
spv::Builder::TextureParameters params = { };
params.sampler = arguments[0];
glslang::TCrackedTextureOp cracked;
node->crackTexture(sampler, cracked);
// Check for queries
if (cracked.query) {
// a sampled image needs to have the image extracted first
if (builder.isSampledImage(params.sampler))
params.sampler = builder.createUnaryOp(spv::OpImage, builder.getImageType(params.sampler), params.sampler);
switch (node->getOp()) {
case glslang::EOpImageQuerySize:
case glslang::EOpTextureQuerySize:
if (arguments.size() > 1) {
params.lod = arguments[1];
return builder.createTextureQueryCall(spv::OpImageQuerySizeLod, params);
} else
return builder.createTextureQueryCall(spv::OpImageQuerySize, params);
case glslang::EOpImageQuerySamples:
case glslang::EOpTextureQuerySamples:
return builder.createTextureQueryCall(spv::OpImageQuerySamples, params);
case glslang::EOpTextureQueryLod:
params.coords = arguments[1];
return builder.createTextureQueryCall(spv::OpImageQueryLod, params);
case glslang::EOpTextureQueryLevels:
return builder.createTextureQueryCall(spv::OpImageQueryLevels, params);
case glslang::EOpSparseTexelsResident:
return builder.createUnaryOp(spv::OpImageSparseTexelsResident, builder.makeBoolType(), arguments[0]);
default:
assert(0);
break;
}
}
// Check for image functions other than queries
if (node->isImage()) {
std::vector<spv::Id> operands;
auto opIt = arguments.begin();
operands.push_back(*(opIt++));
// Handle subpass operations
// TODO: GLSL should change to have the "MS" only on the type rather than the
// built-in function.
if (cracked.subpass) {
// add on the (0,0) coordinate
spv::Id zero = builder.makeIntConstant(0);
std::vector<spv::Id> comps;
comps.push_back(zero);
comps.push_back(zero);
operands.push_back(builder.makeCompositeConstant(builder.makeVectorType(builder.makeIntType(32), 2), comps));
if (sampler.ms) {
operands.push_back(spv::ImageOperandsSampleMask);
operands.push_back(*(opIt++));
}
return builder.createOp(spv::OpImageRead, resultType(), operands);
}
operands.push_back(*(opIt++));
if (node->getOp() == glslang::EOpImageLoad) {
if (sampler.ms) {
operands.push_back(spv::ImageOperandsSampleMask);
operands.push_back(*opIt);
}
if (builder.getImageTypeFormat(builder.getImageType(operands.front())) == spv::ImageFormatUnknown)
builder.addCapability(spv::CapabilityStorageImageReadWithoutFormat);
return builder.createOp(spv::OpImageRead, resultType(), operands);
} else if (node->getOp() == glslang::EOpImageStore) {
if (sampler.ms) {
operands.push_back(*(opIt + 1));
operands.push_back(spv::ImageOperandsSampleMask);
operands.push_back(*opIt);
} else
operands.push_back(*opIt);
builder.createNoResultOp(spv::OpImageWrite, operands);
if (builder.getImageTypeFormat(builder.getImageType(operands.front())) == spv::ImageFormatUnknown)
builder.addCapability(spv::CapabilityStorageImageWriteWithoutFormat);
return spv::NoResult;
} else if (node->getOp() == glslang::EOpSparseImageLoad) {
builder.addCapability(spv::CapabilitySparseResidency);
if (builder.getImageTypeFormat(builder.getImageType(operands.front())) == spv::ImageFormatUnknown)
builder.addCapability(spv::CapabilityStorageImageReadWithoutFormat);
if (sampler.ms) {
operands.push_back(spv::ImageOperandsSampleMask);
operands.push_back(*opIt++);
}
// Create the return type that was a special structure
spv::Id texelOut = *opIt;
spv::Id typeId0 = resultType();
spv::Id typeId1 = builder.getDerefTypeId(texelOut);
spv::Id resultTypeId = builder.makeStructResultType(typeId0, typeId1);
spv::Id resultId = builder.createOp(spv::OpImageSparseRead, resultTypeId, operands);
// Decode the return type
builder.createStore(builder.createCompositeExtract(resultId, typeId1, 1), texelOut);
return builder.createCompositeExtract(resultId, typeId0, 0);
} else {
// Process image atomic operations
// GLSL "IMAGE_PARAMS" will involve in constructing an image texel pointer and this pointer,
// as the first source operand, is required by SPIR-V atomic operations.
operands.push_back(sampler.ms ? *(opIt++) : builder.makeUintConstant(0)); // For non-MS, the value should be 0
spv::Id resultTypeId = builder.makePointer(spv::StorageClassImage, resultType());
spv::Id pointer = builder.createOp(spv::OpImageTexelPointer, resultTypeId, operands);
std::vector<spv::Id> operands;
operands.push_back(pointer);
for (; opIt != arguments.end(); ++opIt)
operands.push_back(*opIt);
return createAtomicOperation(node->getOp(), precision, resultType(), operands, node->getBasicType());
}
}
// Check for texture functions other than queries
bool sparse = node->isSparseTexture();
bool cubeCompare = sampler.dim == glslang::EsdCube && sampler.arrayed && sampler.shadow;
// check for bias argument
bool bias = false;
if (! cracked.lod && ! cracked.gather && ! cracked.grad && ! cracked.fetch && ! cubeCompare) {
int nonBiasArgCount = 2;
if (cracked.offset)
++nonBiasArgCount;
if (cracked.grad)
nonBiasArgCount += 2;
if (cracked.lodClamp)
++nonBiasArgCount;
if (sparse)
++nonBiasArgCount;
if ((int)arguments.size() > nonBiasArgCount)
bias = true;
}
// See if the sampler param should really be just the SPV image part
if (cracked.fetch) {
// a fetch needs to have the image extracted first
if (builder.isSampledImage(params.sampler))
params.sampler = builder.createUnaryOp(spv::OpImage, builder.getImageType(params.sampler), params.sampler);
}
// set the rest of the arguments
params.coords = arguments[1];
int extraArgs = 0;
bool noImplicitLod = false;
// sort out where Dref is coming from
if (cubeCompare) {
params.Dref = arguments[2];
++extraArgs;
} else if (sampler.shadow && cracked.gather) {
params.Dref = arguments[2];
++extraArgs;
} else if (sampler.shadow) {
std::vector<spv::Id> indexes;
int dRefComp;
if (cracked.proj)
dRefComp = 2; // "The resulting 3rd component of P in the shadow forms is used as Dref"
else
dRefComp = builder.getNumComponents(params.coords) - 1;
indexes.push_back(dRefComp);
params.Dref = builder.createCompositeExtract(params.coords, builder.getScalarTypeId(builder.getTypeId(params.coords)), indexes);
}
// lod
if (cracked.lod) {
params.lod = arguments[2];
++extraArgs;
} else if (glslangIntermediate->getStage() != EShLangFragment) {
// we need to invent the default lod for an explicit lod instruction for a non-fragment stage
noImplicitLod = true;
}
// multisample
if (sampler.ms) {
params.sample = arguments[2]; // For MS, "sample" should be specified
++extraArgs;
}
// gradient
if (cracked.grad) {
params.gradX = arguments[2 + extraArgs];
params.gradY = arguments[3 + extraArgs];
extraArgs += 2;
}
// offset and offsets
if (cracked.offset) {
params.offset = arguments[2 + extraArgs];
++extraArgs;
} else if (cracked.offsets) {
params.offsets = arguments[2 + extraArgs];
++extraArgs;
}
// lod clamp
if (cracked.lodClamp) {
params.lodClamp = arguments[2 + extraArgs];
++extraArgs;
}
// sparse
if (sparse) {
params.texelOut = arguments[2 + extraArgs];
++extraArgs;
}
// bias
if (bias) {
params.bias = arguments[2 + extraArgs];
++extraArgs;
}
// gather component
if (cracked.gather && ! sampler.shadow) {
// default component is 0, if missing, otherwise an argument
if (2 + extraArgs < (int)arguments.size()) {
params.component = arguments[2 + extraArgs];
++extraArgs;
} else {
params.component = builder.makeIntConstant(0);
}
}
// projective component (might not to move)
// GLSL: "The texture coordinates consumed from P, not including the last component of P,
// are divided by the last component of P."
// SPIR-V: "... (u [, v] [, w], q)... It may be a vector larger than needed, but all
// unused components will appear after all used components."
if (cracked.proj) {
int projSourceComp = builder.getNumComponents(params.coords) - 1;
int projTargetComp;
switch (sampler.dim) {
case glslang::Esd1D: projTargetComp = 1; break;
case glslang::Esd2D: projTargetComp = 2; break;
case glslang::EsdRect: projTargetComp = 2; break;
default: projTargetComp = projSourceComp; break;
}
// copy the projective coordinate if we have to
if (projTargetComp != projSourceComp) {
spv::Id projComp = builder.createCompositeExtract(params.coords,
builder.getScalarTypeId(builder.getTypeId(params.coords)),
projSourceComp);
params.coords = builder.createCompositeInsert(projComp, params.coords,
builder.getTypeId(params.coords), projTargetComp);
}
}
return builder.createTextureCall(precision, resultType(), sparse, cracked.fetch, cracked.proj, cracked.gather, noImplicitLod, params);
}
spv::Id TGlslangToSpvTraverser::handleUserFunctionCall(const glslang::TIntermAggregate* node)
{
// Grab the function's pointer from the previously created function
spv::Function* function = functionMap[node->getName().c_str()];
if (! function)
return 0;
const glslang::TIntermSequence& glslangArgs = node->getSequence();
const glslang::TQualifierList& qualifiers = node->getQualifierList();
// See comments in makeFunctions() for details about the semantics for parameter passing.
