blob: af8f560b3b23859717e53948a2f52776021b049c [file] [log] [blame]
//
// Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
// Copyright (C) 2012-2013 LunarG, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//
// Implement types for tracking GLSL arrays, arrays of arrays, etc.
//
#ifndef _ARRAYS_INCLUDED
#define _ARRAYS_INCLUDED
#include <algorithm>
namespace glslang {
// This is used to mean there is no size yet (unsized), it is waiting to get a size from somewhere else.
const int UnsizedArraySize = 0;
class TIntermTyped;
extern bool SameSpecializationConstants(TIntermTyped*, TIntermTyped*);
// Specialization constants need both a nominal size and a node that defines
// the specialization constant being used. Array types are the same when their
// size and specialization constant nodes are the same.
struct TArraySize {
unsigned int size;
TIntermTyped* node; // nullptr means no specialization constant node
bool operator==(const TArraySize& rhs) const
{
if (size != rhs.size)
return false;
if (node == nullptr || rhs.node == nullptr)
return node == rhs.node;
return SameSpecializationConstants(node, rhs.node);
}
};
//
// TSmallArrayVector is used as the container for the set of sizes in TArraySizes.
// It has generic-container semantics, while TArraySizes has array-of-array semantics.
// That is, TSmallArrayVector should be more focused on mechanism and TArraySizes on policy.
//
struct TSmallArrayVector {
//
// TODO: memory: TSmallArrayVector is intended to be smaller.
// Almost all arrays could be handled by two sizes each fitting
// in 16 bits, needing a real vector only in the cases where there
// are more than 3 sizes or a size needing more than 16 bits.
//
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
TSmallArrayVector() : sizes(nullptr) { }
virtual ~TSmallArrayVector() { dealloc(); }
// For breaking into two non-shared copies, independently modifiable.
TSmallArrayVector& operator=(const TSmallArrayVector& from)
{
if (from.sizes == nullptr)
sizes = nullptr;
else {
alloc();
*sizes = *from.sizes;
}
return *this;
}
int size() const
{
if (sizes == nullptr)
return 0;
return (int)sizes->size();
}
unsigned int frontSize() const
{
assert(sizes != nullptr && sizes->size() > 0);
return sizes->front().size;
}
TIntermTyped* frontNode() const
{
assert(sizes != nullptr && sizes->size() > 0);
return sizes->front().node;
}
void changeFront(unsigned int s)
{
assert(sizes != nullptr);
// this should only happen for implicitly sized arrays, not specialization constants
assert(sizes->front().node == nullptr);
sizes->front().size = s;
}
void push_back(unsigned int e, TIntermTyped* n)
{
alloc();
TArraySize pair = { e, n };
sizes->push_back(pair);
}
void push_back(const TSmallArrayVector& newDims)
{
alloc();
sizes->insert(sizes->end(), newDims.sizes->begin(), newDims.sizes->end());
}
void pop_front()
{
assert(sizes != nullptr && sizes->size() > 0);
if (sizes->size() == 1)
dealloc();
else
sizes->erase(sizes->begin());
}
// 'this' should currently not be holding anything, and copyNonFront
// will make it hold a copy of all but the first element of rhs.
// (This would be useful for making a type that is dereferenced by
// one dimension.)
void copyNonFront(const TSmallArrayVector& rhs)
{
assert(sizes == nullptr);
if (rhs.size() > 1) {
alloc();
sizes->insert(sizes->begin(), rhs.sizes->begin() + 1, rhs.sizes->end());
}
}
unsigned int getDimSize(int i) const
{
assert(sizes != nullptr && (int)sizes->size() > i);
return (*sizes)[i].size;
}
void setDimSize(int i, unsigned int size) const
{
assert(sizes != nullptr && (int)sizes->size() > i);
assert((*sizes)[i].node == nullptr);
(*sizes)[i].size = size;
}
TIntermTyped* getDimNode(int i) const
{
assert(sizes != nullptr && (int)sizes->size() > i);
return (*sizes)[i].node;
}
bool operator==(const TSmallArrayVector& rhs) const
{
if (sizes == nullptr && rhs.sizes == nullptr)
return true;
if (sizes == nullptr || rhs.sizes == nullptr)
return false;
return *sizes == *rhs.sizes;
}
bool operator!=(const TSmallArrayVector& rhs) const { return ! operator==(rhs); }
protected:
TSmallArrayVector(const TSmallArrayVector&);
void alloc()
{
if (sizes == nullptr)
sizes = new TVector<TArraySize>;
}
void dealloc()
{
delete sizes;
sizes = nullptr;
}
TVector<TArraySize>* sizes; // will either hold such a pointer, or in the future, hold the two array sizes
};
//
// Represent an array, or array of arrays, to arbitrary depth. This is not
// done through a hierarchy of types in a type tree, rather all contiguous arrayness
// in the type hierarchy is localized into this single cumulative object.
