| // Copyright (c) 2015-2016 The Khronos Group Inc. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <cfloat> |
| #include <cmath> |
| #include <cstdio> |
| #include <sstream> |
| #include <string> |
| #include <tuple> |
| |
| #include <gmock/gmock.h> |
| #include "SPIRV/hex_float.h" |
| |
| namespace { |
| using ::testing::Eq; |
| using spvutils::BitwiseCast; |
| using spvutils::Float16; |
| using spvutils::FloatProxy; |
| using spvutils::HexFloat; |
| using spvutils::ParseNormalFloat; |
| |
| // In this file "encode" means converting a number into a string, |
| // and "decode" means converting a string into a number. |
| |
| using HexFloatTest = |
| ::testing::TestWithParam<std::pair<FloatProxy<float>, std::string>>; |
| using DecodeHexFloatTest = |
| ::testing::TestWithParam<std::pair<std::string, FloatProxy<float>>>; |
| using HexDoubleTest = |
| ::testing::TestWithParam<std::pair<FloatProxy<double>, std::string>>; |
| using DecodeHexDoubleTest = |
| ::testing::TestWithParam<std::pair<std::string, FloatProxy<double>>>; |
| |
| // Hex-encodes a float value. |
| template <typename T> |
| std::string EncodeViaHexFloat(const T& value) { |
| std::stringstream ss; |
| ss << spvutils::HexFloat<T>(value); |
| return ss.str(); |
| } |
| |
| // The following two tests can't be DRY because they take different parameter |
| // types. |
| |
| TEST_P(HexFloatTest, EncodeCorrectly) { |
| EXPECT_THAT(EncodeViaHexFloat(GetParam().first), Eq(GetParam().second)); |
| } |
| |
| TEST_P(HexDoubleTest, EncodeCorrectly) { |
| EXPECT_THAT(EncodeViaHexFloat(GetParam().first), Eq(GetParam().second)); |
| } |
| |
| // Decodes a hex-float string. |
| template <typename T> |
| FloatProxy<T> Decode(const std::string& str) { |
| spvutils::HexFloat<FloatProxy<T>> decoded(0.f); |
| EXPECT_TRUE((std::stringstream(str) >> decoded).eof()); |
| return decoded.value(); |
| } |
| |
| TEST_P(HexFloatTest, DecodeCorrectly) { |
| EXPECT_THAT(Decode<float>(GetParam().second), Eq(GetParam().first)); |
| } |
| |
| TEST_P(HexDoubleTest, DecodeCorrectly) { |
| EXPECT_THAT(Decode<double>(GetParam().second), Eq(GetParam().first)); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float32Tests, HexFloatTest, |
| ::testing::ValuesIn(std::vector<std::pair<FloatProxy<float>, std::string>>({ |
| {0.f, "0x0p+0"}, |
| {1.f, "0x1p+0"}, |
| {2.f, "0x1p+1"}, |
| {3.f, "0x1.8p+1"}, |
| {0.5f, "0x1p-1"}, |
| {0.25f, "0x1p-2"}, |
| {0.75f, "0x1.8p-1"}, |
| {-0.f, "-0x0p+0"}, |
| {-1.f, "-0x1p+0"}, |
| {-0.5f, "-0x1p-1"}, |
| {-0.25f, "-0x1p-2"}, |
| {-0.75f, "-0x1.8p-1"}, |
| |
| // Larger numbers |
| {512.f, "0x1p+9"}, |
| {-512.f, "-0x1p+9"}, |
| {1024.f, "0x1p+10"}, |
| {-1024.f, "-0x1p+10"}, |
| {1024.f + 8.f, "0x1.02p+10"}, |
| {-1024.f - 8.f, "-0x1.02p+10"}, |
| |
| // Small numbers |
| {1.0f / 512.f, "0x1p-9"}, |
| {1.0f / -512.f, "-0x1p-9"}, |
| {1.0f / 1024.f, "0x1p-10"}, |
| {1.0f / -1024.f, "-0x1p-10"}, |
| {1.0f / 1024.f + 1.0f / 8.f, "0x1.02p-3"}, |
| {1.0f / -1024.f - 1.0f / 8.f, "-0x1.02p-3"}, |
| |
| // lowest non-denorm |
| {float(ldexp(1.0f, -126)), "0x1p-126"}, |
| {float(ldexp(-1.0f, -126)), "-0x1p-126"}, |
| |
| // Denormalized values |
| {float(ldexp(1.0f, -127)), "0x1p-127"}, |
| {float(ldexp(1.0f, -127) / 2.0f), "0x1p-128"}, |
| {float(ldexp(1.0f, -127) / 4.0f), "0x1p-129"}, |
| {float(ldexp(1.0f, -127) / 8.0f), "0x1p-130"}, |