//
// These imply we need a four step process:
// 1. Evaluate the arguments
// 2. Allocate and make copies of in, out, and inout arguments
// 3. Make the call
// 4. Copy back the results
// 1. Evaluate the arguments
std::vector<spv::Builder::AccessChain> lValues;
std::vector<spv::Id> rValues;
std::vector<const glslang::TType*> argTypes;
for (int a = 0; a < (int)glslangArgs.size(); ++a) {
const glslang::TType& paramType = glslangArgs[a]->getAsTyped()->getType();
// build l-value
builder.clearAccessChain();
glslangArgs[a]->traverse(this);
argTypes.push_back(&paramType);
// keep outputs and opaque objects as l-values, evaluate input-only as r-values
if (qualifiers[a] != glslang::EvqConstReadOnly || paramType.isOpaque()) {
// save l-value
lValues.push_back(builder.getAccessChain());
} else {
// process r-value
rValues.push_back(accessChainLoad(*argTypes.back()));
}
}
// 2. Allocate space for anything needing a copy, and if it's "in" or "inout"
// copy the original into that space.
//
// Also, build up the list of actual arguments to pass in for the call
int lValueCount = 0;
int rValueCount = 0;
std::vector<spv::Id> spvArgs;
for (int a = 0; a < (int)glslangArgs.size(); ++a) {
const glslang::TType& paramType = glslangArgs[a]->getAsTyped()->getType();
spv::Id arg;
if (paramType.isOpaque()) {
builder.setAccessChain(lValues[lValueCount]);
arg = builder.accessChainGetLValue();
++lValueCount;
} else if (qualifiers[a] != glslang::EvqConstReadOnly) {
// need space to hold the copy
arg = builder.createVariable(spv::StorageClassFunction, convertGlslangToSpvType(paramType), "param");
if (qualifiers[a] == glslang::EvqIn || qualifiers[a] == glslang::EvqInOut) {
// need to copy the input into output space
builder.setAccessChain(lValues[lValueCount]);
spv::Id copy = accessChainLoad(*argTypes[a]);
builder.createStore(copy, arg);
}
++lValueCount;
} else {
arg = rValues[rValueCount];
++rValueCount;
}
spvArgs.push_back(arg);
}
// 3. Make the call.
spv::Id result = builder.createFunctionCall(function, spvArgs);
builder.setPrecision(result, TranslatePrecisionDecoration(node->getType()));
// 4. Copy back out an "out" arguments.
lValueCount = 0;
for (int a = 0; a < (int)glslangArgs.size(); ++a) {
if (qualifiers[a] != glslang::EvqConstReadOnly) {
if (qualifiers[a] == glslang::EvqOut || qualifiers[a] == glslang::EvqInOut) {
spv::Id copy = builder.createLoad(spvArgs[a]);
builder.setAccessChain(lValues[lValueCount]);
accessChainStore(glslangArgs[a]->getAsTyped()->getType(), copy);
}
++lValueCount;
}
}
return result;
}
// Translate AST operation to SPV operation, already having SPV-based operands/types.
spv::Id TGlslangToSpvTraverser::createBinaryOperation(glslang::TOperator op, spv::Decoration precision,
spv::Decoration noContraction,
spv::Id typeId, spv::Id left, spv::Id right,
glslang::TBasicType typeProxy, bool reduceComparison)
{
bool isUnsigned = typeProxy == glslang::EbtUint || typeProxy == glslang::EbtUint64;
bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble;
bool isBool = typeProxy == glslang::EbtBool;
spv::Op binOp = spv::OpNop;
bool needMatchingVectors = true; // for non-matrix ops, would a scalar need to smear to match a vector?
bool comparison = false;
switch (op) {
case glslang::EOpAdd:
case glslang::EOpAddAssign:
if (isFloat)
binOp = spv::OpFAdd;
else
binOp = spv::OpIAdd;
break;
case glslang::EOpSub:
case glslang::EOpSubAssign:
if (isFloat)
binOp = spv::OpFSub;
else
binOp = spv::OpISub;
break;
case glslang::EOpMul:
case glslang::EOpMulAssign:
if (isFloat)
binOp = spv::OpFMul;
else
binOp = spv::OpIMul;
break;
case glslang::EOpVectorTimesScalar:
case glslang::EOpVectorTimesScalarAssign:
if (isFloat && (builder.isVector(left) || builder.isVector(right))) {
if (builder.isVector(right))
std::swap(left, right);
assert(builder.isScalar(right));
needMatchingVectors = false;
binOp = spv::OpVectorTimesScalar;
} else
binOp = spv::OpIMul;
break;
case glslang::EOpVectorTimesMatrix:
case glslang::EOpVectorTimesMatrixAssign:
binOp = spv::OpVectorTimesMatrix;
break;
case glslang::EOpMatrixTimesVector:
binOp = spv::OpMatrixTimesVector;
break;
case glslang::EOpMatrixTimesScalar:
case glslang::EOpMatrixTimesScalarAssign:
binOp = spv::OpMatrixTimesScalar;
break;
case glslang::EOpMatrixTimesMatrix:
case glslang::EOpMatrixTimesMatrixAssign:
binOp = spv::OpMatrixTimesMatrix;
break;
case glslang::EOpOuterProduct:
binOp = spv::OpOuterProduct;
needMatchingVectors = false;
break;
case glslang::EOpDiv:
case glslang::EOpDivAssign:
if (isFloat)
binOp = spv::OpFDiv;
else if (isUnsigned)
binOp = spv::OpUDiv;
else
binOp = spv::OpSDiv;
break;
case glslang::EOpMod:
case glslang::EOpModAssign:
if (isFloat)
binOp = spv::OpFMod;
else if (isUnsigned)
binOp = spv::OpUMod;
else
binOp = spv::OpSMod;
break;
case glslang::EOpRightShift:
case glslang::EOpRightShiftAssign:
if (isUnsigned)
binOp = spv::OpShiftRightLogical;
else
binOp = spv::OpShiftRightArithmetic;
break;
case glslang::EOpLeftShift:
case glslang::EOpLeftShiftAssign:
binOp = spv::OpShiftLeftLogical;
break;
case glslang::EOpAnd:
case glslang::EOpAndAssign:
binOp = spv::OpBitwiseAnd;
break;
case glslang::EOpLogicalAnd:
needMatchingVectors = false;
binOp = spv::OpLogicalAnd;
break;
case glslang::EOpInclusiveOr:
case glslang::EOpInclusiveOrAssign:
binOp = spv::OpBitwiseOr;
break;
case glslang::EOpLogicalOr:
needMatchingVectors = false;
binOp = spv::OpLogicalOr;
break;
case glslang::EOpExclusiveOr:
case glslang::EOpExclusiveOrAssign:
binOp = spv::OpBitwiseXor;
break;
case glslang::EOpLogicalXor:
needMatchingVectors = false;
binOp = spv::OpLogicalNotEqual;
break;
case glslang::EOpLessThan:
case glslang::EOpGreaterThan:
case glslang::EOpLessThanEqual:
case glslang::EOpGreaterThanEqual:
case glslang::EOpEqual:
case glslang::EOpNotEqual:
case glslang::EOpVectorEqual:
case glslang::EOpVectorNotEqual:
comparison = true;
break;
default:
break;
}
// handle mapped binary operations (should be non-comparison)
if (binOp != spv::OpNop) {
assert(comparison == false);
if (builder.isMatrix(left) || builder.isMatrix(right))
return createBinaryMatrixOperation(binOp, precision, noContraction, typeId, left, right);
// No matrix involved; make both operands be the same number of components, if needed
if (needMatchingVectors)
builder.promoteScalar(precision, left, right);
spv::Id result = builder.createBinOp(binOp, typeId, left, right);
addDecoration(result, noContraction);
return builder.setPrecision(result, precision);
}
if (! comparison)
return 0;
// Handle comparison instructions
if (reduceComparison && (op == glslang::EOpEqual || op == glslang::EOpNotEqual)
&& (builder.isVector(left) || builder.isMatrix(left) || builder.isAggregate(left)))
return builder.createCompositeCompare(precision, left, right, op == glslang::EOpEqual);
switch (op) {
case glslang::EOpLessThan:
if (isFloat)
binOp = spv::OpFOrdLessThan;
else if (isUnsigned)
binOp = spv::OpULessThan;
else
binOp = spv::OpSLessThan;
break;
case glslang::EOpGreaterThan:
if (isFloat)
binOp = spv::OpFOrdGreaterThan;
else if (isUnsigned)
binOp = spv::OpUGreaterThan;
else
binOp = spv::OpSGreaterThan;
break;
case glslang::EOpLessThanEqual:
if (isFloat)
binOp = spv::OpFOrdLessThanEqual;
else if (isUnsigned)
binOp = spv::OpULessThanEqual;
else
binOp = spv::OpSLessThanEqual;
break;
case glslang::EOpGreaterThanEqual:
if (isFloat)
binOp = spv::OpFOrdGreaterThanEqual;
else if (isUnsigned)
binOp = spv::OpUGreaterThanEqual;
else
binOp = spv::OpSGreaterThanEqual;
break;
case glslang::EOpEqual:
case glslang::EOpVectorEqual:
if (isFloat)
binOp = spv::OpFOrdEqual;
else if (isBool)
binOp = spv::OpLogicalEqual;
else
binOp = spv::OpIEqual;
break;
case glslang::EOpNotEqual:
case glslang::EOpVectorNotEqual:
if (isFloat)
binOp = spv::OpFOrdNotEqual;
else if (isBool)
binOp = spv::OpLogicalNotEqual;
else
binOp = spv::OpINotEqual;
break;
default:
break;
}
if (binOp != spv::OpNop) {
spv::Id result = builder.createBinOp(binOp, typeId, left, right);
addDecoration(result, noContraction);
return builder.setPrecision(result, precision);
}
return 0;
}
//
// Translate AST matrix operation to SPV operation, already having SPV-based operands/types.