//
// The arrayness in TTtype is a pointer, so that it can be non-allocated and zero
// for the vast majority of types that are non-array types.
//
// Order Policy: these are all identical:
// - left to right order within a contiguous set of ...[..][..][..]... in the source language
// - index order 0, 1, 2, ... within the 'sizes' member below
// - outer-most to inner-most
//
struct TArraySizes {
POOL_ALLOCATOR_NEW_DELETE(GetThreadPoolAllocator())
TArraySizes() : implicitArraySize(1), variablyIndexed(false) { }
// For breaking into two non-shared copies, independently modifiable.
TArraySizes& operator=(const TArraySizes& from)
{
implicitArraySize = from.implicitArraySize;
variablyIndexed = from.variablyIndexed;
sizes = from.sizes;
return *this;
}
// translate from array-of-array semantics to container semantics
int getNumDims() const { return sizes.size(); }
int getDimSize(int dim) const { return sizes.getDimSize(dim); }
TIntermTyped* getDimNode(int dim) const { return sizes.getDimNode(dim); }
void setDimSize(int dim, int size) { sizes.setDimSize(dim, size); }
int getOuterSize() const { return sizes.frontSize(); }
TIntermTyped* getOuterNode() const { return sizes.frontNode(); }
int getCumulativeSize() const
{
int size = 1;
for (int d = 0; d < sizes.size(); ++d) {
// this only makes sense in paths that have a known array size
assert(sizes.getDimSize(d) != UnsizedArraySize);
size *= sizes.getDimSize(d);
}
return size;
}
void addInnerSize() { addInnerSize((unsigned)UnsizedArraySize); }
void addInnerSize(int s) { addInnerSize((unsigned)s, nullptr); }
void addInnerSize(int s, TIntermTyped* n) { sizes.push_back((unsigned)s, n); }
void addInnerSize(TArraySize pair) { sizes.push_back(pair.size, pair.node); }
void addInnerSizes(const TArraySizes& s) { sizes.push_back(s.sizes); }
void changeOuterSize(int s) { sizes.changeFront((unsigned)s); }
int getImplicitSize() const { return implicitArraySize; }
void updateImplicitSize(int s) { implicitArraySize = std::max(implicitArraySize, s); }
bool isInnerUnsized() const
{
for (int d = 1; d < sizes.size(); ++d) {
if (sizes.getDimSize(d) == (unsigned)UnsizedArraySize)
return true;
}
return false;
}
bool clearInnerUnsized()
{
for (int d = 1; d < sizes.size(); ++d) {
if (sizes.getDimSize(d) == (unsigned)UnsizedArraySize)
setDimSize(d, 1);
}
return false;
}
bool isInnerSpecialization() const
{
for (int d = 1; d < sizes.size(); ++d) {
if (sizes.getDimNode(d) != nullptr)
return true;
}
return false;
}
bool isOuterSpecialization()
{
return sizes.getDimNode(0) != nullptr;
}
bool hasUnsized() const { return getOuterSize() == UnsizedArraySize || isInnerUnsized(); }
bool isSized() const { return getOuterSize() != UnsizedArraySize; }
void dereference() { sizes.pop_front(); }
void copyDereferenced(const TArraySizes& rhs)
{
assert(sizes.size() == 0);
if (rhs.sizes.size() > 1)
sizes.copyNonFront(rhs.sizes);
}
bool sameInnerArrayness(const TArraySizes& rhs) const
{
if (sizes.size() != rhs.sizes.size())
return false;
for (int d = 1; d < sizes.size(); ++d) {
if (sizes.getDimSize(d) != rhs.sizes.getDimSize(d) ||
sizes.getDimNode(d) != rhs.sizes.getDimNode(d))
return false;
}
return true;
}
void setVariablyIndexed() { variablyIndexed = true; }
bool isVariablyIndexed() const { return variablyIndexed; }
bool operator==(const TArraySizes& rhs) { return sizes == rhs.sizes; }
bool operator!=(const TArraySizes& rhs) { return sizes != rhs.sizes; }
protected:
TSmallArrayVector sizes;
TArraySizes(const TArraySizes&);
// For tracking maximum referenced compile-time constant index.
// Applies only to the outer-most dimension. Potentially becomes
// the implicit size of the array, if not variably indexed and
// otherwise legal.
int implicitArraySize;
bool variablyIndexed; // true if array is indexed with a non compile-time constant
};
} // end namespace glslang
#endif // _ARRAYS_INCLUDED_