// These can be any of:
//
// matrix * scalar
// scalar * matrix
// matrix * matrix linear algebraic
// matrix * vector
// vector * matrix
// matrix * matrix componentwise
// matrix op matrix op in {+, -, /}
// matrix op scalar op in {+, -, /}
// scalar op matrix op in {+, -, /}
//
spv::Id TGlslangToSpvTraverser::createBinaryMatrixOperation(spv::Op op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id left, spv::Id right)
{
bool firstClass = true;
// First, handle first-class matrix operations (* and matrix/scalar)
switch (op) {
case spv::OpFDiv:
if (builder.isMatrix(left) && builder.isScalar(right)) {
// turn matrix / scalar into a multiply...
right = builder.createBinOp(spv::OpFDiv, builder.getTypeId(right), builder.makeFloatConstant(1.0F), right);
op = spv::OpMatrixTimesScalar;
} else
firstClass = false;
break;
case spv::OpMatrixTimesScalar:
if (builder.isMatrix(right))
std::swap(left, right);
assert(builder.isScalar(right));
break;
case spv::OpVectorTimesMatrix:
assert(builder.isVector(left));
assert(builder.isMatrix(right));
break;
case spv::OpMatrixTimesVector:
assert(builder.isMatrix(left));
assert(builder.isVector(right));
break;
case spv::OpMatrixTimesMatrix:
assert(builder.isMatrix(left));
assert(builder.isMatrix(right));
break;
default:
firstClass = false;
break;
}
if (firstClass) {
spv::Id result = builder.createBinOp(op, typeId, left, right);
addDecoration(result, noContraction);
return builder.setPrecision(result, precision);
}
// Handle component-wise +, -, *, %, and / for all combinations of type.
// The result type of all of them is the same type as the (a) matrix operand.
// The algorithm is to:
// - break the matrix(es) into vectors
// - smear any scalar to a vector
// - do vector operations
// - make a matrix out the vector results
switch (op) {
case spv::OpFAdd:
case spv::OpFSub:
case spv::OpFDiv:
case spv::OpFMod:
case spv::OpFMul:
{
// one time set up...
bool leftMat = builder.isMatrix(left);
bool rightMat = builder.isMatrix(right);
unsigned int numCols = leftMat ? builder.getNumColumns(left) : builder.getNumColumns(right);
int numRows = leftMat ? builder.getNumRows(left) : builder.getNumRows(right);
spv::Id scalarType = builder.getScalarTypeId(typeId);
spv::Id vecType = builder.makeVectorType(scalarType, numRows);
std::vector<spv::Id> results;
spv::Id smearVec = spv::NoResult;
if (builder.isScalar(left))
smearVec = builder.smearScalar(precision, left, vecType);
else if (builder.isScalar(right))
smearVec = builder.smearScalar(precision, right, vecType);
// do each vector op
for (unsigned int c = 0; c < numCols; ++c) {
std::vector<unsigned int> indexes;
indexes.push_back(c);
spv::Id leftVec = leftMat ? builder.createCompositeExtract( left, vecType, indexes) : smearVec;
spv::Id rightVec = rightMat ? builder.createCompositeExtract(right, vecType, indexes) : smearVec;
spv::Id result = builder.createBinOp(op, vecType, leftVec, rightVec);
addDecoration(result, noContraction);
results.push_back(builder.setPrecision(result, precision));
}
// put the pieces together
return builder.setPrecision(builder.createCompositeConstruct(typeId, results), precision);
}
default:
assert(0);
return spv::NoResult;
}
}
spv::Id TGlslangToSpvTraverser::createUnaryOperation(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand, glslang::TBasicType typeProxy)
{
spv::Op unaryOp = spv::OpNop;
int extBuiltins = -1;
int libCall = -1;
bool isUnsigned = typeProxy == glslang::EbtUint || typeProxy == glslang::EbtUint64;
bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble;
switch (op) {
case glslang::EOpNegative:
if (isFloat) {
unaryOp = spv::OpFNegate;
if (builder.isMatrixType(typeId))
return createUnaryMatrixOperation(unaryOp, precision, noContraction, typeId, operand, typeProxy);
} else
unaryOp = spv::OpSNegate;
break;
case glslang::EOpLogicalNot:
case glslang::EOpVectorLogicalNot:
unaryOp = spv::OpLogicalNot;
break;
case glslang::EOpBitwiseNot:
unaryOp = spv::OpNot;
break;
case glslang::EOpDeterminant:
libCall = spv::GLSLstd450Determinant;
break;
case glslang::EOpMatrixInverse:
libCall = spv::GLSLstd450MatrixInverse;
break;
case glslang::EOpTranspose:
unaryOp = spv::OpTranspose;
break;
case glslang::EOpRadians:
libCall = spv::GLSLstd450Radians;
break;
case glslang::EOpDegrees:
libCall = spv::GLSLstd450Degrees;
break;
case glslang::EOpSin:
libCall = spv::GLSLstd450Sin;
break;
case glslang::EOpCos:
libCall = spv::GLSLstd450Cos;
break;
case glslang::EOpTan:
libCall = spv::GLSLstd450Tan;
break;
case glslang::EOpAcos:
libCall = spv::GLSLstd450Acos;
break;
case glslang::EOpAsin:
libCall = spv::GLSLstd450Asin;
break;
case glslang::EOpAtan:
libCall = spv::GLSLstd450Atan;
break;
case glslang::EOpAcosh:
libCall = spv::GLSLstd450Acosh;
break;
case glslang::EOpAsinh:
libCall = spv::GLSLstd450Asinh;
break;
case glslang::EOpAtanh:
libCall = spv::GLSLstd450Atanh;
break;
case glslang::EOpTanh:
libCall = spv::GLSLstd450Tanh;
break;
case glslang::EOpCosh:
libCall = spv::GLSLstd450Cosh;
break;
case glslang::EOpSinh:
libCall = spv::GLSLstd450Sinh;
break;
case glslang::EOpLength:
libCall = spv::GLSLstd450Length;
break;
case glslang::EOpNormalize:
libCall = spv::GLSLstd450Normalize;
break;
case glslang::EOpExp:
libCall = spv::GLSLstd450Exp;
break;
case glslang::EOpLog:
libCall = spv::GLSLstd450Log;
break;
case glslang::EOpExp2:
libCall = spv::GLSLstd450Exp2;
break;
case glslang::EOpLog2:
libCall = spv::GLSLstd450Log2;
break;
case glslang::EOpSqrt:
libCall = spv::GLSLstd450Sqrt;
break;
case glslang::EOpInverseSqrt:
libCall = spv::GLSLstd450InverseSqrt;
break;
case glslang::EOpFloor:
libCall = spv::GLSLstd450Floor;
break;
case glslang::EOpTrunc:
libCall = spv::GLSLstd450Trunc;
break;
case glslang::EOpRound:
libCall = spv::GLSLstd450Round;
break;
case glslang::EOpRoundEven:
libCall = spv::GLSLstd450RoundEven;
break;
case glslang::EOpCeil:
libCall = spv::GLSLstd450Ceil;
break;
case glslang::EOpFract:
libCall = spv::GLSLstd450Fract;
break;
case glslang::EOpIsNan:
unaryOp = spv::OpIsNan;
break;
case glslang::EOpIsInf:
unaryOp = spv::OpIsInf;
break;
case glslang::EOpIsFinite:
unaryOp = spv::OpIsFinite;
break;
case glslang::EOpFloatBitsToInt:
case glslang::EOpFloatBitsToUint:
case glslang::EOpIntBitsToFloat:
case glslang::EOpUintBitsToFloat:
case glslang::EOpDoubleBitsToInt64:
case glslang::EOpDoubleBitsToUint64:
case glslang::EOpInt64BitsToDouble:
case glslang::EOpUint64BitsToDouble:
unaryOp = spv::OpBitcast;
break;
case glslang::EOpPackSnorm2x16:
libCall = spv::GLSLstd450PackSnorm2x16;
break;
case glslang::EOpUnpackSnorm2x16:
libCall = spv::GLSLstd450UnpackSnorm2x16;
break;
case glslang::EOpPackUnorm2x16:
libCall = spv::GLSLstd450PackUnorm2x16;
break;
case glslang::EOpUnpackUnorm2x16:
libCall = spv::GLSLstd450UnpackUnorm2x16;
break;
case glslang::EOpPackHalf2x16:
libCall = spv::GLSLstd450PackHalf2x16;
break;
case glslang::EOpUnpackHalf2x16:
libCall = spv::GLSLstd450UnpackHalf2x16;
break;
case glslang::EOpPackSnorm4x8:
libCall = spv::GLSLstd450PackSnorm4x8;
break;
case glslang::EOpUnpackSnorm4x8:
libCall = spv::GLSLstd450UnpackSnorm4x8;
break;
case glslang::EOpPackUnorm4x8:
libCall = spv::GLSLstd450PackUnorm4x8;
break;
case glslang::EOpUnpackUnorm4x8:
libCall = spv::GLSLstd450UnpackUnorm4x8;
break;
case glslang::EOpPackDouble2x32:
libCall = spv::GLSLstd450PackDouble2x32;
break;
case glslang::EOpUnpackDouble2x32:
libCall = spv::GLSLstd450UnpackDouble2x32;
break;
case glslang::EOpPackInt2x32:
case glslang::EOpUnpackInt2x32:
case glslang::EOpPackUint2x32:
case glslang::EOpUnpackUint2x32:
logger->missingFunctionality("shader int64");
libCall = spv::GLSLstd450Bad; // TODO: This is a placeholder.
break;
case glslang::EOpDPdx:
unaryOp = spv::OpDPdx;
break;
case glslang::EOpDPdy:
unaryOp = spv::OpDPdy;
break;
case glslang::EOpFwidth:
unaryOp = spv::OpFwidth;
break;
case glslang::EOpDPdxFine:
builder.addCapability(spv::CapabilityDerivativeControl);
unaryOp = spv::OpDPdxFine;
break;
case glslang::EOpDPdyFine:
builder.addCapability(spv::CapabilityDerivativeControl);
unaryOp = spv::OpDPdyFine;
break;
case glslang::EOpFwidthFine:
builder.addCapability(spv::CapabilityDerivativeControl);
unaryOp = spv::OpFwidthFine;
break;
case glslang::EOpDPdxCoarse:
builder.addCapability(spv::CapabilityDerivativeControl);
unaryOp = spv::OpDPdxCoarse;
break;
case glslang::EOpDPdyCoarse:
builder.addCapability(spv::CapabilityDerivativeControl);
unaryOp = spv::OpDPdyCoarse;
break;
case glslang::EOpFwidthCoarse:
builder.addCapability(spv::CapabilityDerivativeControl);
unaryOp = spv::OpFwidthCoarse;
break;
case glslang::EOpInterpolateAtCentroid:
builder.addCapability(spv::CapabilityInterpolationFunction);
libCall = spv::GLSLstd450InterpolateAtCentroid;
break;
case glslang::EOpAny:
unaryOp = spv::OpAny;
break;
case glslang::EOpAll:
unaryOp = spv::OpAll;
break;
case glslang::EOpAbs:
if (isFloat)
libCall = spv::GLSLstd450FAbs;
else
libCall = spv::GLSLstd450SAbs;
break;
case glslang::EOpSign:
if (isFloat)
libCall = spv::GLSLstd450FSign;
else
libCall = spv::GLSLstd450SSign;
break;
case glslang::EOpAtomicCounterIncrement:
case glslang::EOpAtomicCounterDecrement:
case glslang::EOpAtomicCounter:
{
// Handle all of the atomics in one place, in createAtomicOperation()
std::vector<spv::Id> operands;
operands.push_back(operand);
return createAtomicOperation(op, precision, typeId, operands, typeProxy);
}
case glslang::EOpBitFieldReverse:
unaryOp = spv::OpBitReverse;
break;
case glslang::EOpBitCount:
unaryOp = spv::OpBitCount;
break;
case glslang::EOpFindLSB:
libCall = spv::GLSLstd450FindILsb;
break;
case glslang::EOpFindMSB:
if (isUnsigned)
libCall = spv::GLSLstd450FindUMsb;
else
libCall = spv::GLSLstd450FindSMsb;
break;
case glslang::EOpBallot:
case glslang::EOpReadFirstInvocation:
logger->missingFunctionality("shader ballot");
libCall = spv::GLSLstd450Bad;
break;
case glslang::EOpAnyInvocation:
case glslang::EOpAllInvocations:
case glslang::EOpAllInvocationsEqual:
#ifdef AMD_EXTENSIONS
case glslang::EOpMinInvocations:
case glslang::EOpMaxInvocations:
case glslang::EOpAddInvocations:
case glslang::EOpMinInvocationsNonUniform:
case glslang::EOpMaxInvocationsNonUniform:
case glslang::EOpAddInvocationsNonUniform:
#endif
return createInvocationsOperation(op, typeId, operand, typeProxy);
#ifdef AMD_EXTENSIONS
case glslang::EOpMbcnt:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_ballot);
libCall = spv::MbcntAMD;
break;
case glslang::EOpCubeFaceIndex:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_gcn_shader);
libCall = spv::CubeFaceIndexAMD;
break;
case glslang::EOpCubeFaceCoord:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_gcn_shader);
libCall = spv::CubeFaceCoordAMD;
break;
#endif
default:
return 0;
}
spv::Id id;
if (libCall >= 0) {
std::vector<spv::Id> args;
args.push_back(operand);
id = builder.createBuiltinCall(typeId, extBuiltins >= 0 ? extBuiltins : stdBuiltins, libCall, args);
} else {
id = builder.createUnaryOp(unaryOp, typeId, operand);
}
addDecoration(id, noContraction);
return builder.setPrecision(id, precision);
}
// Create a unary operation on a matrix
spv::Id TGlslangToSpvTraverser::createUnaryMatrixOperation(spv::Op op, spv::Decoration precision, spv::Decoration noContraction, spv::Id typeId, spv::Id operand, glslang::TBasicType /* typeProxy */)
{
// Handle unary operations vector by vector.
// The result type is the same type as the original type.
// The algorithm is to:
// - break the matrix into vectors
// - apply the operation to each vector
// - make a matrix out the vector results
// get the types sorted out
int numCols = builder.getNumColumns(operand);
int numRows = builder.getNumRows(operand);
spv::Id srcVecType = builder.makeVectorType(builder.getScalarTypeId(builder.getTypeId(operand)), numRows);
spv::Id destVecType = builder.makeVectorType(builder.getScalarTypeId(typeId), numRows);
std::vector<spv::Id> results;
// do each vector op
for (int c = 0; c < numCols; ++c) {
std::vector<unsigned int> indexes;
indexes.push_back(c);
spv::Id srcVec = builder.createCompositeExtract(operand, srcVecType, indexes);
spv::Id destVec = builder.createUnaryOp(op, destVecType, srcVec);
addDecoration(destVec, noContraction);
results.push_back(builder.setPrecision(destVec, precision));
}
// put the pieces together
return builder.setPrecision(builder.createCompositeConstruct(typeId, results), precision);
}
spv::Id TGlslangToSpvTraverser::createConversion(glslang::TOperator op, spv::Decoration precision, spv::Decoration noContraction, spv::Id destType, spv::Id operand, glslang::TBasicType typeProxy)
{
spv::Op convOp = spv::OpNop;
spv::Id zero = 0;
spv::Id one = 0;
spv::Id type = 0;
int vectorSize = builder.isVectorType(destType) ? builder.getNumTypeComponents(destType) : 0;
switch (op) {
case glslang::EOpConvIntToBool:
case glslang::EOpConvUintToBool:
case glslang::EOpConvInt64ToBool:
case glslang::EOpConvUint64ToBool:
zero = (op == glslang::EOpConvInt64ToBool ||
op == glslang::EOpConvUint64ToBool) ? builder.makeUint64Constant(0) : builder.makeUintConstant(0);
zero = makeSmearedConstant(zero, vectorSize);
return builder.createBinOp(spv::OpINotEqual, destType, operand, zero);
case glslang::EOpConvFloatToBool:
zero = builder.makeFloatConstant(0.0F);
zero = makeSmearedConstant(zero, vectorSize);
return builder.createBinOp(spv::OpFOrdNotEqual, destType, operand, zero);
case glslang::EOpConvDoubleToBool:
zero = builder.makeDoubleConstant(0.0);
zero = makeSmearedConstant(zero, vectorSize);
return builder.createBinOp(spv::OpFOrdNotEqual, destType, operand, zero);
case glslang::EOpConvBoolToFloat:
convOp = spv::OpSelect;
zero = builder.makeFloatConstant(0.0);
one = builder.makeFloatConstant(1.0);
break;
case glslang::EOpConvBoolToDouble:
convOp = spv::OpSelect;
zero = builder.makeDoubleConstant(0.0);
one = builder.makeDoubleConstant(1.0);
break;
case glslang::EOpConvBoolToInt:
case glslang::EOpConvBoolToInt64:
zero = (op == glslang::EOpConvBoolToInt64) ? builder.makeInt64Constant(0) : builder.makeIntConstant(0);
one = (op == glslang::EOpConvBoolToInt64) ? builder.makeInt64Constant(1) : builder.makeIntConstant(1);
convOp = spv::OpSelect;
break;
case glslang::EOpConvBoolToUint:
case glslang::EOpConvBoolToUint64:
zero = (op == glslang::EOpConvBoolToUint64) ? builder.makeUint64Constant(0) : builder.makeUintConstant(0);
one = (op == glslang::EOpConvBoolToUint64) ? builder.makeUint64Constant(1) : builder.makeUintConstant(1);
convOp = spv::OpSelect;
break;
case glslang::EOpConvIntToFloat:
case glslang::EOpConvIntToDouble:
case glslang::EOpConvInt64ToFloat:
case glslang::EOpConvInt64ToDouble:
convOp = spv::OpConvertSToF;
break;
case glslang::EOpConvUintToFloat:
case glslang::EOpConvUintToDouble:
case glslang::EOpConvUint64ToFloat:
case glslang::EOpConvUint64ToDouble:
convOp = spv::OpConvertUToF;
break;
case glslang::EOpConvDoubleToFloat:
case glslang::EOpConvFloatToDouble:
convOp = spv::OpFConvert;
if (builder.isMatrixType(destType))
return createUnaryMatrixOperation(convOp, precision, noContraction, destType, operand, typeProxy);
break;
case glslang::EOpConvFloatToInt:
case glslang::EOpConvDoubleToInt:
case glslang::EOpConvFloatToInt64:
case glslang::EOpConvDoubleToInt64:
convOp = spv::OpConvertFToS;
break;
case glslang::EOpConvUintToInt:
case glslang::EOpConvIntToUint:
case glslang::EOpConvUint64ToInt64:
case glslang::EOpConvInt64ToUint64:
if (builder.isInSpecConstCodeGenMode()) {
// Build zero scalar or vector for OpIAdd.
zero = (op == glslang::EOpConvUintToInt64 ||
op == glslang::EOpConvIntToUint64) ? builder.makeUint64Constant(0) : builder.makeUintConstant(0);
zero = makeSmearedConstant(zero, vectorSize);
// Use OpIAdd, instead of OpBitcast to do the conversion when
// generating for OpSpecConstantOp instruction.
return builder.createBinOp(spv::OpIAdd, destType, operand, zero);
}
// For normal run-time conversion instruction, use OpBitcast.
convOp = spv::OpBitcast;
break;
case glslang::EOpConvFloatToUint:
case glslang::EOpConvDoubleToUint:
case glslang::EOpConvFloatToUint64:
case glslang::EOpConvDoubleToUint64:
convOp = spv::OpConvertFToU;
break;
case glslang::EOpConvIntToInt64:
case glslang::EOpConvInt64ToInt:
convOp = spv::OpSConvert;
break;
case glslang::EOpConvUintToUint64:
case glslang::EOpConvUint64ToUint:
convOp = spv::OpUConvert;
break;
case glslang::EOpConvIntToUint64:
case glslang::EOpConvInt64ToUint:
case glslang::EOpConvUint64ToInt:
case glslang::EOpConvUintToInt64:
// OpSConvert/OpUConvert + OpBitCast
switch (op) {
case glslang::EOpConvIntToUint64:
convOp = spv::OpSConvert;
type = builder.makeIntType(64);
break;
case glslang::EOpConvInt64ToUint:
convOp = spv::OpSConvert;
type = builder.makeIntType(32);
break;
case glslang::EOpConvUint64ToInt:
convOp = spv::OpUConvert;
type = builder.makeUintType(32);
break;
case glslang::EOpConvUintToInt64:
convOp = spv::OpUConvert;
type = builder.makeUintType(64);
break;
default:
assert(0);
break;
}
if (vectorSize > 0)
type = builder.makeVectorType(type, vectorSize);
operand = builder.createUnaryOp(convOp, type, operand);
if (builder.isInSpecConstCodeGenMode()) {
// Build zero scalar or vector for OpIAdd.
zero = (op == glslang::EOpConvIntToUint64 ||
op == glslang::EOpConvUintToInt64) ? builder.makeUint64Constant(0) : builder.makeUintConstant(0);
zero = makeSmearedConstant(zero, vectorSize);
// Use OpIAdd, instead of OpBitcast to do the conversion when
// generating for OpSpecConstantOp instruction.
return builder.createBinOp(spv::OpIAdd, destType, operand, zero);
}
// For normal run-time conversion instruction, use OpBitcast.
convOp = spv::OpBitcast;
break;
default:
break;
}
spv::Id result = 0;
if (convOp == spv::OpNop)
return result;
if (convOp == spv::OpSelect) {
zero = makeSmearedConstant(zero, vectorSize);
one = makeSmearedConstant(one, vectorSize);
result = builder.createTriOp(convOp, destType, operand, one, zero);
} else
result = builder.createUnaryOp(convOp, destType, operand);
return builder.setPrecision(result, precision);
}
spv::Id TGlslangToSpvTraverser::makeSmearedConstant(spv::Id constant, int vectorSize)
{
if (vectorSize == 0)
return constant;
spv::Id vectorTypeId = builder.makeVectorType(builder.getTypeId(constant), vectorSize);
std::vector<spv::Id> components;
for (int c = 0; c < vectorSize; ++c)
components.push_back(constant);
return builder.makeCompositeConstant(vectorTypeId, components);
}
// For glslang ops that map to SPV atomic opCodes
spv::Id TGlslangToSpvTraverser::createAtomicOperation(glslang::TOperator op, spv::Decoration /*precision*/, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy)
{
spv::Op opCode = spv::OpNop;
switch (op) {
case glslang::EOpAtomicAdd:
case glslang::EOpImageAtomicAdd:
opCode = spv::OpAtomicIAdd;
break;
case glslang::EOpAtomicMin:
case glslang::EOpImageAtomicMin:
opCode = typeProxy == glslang::EbtUint ? spv::OpAtomicUMin : spv::OpAtomicSMin;
break;
case glslang::EOpAtomicMax:
case glslang::EOpImageAtomicMax:
opCode = typeProxy == glslang::EbtUint ? spv::OpAtomicUMax : spv::OpAtomicSMax;
break;
case glslang::EOpAtomicAnd:
case glslang::EOpImageAtomicAnd:
opCode = spv::OpAtomicAnd;
break;
case glslang::EOpAtomicOr:
case glslang::EOpImageAtomicOr:
opCode = spv::OpAtomicOr;
break;
case glslang::EOpAtomicXor:
case glslang::EOpImageAtomicXor:
opCode = spv::OpAtomicXor;
break;
case glslang::EOpAtomicExchange:
case glslang::EOpImageAtomicExchange:
opCode = spv::OpAtomicExchange;
break;
case glslang::EOpAtomicCompSwap:
case glslang::EOpImageAtomicCompSwap:
opCode = spv::OpAtomicCompareExchange;
break;
case glslang::EOpAtomicCounterIncrement:
opCode = spv::OpAtomicIIncrement;
break;
case glslang::EOpAtomicCounterDecrement:
opCode = spv::OpAtomicIDecrement;
break;
case glslang::EOpAtomicCounter:
opCode = spv::OpAtomicLoad;
break;
default:
assert(0);
break;
}
// Sort out the operands
// - mapping from glslang -> SPV
// - there are extra SPV operands with no glslang source
// - compare-exchange swaps the value and comparator
// - compare-exchange has an extra memory semantics
std::vector<spv::Id> spvAtomicOperands; // hold the spv operands
auto opIt = operands.begin(); // walk the glslang operands
spvAtomicOperands.push_back(*(opIt++));
spvAtomicOperands.push_back(builder.makeUintConstant(spv::ScopeDevice)); // TBD: what is the correct scope?
spvAtomicOperands.push_back(builder.makeUintConstant(spv::MemorySemanticsMaskNone)); // TBD: what are the correct memory semantics?
if (opCode == spv::OpAtomicCompareExchange) {
// There are 2 memory semantics for compare-exchange. And the operand order of "comparator" and "new value" in GLSL
// differs from that in SPIR-V. Hence, special processing is required.
spvAtomicOperands.push_back(builder.makeUintConstant(spv::MemorySemanticsMaskNone));
spvAtomicOperands.push_back(*(opIt + 1));
spvAtomicOperands.push_back(*opIt);
opIt += 2;
}
// Add the rest of the operands, skipping any that were dealt with above.
for (; opIt != operands.end(); ++opIt)
spvAtomicOperands.push_back(*opIt);
return builder.createOp(opCode, typeId, spvAtomicOperands);
}
// Create group invocation operations.
spv::Id TGlslangToSpvTraverser::createInvocationsOperation(glslang::TOperator op, spv::Id typeId, spv::Id operand, glslang::TBasicType typeProxy)
{
bool isUnsigned = typeProxy == glslang::EbtUint || typeProxy == glslang::EbtUint64;
bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble;
builder.addCapability(spv::CapabilityGroups);
std::vector<spv::Id> operands;
operands.push_back(builder.makeUintConstant(spv::ScopeSubgroup));
#ifdef AMD_EXTENSIONS
if (op == glslang::EOpMinInvocations || op == glslang::EOpMaxInvocations || op == glslang::EOpAddInvocations ||
op == glslang::EOpMinInvocationsNonUniform || op == glslang::EOpMaxInvocationsNonUniform || op == glslang::EOpAddInvocationsNonUniform)
operands.push_back(spv::GroupOperationReduce);
#endif
operands.push_back(operand);
switch (op) {
case glslang::EOpAnyInvocation:
case glslang::EOpAllInvocations:
return builder.createOp(op == glslang::EOpAnyInvocation ? spv::OpGroupAny : spv::OpGroupAll, typeId, operands);
case glslang::EOpAllInvocationsEqual:
{
spv::Id groupAll = builder.createOp(spv::OpGroupAll, typeId, operands);
spv::Id groupAny = builder.createOp(spv::OpGroupAny, typeId, operands);
return builder.createBinOp(spv::OpLogicalOr, typeId, groupAll,
builder.createUnaryOp(spv::OpLogicalNot, typeId, groupAny));
}
#ifdef AMD_EXTENSIONS
case glslang::EOpMinInvocations:
case glslang::EOpMaxInvocations:
case glslang::EOpAddInvocations:
{
spv::Op spvOp = spv::OpNop;
if (op == glslang::EOpMinInvocations) {
if (isFloat)
spvOp = spv::OpGroupFMin;
else {
if (isUnsigned)
spvOp = spv::OpGroupUMin;
else
spvOp = spv::OpGroupSMin;
}
} else if (op == glslang::EOpMaxInvocations) {
if (isFloat)
spvOp = spv::OpGroupFMax;
else {
if (isUnsigned)
spvOp = spv::OpGroupUMax;
else
spvOp = spv::OpGroupSMax;
}
} else {
if (isFloat)
spvOp = spv::OpGroupFAdd;
else
spvOp = spv::OpGroupIAdd;
}
if (builder.isVectorType(typeId))
return CreateInvocationsVectorOperation(spvOp, typeId, operand);
else
return builder.createOp(spvOp, typeId, operands);
}
case glslang::EOpMinInvocationsNonUniform:
case glslang::EOpMaxInvocationsNonUniform:
case glslang::EOpAddInvocationsNonUniform:
{
spv::Op spvOp = spv::OpNop;
if (op == glslang::EOpMinInvocationsNonUniform) {
if (isFloat)
spvOp = spv::OpGroupFMinNonUniformAMD;
else {
if (isUnsigned)
spvOp = spv::OpGroupUMinNonUniformAMD;
else
spvOp = spv::OpGroupSMinNonUniformAMD;
}
}
else if (op == glslang::EOpMaxInvocationsNonUniform) {
if (isFloat)
spvOp = spv::OpGroupFMaxNonUniformAMD;
else {
if (isUnsigned)
spvOp = spv::OpGroupUMaxNonUniformAMD;
else
spvOp = spv::OpGroupSMaxNonUniformAMD;
}
}
else {
if (isFloat)
spvOp = spv::OpGroupFAddNonUniformAMD;
else
spvOp = spv::OpGroupIAddNonUniformAMD;
}
if (builder.isVectorType(typeId))
return CreateInvocationsVectorOperation(spvOp, typeId, operand);
else
return builder.createOp(spvOp, typeId, operands);
}
#endif
default:
logger->missingFunctionality("invocation operation");
return spv::NoResult;
}
}
#ifdef AMD_EXTENSIONS
// Create group invocation operations on a vector
spv::Id TGlslangToSpvTraverser::CreateInvocationsVectorOperation(spv::Op op, spv::Id typeId, spv::Id operand)
{
assert(op == spv::OpGroupFMin || op == spv::OpGroupUMin || op == spv::OpGroupSMin ||
op == spv::OpGroupFMax || op == spv::OpGroupUMax || op == spv::OpGroupSMax ||
op == spv::OpGroupFAdd || op == spv::OpGroupIAdd ||
op == spv::OpGroupFMinNonUniformAMD || op == spv::OpGroupUMinNonUniformAMD || op == spv::OpGroupSMinNonUniformAMD ||
op == spv::OpGroupFMaxNonUniformAMD || op == spv::OpGroupUMaxNonUniformAMD || op == spv::OpGroupSMaxNonUniformAMD ||
op == spv::OpGroupFAddNonUniformAMD || op == spv::OpGroupIAddNonUniformAMD);
// Handle group invocation operations scalar by scalar.
// The result type is the same type as the original type.
// The algorithm is to:
// - break the vector into scalars
// - apply the operation to each scalar
// - make a vector out the scalar results
// get the types sorted out
int numComponents = builder.getNumComponents(operand);
spv::Id scalarType = builder.getScalarTypeId(builder.getTypeId(operand));
std::vector<spv::Id> results;
// do each scalar op
for (int comp = 0; comp < numComponents; ++comp) {
std::vector<unsigned int> indexes;
indexes.push_back(comp);
spv::Id scalar = builder.createCompositeExtract(operand, scalarType, indexes);
std::vector<spv::Id> operands;
operands.push_back(builder.makeUintConstant(spv::ScopeSubgroup));
operands.push_back(spv::GroupOperationReduce);
operands.push_back(scalar);
results.push_back(builder.createOp(op, scalarType, operands));
}
// put the pieces together
return builder.createCompositeConstruct(typeId, results);
}
#endif
spv::Id TGlslangToSpvTraverser::createMiscOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId, std::vector<spv::Id>& operands, glslang::TBasicType typeProxy)
{
bool isUnsigned = typeProxy == glslang::EbtUint || typeProxy == glslang::EbtUint64;
bool isFloat = typeProxy == glslang::EbtFloat || typeProxy == glslang::EbtDouble;
spv::Op opCode = spv::OpNop;
int extBuiltins = -1;
int libCall = -1;
size_t consumedOperands = operands.size();
spv::Id typeId0 = 0;
if (consumedOperands > 0)
typeId0 = builder.getTypeId(operands[0]);
spv::Id frexpIntType = 0;
switch (op) {
case glslang::EOpMin:
if (isFloat)
libCall = spv::GLSLstd450FMin;
else if (isUnsigned)
libCall = spv::GLSLstd450UMin;
else
libCall = spv::GLSLstd450SMin;
builder.promoteScalar(precision, operands.front(), operands.back());
break;
case glslang::EOpModf:
libCall = spv::GLSLstd450Modf;
break;
case glslang::EOpMax:
if (isFloat)
libCall = spv::GLSLstd450FMax;
else if (isUnsigned)
libCall = spv::GLSLstd450UMax;
else
libCall = spv::GLSLstd450SMax;
builder.promoteScalar(precision, operands.front(), operands.back());
break;
case glslang::EOpPow:
libCall = spv::GLSLstd450Pow;
break;
case glslang::EOpDot:
opCode = spv::OpDot;
break;
case glslang::EOpAtan:
libCall = spv::GLSLstd450Atan2;
break;
case glslang::EOpClamp:
if (isFloat)
libCall = spv::GLSLstd450FClamp;
else if (isUnsigned)
libCall = spv::GLSLstd450UClamp;
else
libCall = spv::GLSLstd450SClamp;
builder.promoteScalar(precision, operands.front(), operands[1]);
builder.promoteScalar(precision, operands.front(), operands[2]);
break;
case glslang::EOpMix:
if (! builder.isBoolType(builder.getScalarTypeId(builder.getTypeId(operands.back())))) {
assert(isFloat);
libCall = spv::GLSLstd450FMix;
} else {
opCode = spv::OpSelect;
std::swap(operands.front(), operands.back());
}
builder.promoteScalar(precision, operands.front(), operands.back());
break;
case glslang::EOpStep:
libCall = spv::GLSLstd450Step;
builder.promoteScalar(precision, operands.front(), operands.back());
break;
case glslang::EOpSmoothStep:
libCall = spv::GLSLstd450SmoothStep;
builder.promoteScalar(precision, operands[0], operands[2]);
builder.promoteScalar(precision, operands[1], operands[2]);
break;
case glslang::EOpDistance:
libCall = spv::GLSLstd450Distance;
break;
case glslang::EOpCross:
libCall = spv::GLSLstd450Cross;
break;
case glslang::EOpFaceForward:
libCall = spv::GLSLstd450FaceForward;
break;
case glslang::EOpReflect:
libCall = spv::GLSLstd450Reflect;
break;
case glslang::EOpRefract:
libCall = spv::GLSLstd450Refract;
break;
case glslang::EOpInterpolateAtSample:
builder.addCapability(spv::CapabilityInterpolationFunction);
libCall = spv::GLSLstd450InterpolateAtSample;
break;
case glslang::EOpInterpolateAtOffset:
builder.addCapability(spv::CapabilityInterpolationFunction);
libCall = spv::GLSLstd450InterpolateAtOffset;
break;
case glslang::EOpAddCarry:
opCode = spv::OpIAddCarry;
typeId = builder.makeStructResultType(typeId0, typeId0);
consumedOperands = 2;
break;
case glslang::EOpSubBorrow:
opCode = spv::OpISubBorrow;
typeId = builder.makeStructResultType(typeId0, typeId0);
consumedOperands = 2;
break;
case glslang::EOpUMulExtended:
opCode = spv::OpUMulExtended;
typeId = builder.makeStructResultType(typeId0, typeId0);
consumedOperands = 2;
break;
case glslang::EOpIMulExtended:
opCode = spv::OpSMulExtended;
typeId = builder.makeStructResultType(typeId0, typeId0);
consumedOperands = 2;
break;
case glslang::EOpBitfieldExtract:
if (isUnsigned)
opCode = spv::OpBitFieldUExtract;
else
opCode = spv::OpBitFieldSExtract;
break;
case glslang::EOpBitfieldInsert:
opCode = spv::OpBitFieldInsert;
break;
case glslang::EOpFma:
libCall = spv::GLSLstd450Fma;
break;
case glslang::EOpFrexp:
libCall = spv::GLSLstd450FrexpStruct;
if (builder.getNumComponents(operands[0]) == 1)
frexpIntType = builder.makeIntegerType(32, true);
else
frexpIntType = builder.makeVectorType(builder.makeIntegerType(32, true), builder.getNumComponents(operands[0]));
typeId = builder.makeStructResultType(typeId0, frexpIntType);
consumedOperands = 1;
break;
case glslang::EOpLdexp:
libCall = spv::GLSLstd450Ldexp;
break;
case glslang::EOpReadInvocation:
logger->missingFunctionality("shader ballot");
libCall = spv::GLSLstd450Bad;
break;
#ifdef AMD_EXTENSIONS
case glslang::EOpSwizzleInvocations:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_ballot);
libCall = spv::SwizzleInvocationsAMD;
break;
case glslang::EOpSwizzleInvocationsMasked:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_ballot);
libCall = spv::SwizzleInvocationsMaskedAMD;
break;
case glslang::EOpWriteInvocation:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_ballot);
libCall = spv::WriteInvocationAMD;
break;
case glslang::EOpMin3:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_trinary_minmax);
if (isFloat)
libCall = spv::FMin3AMD;
else {
if (isUnsigned)
libCall = spv::UMin3AMD;
else
libCall = spv::SMin3AMD;
}
break;
case glslang::EOpMax3:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_trinary_minmax);
if (isFloat)
libCall = spv::FMax3AMD;
else {
if (isUnsigned)
libCall = spv::UMax3AMD;
else
libCall = spv::SMax3AMD;
}
break;
case glslang::EOpMid3:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_trinary_minmax);
if (isFloat)
libCall = spv::FMid3AMD;
else {
if (isUnsigned)
libCall = spv::UMid3AMD;
else
libCall = spv::SMid3AMD;
}
break;
case glslang::EOpInterpolateAtVertex:
extBuiltins = getExtBuiltins(spv::E_SPV_AMD_shader_explicit_vertex_parameter);
libCall = spv::InterpolateAtVertexAMD;
break;
#endif
default:
return 0;
}
spv::Id id = 0;
if (libCall >= 0) {
// Use an extended instruction from the standard library.
// Construct the call arguments, without modifying the original operands vector.
// We might need the remaining arguments, e.g. in the EOpFrexp case.
std::vector<spv::Id> callArguments(operands.begin(), operands.begin() + consumedOperands);
id = builder.createBuiltinCall(typeId, extBuiltins >= 0 ? extBuiltins : stdBuiltins, libCall, callArguments);
} else {
switch (consumedOperands) {
case 0:
// should all be handled by visitAggregate and createNoArgOperation
assert(0);
return 0;
case 1:
// should all be handled by createUnaryOperation
assert(0);
return 0;
case 2:
id = builder.createBinOp(opCode, typeId, operands[0], operands[1]);
break;
default:
// anything 3 or over doesn't have l-value operands, so all should be consumed
assert(consumedOperands == operands.size());
id = builder.createOp(opCode, typeId, operands);
break;
}
}
// Decode the return types that were structures
switch (op) {
case glslang::EOpAddCarry:
case glslang::EOpSubBorrow:
builder.createStore(builder.createCompositeExtract(id, typeId0, 1), operands[2]);
id = builder.createCompositeExtract(id, typeId0, 0);
break;
case glslang::EOpUMulExtended:
case glslang::EOpIMulExtended:
builder.createStore(builder.createCompositeExtract(id, typeId0, 0), operands[3]);
builder.createStore(builder.createCompositeExtract(id, typeId0, 1), operands[2]);
break;
case glslang::EOpFrexp:
assert(operands.size() == 2);
builder.createStore(builder.createCompositeExtract(id, frexpIntType, 1), operands[1]);
id = builder.createCompositeExtract(id, typeId0, 0);
break;
default:
break;
}
return builder.setPrecision(id, precision);
}
// Intrinsics with no arguments (or no return value, and no precision).
spv::Id TGlslangToSpvTraverser::createNoArgOperation(glslang::TOperator op, spv::Decoration precision, spv::Id typeId)
{
// TODO: get the barrier operands correct
switch (op) {
case glslang::EOpEmitVertex:
builder.createNoResultOp(spv::OpEmitVertex);
return 0;
case glslang::EOpEndPrimitive:
builder.createNoResultOp(spv::OpEndPrimitive);
return 0;
case glslang::EOpBarrier:
builder.createControlBarrier(spv::ScopeDevice, spv::ScopeDevice, spv::MemorySemanticsMaskNone);
return 0;
case glslang::EOpMemoryBarrier:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAllMemory);
return 0;
case glslang::EOpMemoryBarrierAtomicCounter:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsAtomicCounterMemoryMask);
return 0;
case glslang::EOpMemoryBarrierBuffer:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsUniformMemoryMask);
return 0;
case glslang::EOpMemoryBarrierImage:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsImageMemoryMask);
return 0;
case glslang::EOpMemoryBarrierShared:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsWorkgroupMemoryMask);
return 0;
case glslang::EOpGroupMemoryBarrier:
builder.createMemoryBarrier(spv::ScopeDevice, spv::MemorySemanticsCrossWorkgroupMemoryMask);
return 0;
case glslang::EOpAllMemoryBarrierWithGroupSync:
// Control barrier with non-"None" semantic is also a memory barrier.
builder.createControlBarrier(spv::ScopeDevice, spv::ScopeDevice, spv::MemorySemanticsAllMemory);
return 0;
case glslang::EOpGroupMemoryBarrierWithGroupSync:
// Control barrier with non-"None" semantic is also a memory barrier.
builder.createControlBarrier(spv::ScopeDevice, spv::ScopeDevice, spv::MemorySemanticsCrossWorkgroupMemoryMask);
return 0;
case glslang::EOpWorkgroupMemoryBarrier:
builder.createMemoryBarrier(spv::ScopeWorkgroup, spv::MemorySemanticsWorkgroupMemoryMask);
return 0;
case glslang::EOpWorkgroupMemoryBarrierWithGroupSync:
// Control barrier with non-"None" semantic is also a memory barrier.
builder.createControlBarrier(spv::ScopeWorkgroup, spv::ScopeWorkgroup, spv::MemorySemanticsWorkgroupMemoryMask);
return 0;
#ifdef AMD_EXTENSIONS
case glslang::EOpTime:
{
std::vector<spv::Id> args; // Dummy arguments
spv::Id id = builder.createBuiltinCall(typeId, getExtBuiltins(spv::E_SPV_AMD_gcn_shader), spv::TimeAMD, args);
return builder.setPrecision(id, precision);
}
#endif
default:
logger->missingFunctionality("unknown operation with no arguments");
return 0;
}
}
spv::Id TGlslangToSpvTraverser::getSymbolId(const glslang::TIntermSymbol* symbol)
{
auto iter = symbolValues.find(symbol->getId());
spv::Id id;
if (symbolValues.end() != iter) {
id = iter->second;
return id;
}
// it was not found, create it
id = createSpvVariable(symbol);
symbolValues[symbol->getId()] = id;
if (symbol->getBasicType() != glslang::EbtBlock) {
addDecoration(id, TranslatePrecisionDecoration(symbol->getType()));
addDecoration(id, TranslateInterpolationDecoration(symbol->getType().getQualifier()));
addDecoration(id, TranslateAuxiliaryStorageDecoration(symbol->getType().getQualifier()));
if (symbol->getType().getQualifier().hasSpecConstantId())
addDecoration(id, spv::DecorationSpecId, symbol->getType().getQualifier().layoutSpecConstantId);
if (symbol->getQualifier().hasIndex())
builder.addDecoration(id, spv::DecorationIndex, symbol->getQualifier().layoutIndex);
if (symbol->getQualifier().hasComponent())
builder.addDecoration(id, spv::DecorationComponent, symbol->getQualifier().layoutComponent);
if (glslangIntermediate->getXfbMode()) {
builder.addCapability(spv::CapabilityTransformFeedback);
if (symbol->getQualifier().hasXfbStride())
builder.addDecoration(id, spv::DecorationXfbStride, symbol->getQualifier().layoutXfbStride);
if (symbol->getQualifier().hasXfbBuffer())
builder.addDecoration(id, spv::DecorationXfbBuffer, symbol->getQualifier().layoutXfbBuffer);
if (symbol->getQualifier().hasXfbOffset())
builder.addDecoration(id, spv::DecorationOffset, symbol->getQualifier().layoutXfbOffset);
}
// atomic counters use this:
if (symbol->getQualifier().hasOffset())
builder.addDecoration(id, spv::DecorationOffset, symbol->getQualifier().layoutOffset);
}
if (symbol->getQualifier().hasLocation())
builder.addDecoration(id, spv::DecorationLocation, symbol->getQualifier().layoutLocation);
addDecoration(id, TranslateInvariantDecoration(symbol->getType().getQualifier()));
if (symbol->getQualifier().hasStream() && glslangIntermediate->isMultiStream()) {
builder.addCapability(spv::CapabilityGeometryStreams);
builder.addDecoration(id, spv::DecorationStream, symbol->getQualifier().layoutStream);
}
if (symbol->getQualifier().hasSet())
builder.addDecoration(id, spv::DecorationDescriptorSet, symbol->getQualifier().layoutSet);
else if (IsDescriptorResource(symbol->getType())) {
// default to 0
builder.addDecoration(id, spv::DecorationDescriptorSet, 0);
}
if (symbol->getQualifier().hasBinding())
builder.addDecoration(id, spv::DecorationBinding, symbol->getQualifier().layoutBinding);
if (symbol->getQualifier().hasAttachment())
builder.addDecoration(id, spv::DecorationInputAttachmentIndex, symbol->getQualifier().layoutAttachment);
if (glslangIntermediate->getXfbMode()) {
builder.addCapability(spv::CapabilityTransformFeedback);
if (symbol->getQualifier().hasXfbStride())
builder.addDecoration(id, spv::DecorationXfbStride, symbol->getQualifier().layoutXfbStride);
if (symbol->getQualifier().hasXfbBuffer())
builder.addDecoration(id, spv::DecorationXfbBuffer, symbol->getQualifier().layoutXfbBuffer);
}
if (symbol->getType().isImage()) {
std::vector<spv::Decoration> memory;
TranslateMemoryDecoration(symbol->getType().getQualifier(), memory);
for (unsigned int i = 0; i < memory.size(); ++i)
addDecoration(id, memory[i]);
}
// built-in variable decorations
spv::BuiltIn builtIn = TranslateBuiltInDecoration(symbol->getQualifier().builtIn, false);
if (builtIn != spv::BuiltInMax)
addDecoration(id, spv::DecorationBuiltIn, (int)builtIn);
return id;
}
// If 'dec' is valid, add no-operand decoration to an object
void TGlslangToSpvTraverser::addDecoration(spv::Id id, spv::Decoration dec)
{
if (dec != spv::DecorationMax)
builder.addDecoration(id, dec);
}
// If 'dec' is valid, add a one-operand decoration to an object
void TGlslangToSpvTraverser::addDecoration(spv::Id id, spv::Decoration dec, unsigned value)
{
if (dec != spv::DecorationMax)
builder.addDecoration(id, dec, value);
}
// If 'dec' is valid, add a no-operand decoration to a struct member
void TGlslangToSpvTraverser::addMemberDecoration(spv::Id id, int member, spv::Decoration dec)
{
if (dec != spv::DecorationMax)
builder.addMemberDecoration(id, (unsigned)member, dec);
}
// If 'dec' is valid, add a one-operand decoration to a struct member
void TGlslangToSpvTraverser::addMemberDecoration(spv::Id id, int member, spv::Decoration dec, unsigned value)
{
if (dec != spv::DecorationMax)
builder.addMemberDecoration(id, (unsigned)member, dec, value);
}
// Make a full tree of instructions to build a SPIR-V specialization constant,
// or regular constant if possible.
//
// TBD: this is not yet done, nor verified to be the best design, it does do the leaf symbols though
//
// Recursively walk the nodes. The nodes form a tree whose leaves are
// regular constants, which themselves are trees that createSpvConstant()
// recursively walks. So, this function walks the "top" of the tree:
// - emit specialization constant-building instructions for specConstant
// - when running into a non-spec-constant, switch to createSpvConstant()
spv::Id TGlslangToSpvTraverser::createSpvConstant(const glslang::TIntermTyped& node)
{
assert(node.getQualifier().isConstant());
// Handle front-end constants first (non-specialization constants).
if (! node.getQualifier().specConstant) {
// hand off to the non-spec-constant path
assert(node.getAsConstantUnion() != nullptr || node.getAsSymbolNode() != nullptr);
int nextConst = 0;
return createSpvConstantFromConstUnionArray(node.getType(), node.getAsConstantUnion() ? node.getAsConstantUnion()->getConstArray() : node.getAsSymbolNode()->getConstArray(),
nextConst, false);
}
// We now know we have a specialization constant to build
// gl_WorkGroupSize is a special case until the front-end handles hierarchical specialization constants,
// even then, it's specialization ids are handled by special case syntax in GLSL: layout(local_size_x = ...
if (node.getType().getQualifier().builtIn == glslang::EbvWorkGroupSize) {
std::vector<spv::Id> dimConstId;
for (int dim = 0; dim < 3; ++dim) {
bool specConst = (glslangIntermediate->getLocalSizeSpecId(dim) != glslang::TQualifier::layoutNotSet);
dimConstId.push_back(builder.makeUintConstant(glslangIntermediate->getLocalSize(dim), specConst));
if (specConst)
addDecoration(dimConstId.back(), spv::DecorationSpecId, glslangIntermediate->getLocalSizeSpecId(dim));
}
return builder.makeCompositeConstant(builder.makeVectorType(builder.makeUintType(32), 3), dimConstId, true);
}
// An AST node labelled as specialization constant should be a symbol node.
// Its initializer should either be a sub tree with constant nodes, or a constant union array.
if (auto* sn = node.getAsSymbolNode()) {
if (auto* sub_tree = sn->getConstSubtree()) {
// Traverse the constant constructor sub tree like generating normal run-time instructions.
// During the AST traversal, if the node is marked as 'specConstant', SpecConstantOpModeGuard
// will set the builder into spec constant op instruction generating mode.
sub_tree->traverse(this);
return accessChainLoad(sub_tree->getType());
} else if (auto* const_union_array = &sn->getConstArray()){
int nextConst = 0;
return createSpvConstantFromConstUnionArray(sn->getType(), *const_union_array, nextConst, true);
}
}
// Neither a front-end constant node, nor a specialization constant node with constant union array or
// constant sub tree as initializer.
logger->missingFunctionality("Neither a front-end constant nor a spec constant.");
exit(1);
return spv::NoResult;
}
// Use 'consts' as the flattened glslang source of scalar constants to recursively
// build the aggregate SPIR-V constant.
//
// If there are not enough elements present in 'consts', 0 will be substituted;
// an empty 'consts' can be used to create a fully zeroed SPIR-V constant.
//
spv::Id TGlslangToSpvTraverser::createSpvConstantFromConstUnionArray(const glslang::TType& glslangType, const glslang::TConstUnionArray& consts, int& nextConst, bool specConstant)
{
// vector of constants for SPIR-V
std::vector<spv::Id> spvConsts;
// Type is used for struct and array constants
spv::Id typeId = convertGlslangToSpvType(glslangType);
if (glslangType.isArray()) {
glslang::TType elementType(glslangType, 0);
for (int i = 0; i < glslangType.getOuterArraySize(); ++i)
spvConsts.push_back(createSpvConstantFromConstUnionArray(elementType, consts, nextConst, false));
} else if (glslangType.isMatrix()) {
glslang::TType vectorType(glslangType, 0);
for (int col = 0; col < glslangType.getMatrixCols(); ++col)
spvConsts.push_back(createSpvConstantFromConstUnionArray(vectorType, consts, nextConst, false));
} else if (glslangType.getStruct()) {
glslang::TVector<glslang::TTypeLoc>::const_iterator iter;
for (iter = glslangType.getStruct()->begin(); iter != glslangType.getStruct()->end(); ++iter)
spvConsts.push_back(createSpvConstantFromConstUnionArray(*iter->type, consts, nextConst, false));
} else if (glslangType.getVectorSize() > 1) {
for (unsigned int i = 0; i < (unsigned int)glslangType.getVectorSize(); ++i) {
bool zero = nextConst >= consts.size();
switch (glslangType.getBasicType()) {
case glslang::EbtInt:
spvConsts.push_back(builder.makeIntConstant(zero ? 0 : consts[nextConst].getIConst()));
break;
case glslang::EbtUint:
spvConsts.push_back(builder.makeUintConstant(zero ? 0 : consts[nextConst].getUConst()));
break;
case glslang::EbtInt64:
spvConsts.push_back(builder.makeInt64Constant(zero ? 0 : consts[nextConst].getI64Const()));
break;
case glslang::EbtUint64:
spvConsts.push_back(builder.makeUint64Constant(zero ? 0 : consts[nextConst].getU64Const()));
break;
case glslang::EbtFloat:
spvConsts.push_back(builder.makeFloatConstant(zero ? 0.0F : (float)consts[nextConst].getDConst()));
break;
case glslang::EbtDouble:
spvConsts.push_back(builder.makeDoubleConstant(zero ? 0.0 : consts[nextConst].getDConst()));
break;
case glslang::EbtBool:
spvConsts.push_back(builder.makeBoolConstant(zero ? false : consts[nextConst].getBConst()));
break;
default:
assert(0);
break;
}
++nextConst;
}
} else {
// we have a non-aggregate (scalar) constant
bool zero = nextConst >= consts.size();
spv::Id scalar = 0;
switch (glslangType.getBasicType()) {
case glslang::EbtInt:
scalar = builder.makeIntConstant(zero ? 0 : consts[nextConst].getIConst(), specConstant);
break;
case glslang::EbtUint:
scalar = builder.makeUintConstant(zero ? 0 : consts[nextConst].getUConst(), specConstant);
break;
case glslang::EbtInt64:
scalar = builder.makeInt64Constant(zero ? 0 : consts[nextConst].getI64Const(), specConstant);
break;
case glslang::EbtUint64:
scalar = builder.makeUint64Constant(zero ? 0 : consts[nextConst].getU64Const(), specConstant);
break;
case glslang::EbtFloat:
scalar = builder.makeFloatConstant(zero ? 0.0F : (float)consts[nextConst].getDConst(), specConstant);
break;
case glslang::EbtDouble:
scalar = builder.makeDoubleConstant(zero ? 0.0 : consts[nextConst].getDConst(), specConstant);
break;
case glslang::EbtBool:
scalar = builder.makeBoolConstant(zero ? false : consts[nextConst].getBConst(), specConstant);
break;
default:
assert(0);
break;
}
++nextConst;
return scalar;
}
return builder.makeCompositeConstant(typeId, spvConsts);
}
// Return true if the node is a constant or symbol whose reading has no
// non-trivial observable cost or effect.
bool TGlslangToSpvTraverser::isTrivialLeaf(const glslang::TIntermTyped* node)
{
// don't know what this is
if (node == nullptr)
return false;
// a constant is safe
if (node->getAsConstantUnion() != nullptr)
return true;
// not a symbol means non-trivial
if (node->getAsSymbolNode() == nullptr)
return false;
// a symbol, depends on what's being read
switch (node->getType().getQualifier().storage) {
case glslang::EvqTemporary:
case glslang::EvqGlobal:
case glslang::EvqIn:
case glslang::EvqInOut:
case glslang::EvqConst:
case glslang::EvqConstReadOnly:
case glslang::EvqUniform:
return true;
default:
return false;
}
}
// A node is trivial if it is a single operation with no side effects.
// Error on the side of saying non-trivial.
// Return true if trivial.
bool TGlslangToSpvTraverser::isTrivial(const glslang::TIntermTyped* node)
{
if (node == nullptr)
return false;
// symbols and constants are trivial
if (isTrivialLeaf(node))
return true;
// otherwise, it needs to be a simple operation or one or two leaf nodes
// not a simple operation
const glslang::TIntermBinary* binaryNode = node->getAsBinaryNode();
const glslang::TIntermUnary* unaryNode = node->getAsUnaryNode();
if (binaryNode == nullptr && unaryNode == nullptr)
return false;
// not on leaf nodes
if (binaryNode && (! isTrivialLeaf(binaryNode->getLeft()) || ! isTrivialLeaf(binaryNode->getRight())))
return false;
if (unaryNode && ! isTrivialLeaf(unaryNode->getOperand())) {
return false;
}
switch (node->getAsOperator()->getOp()) {
case glslang::EOpLogicalNot:
case glslang::EOpConvIntToBool:
case glslang::EOpConvUintToBool:
case glslang::EOpConvFloatToBool:
case glslang::EOpConvDoubleToBool:
case glslang::EOpEqual:
case glslang::EOpNotEqual:
case glslang::EOpLessThan:
case glslang::EOpGreaterThan:
case glslang::EOpLessThanEqual:
case glslang::EOpGreaterThanEqual:
case glslang::EOpIndexDirect:
case glslang::EOpIndexDirectStruct:
case glslang::EOpLogicalXor:
case glslang::EOpAny:
case glslang::EOpAll:
return true;
default:
return false;
}
}
// Emit short-circuiting code, where 'right' is never evaluated unless
// the left side is true (for &&) or false (for ||).
spv::Id TGlslangToSpvTraverser::createShortCircuit(glslang::TOperator op, glslang::TIntermTyped& left, glslang::TIntermTyped& right)
{
spv::Id boolTypeId = builder.makeBoolType();
// emit left operand
builder.clearAccessChain();
left.traverse(this);
spv::Id leftId = accessChainLoad(left.getType());
// Operands to accumulate OpPhi operands
std::vector<spv::Id> phiOperands;
// accumulate left operand's phi information
phiOperands.push_back(leftId);
phiOperands.push_back(builder.getBuildPoint()->getId());
// Make the two kinds of operation symmetric with a "!"
// || => emit "if (! left) result = right"
// && => emit "if ( left) result = right"
//
// TODO: this runtime "not" for || could be avoided by adding functionality
// to 'builder' to have an "else" without an "then"
if (op == glslang::EOpLogicalOr)
leftId = builder.createUnaryOp(spv::OpLogicalNot, boolTypeId, leftId);
// make an "if" based on the left value
spv::Builder::If ifBuilder(leftId, builder);
// emit right operand as the "then" part of the "if"
builder.clearAccessChain();
right.traverse(this);
spv::Id rightId = accessChainLoad(right.getType());
// accumulate left operand's phi information
phiOperands.push_back(rightId);
phiOperands.push_back(builder.getBuildPoint()->getId());
// finish the "if"
ifBuilder.makeEndIf();
// phi together the two results
return builder.createOp(spv::OpPhi, boolTypeId, phiOperands);
}
// Return type Id of the imported set of extended instructions corresponds to the name.
// Import this set if it has not been imported yet.
spv::Id TGlslangToSpvTraverser::getExtBuiltins(const char* name)
{
if (extBuiltinMap.find(name) != extBuiltinMap.end())
return extBuiltinMap[name];
else {
builder.addExtensions(name);
spv::Id extBuiltins = builder.import(name);
extBuiltinMap[name] = extBuiltins;
return extBuiltins;
}
}
}; // end anonymous namespace
namespace glslang {
void GetSpirvVersion(std::string& version)
{
const int bufSize = 100;
char buf[bufSize];
snprintf(buf, bufSize, "0x%08x, Revision %d", spv::Version, spv::Revision);
version = buf;
}
// Write SPIR-V out to a binary file
void OutputSpvBin(const std::vector<unsigned int>& spirv, const char* baseName)
{
std::ofstream out;
out.open(baseName, std::ios::binary | std::ios::out);
for (int i = 0; i < (int)spirv.size(); ++i) {
unsigned int word = spirv[i];
out.write((const char*)&word, 4);
}
out.close();
}
// Write SPIR-V out to a text file with 32-bit hexadecimal words
void OutputSpvHex(const std::vector<unsigned int>& spirv, const char* baseName)
{
std::ofstream out;
out.open(baseName, std::ios::binary | std::ios::out);
out << "\t// " GLSLANG_REVISION " " GLSLANG_DATE << std::endl;
const int WORDS_PER_LINE = 8;
for (int i = 0; i < (int)spirv.size(); i += WORDS_PER_LINE) {
out << "\t";
for (int j = 0; j < WORDS_PER_LINE && i + j < (int)spirv.size(); ++j) {
const unsigned int word = spirv[i + j];
out << "0x" << std::hex << std::setw(8) << std::setfill('0') << word;
if (i + j + 1 < (int)spirv.size()) {
out << ",";
}
}
out << std::endl;
}
out.close();
}
//
// Set up the glslang traversal
//
void GlslangToSpv(const glslang::TIntermediate& intermediate, std::vector<unsigned int>& spirv)
{
spv::SpvBuildLogger logger;
GlslangToSpv(intermediate, spirv, &logger);
}
void GlslangToSpv(const glslang::TIntermediate& intermediate, std::vector<unsigned int>& spirv, spv::SpvBuildLogger* logger)
{
TIntermNode* root = intermediate.getTreeRoot();
if (root == 0)
return;
glslang::GetThreadPoolAllocator().push();
TGlslangToSpvTraverser it(&intermediate, logger);
root->traverse(&it);
it.dumpSpv(spirv);
glslang::GetThreadPoolAllocator().pop();
}
}; // end namespace glslang