| {float(ldexp(-1.0f, -127)), "-0x1p-127"}, |
| {float(ldexp(-1.0f, -127) / 2.0f), "-0x1p-128"}, |
| {float(ldexp(-1.0f, -127) / 4.0f), "-0x1p-129"}, |
| {float(ldexp(-1.0f, -127) / 8.0f), "-0x1p-130"}, |
| |
| {float(ldexp(1.0, -127) + (ldexp(1.0, -127) / 2.0f)), "0x1.8p-127"}, |
| {float(ldexp(1.0, -127) / 2.0 + (ldexp(1.0, -127) / 4.0f)), |
| "0x1.8p-128"}, |
| |
| }))); |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float32NanTests, HexFloatTest, |
| ::testing::ValuesIn(std::vector<std::pair<FloatProxy<float>, std::string>>({ |
| // Various NAN and INF cases |
| {uint32_t(0xFF800000), "-0x1p+128"}, // -inf |
| {uint32_t(0x7F800000), "0x1p+128"}, // inf |
| {uint32_t(0xFFC00000), "-0x1.8p+128"}, // -nan |
| {uint32_t(0xFF800100), "-0x1.0002p+128"}, // -nan |
| {uint32_t(0xFF800c00), "-0x1.0018p+128"}, // -nan |
| {uint32_t(0xFF80F000), "-0x1.01ep+128"}, // -nan |
| {uint32_t(0xFFFFFFFF), "-0x1.fffffep+128"}, // -nan |
| {uint32_t(0x7FC00000), "0x1.8p+128"}, // +nan |
| {uint32_t(0x7F800100), "0x1.0002p+128"}, // +nan |
| {uint32_t(0x7f800c00), "0x1.0018p+128"}, // +nan |
| {uint32_t(0x7F80F000), "0x1.01ep+128"}, // +nan |
| {uint32_t(0x7FFFFFFF), "0x1.fffffep+128"}, // +nan |
| }))); |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float64Tests, HexDoubleTest, |
| ::testing::ValuesIn( |
| std::vector<std::pair<FloatProxy<double>, std::string>>({ |
| {0., "0x0p+0"}, |
| {1., "0x1p+0"}, |
| {2., "0x1p+1"}, |
| {3., "0x1.8p+1"}, |
| {0.5, "0x1p-1"}, |
| {0.25, "0x1p-2"}, |
| {0.75, "0x1.8p-1"}, |
| {-0., "-0x0p+0"}, |
| {-1., "-0x1p+0"}, |
| {-0.5, "-0x1p-1"}, |
| {-0.25, "-0x1p-2"}, |
| {-0.75, "-0x1.8p-1"}, |
| |
| // Larger numbers |
| {512., "0x1p+9"}, |
| {-512., "-0x1p+9"}, |
| {1024., "0x1p+10"}, |
| {-1024., "-0x1p+10"}, |
| {1024. + 8., "0x1.02p+10"}, |
| {-1024. - 8., "-0x1.02p+10"}, |
| |
| // Large outside the range of normal floats |
| {ldexp(1.0, 128), "0x1p+128"}, |
| {ldexp(1.0, 129), "0x1p+129"}, |
| {ldexp(-1.0, 128), "-0x1p+128"}, |
| {ldexp(-1.0, 129), "-0x1p+129"}, |
| {ldexp(1.0, 128) + ldexp(1.0, 90), "0x1.0000000004p+128"}, |
| {ldexp(1.0, 129) + ldexp(1.0, 120), "0x1.008p+129"}, |
| {ldexp(-1.0, 128) + ldexp(1.0, 90), "-0x1.fffffffff8p+127"}, |
| {ldexp(-1.0, 129) + ldexp(1.0, 120), "-0x1.ffp+128"}, |
| |
| // Small numbers |
| {1.0 / 512., "0x1p-9"}, |
| {1.0 / -512., "-0x1p-9"}, |
| {1.0 / 1024., "0x1p-10"}, |
| {1.0 / -1024., "-0x1p-10"}, |
| {1.0 / 1024. + 1.0 / 8., "0x1.02p-3"}, |
| {1.0 / -1024. - 1.0 / 8., "-0x1.02p-3"}, |
| |
| // Small outside the range of normal floats |
| {ldexp(1.0, -128), "0x1p-128"}, |
| {ldexp(1.0, -129), "0x1p-129"}, |
| {ldexp(-1.0, -128), "-0x1p-128"}, |
| {ldexp(-1.0, -129), "-0x1p-129"}, |
| {ldexp(1.0, -128) + ldexp(1.0, -90), "0x1.0000000004p-90"}, |
| {ldexp(1.0, -129) + ldexp(1.0, -120), "0x1.008p-120"}, |
| {ldexp(-1.0, -128) + ldexp(1.0, -90), "0x1.fffffffff8p-91"}, |
| {ldexp(-1.0, -129) + ldexp(1.0, -120), "0x1.ffp-121"}, |
| |
| // lowest non-denorm |
| {ldexp(1.0, -1022), "0x1p-1022"}, |
| {ldexp(-1.0, -1022), "-0x1p-1022"}, |
| |
| // Denormalized values |
| {ldexp(1.0, -1023), "0x1p-1023"}, |
| {ldexp(1.0, -1023) / 2.0, "0x1p-1024"}, |
| {ldexp(1.0, -1023) / 4.0, "0x1p-1025"}, |
| {ldexp(1.0, -1023) / 8.0, "0x1p-1026"}, |
| {ldexp(-1.0, -1024), "-0x1p-1024"}, |
| {ldexp(-1.0, -1024) / 2.0, "-0x1p-1025"}, |
| {ldexp(-1.0, -1024) / 4.0, "-0x1p-1026"}, |
| {ldexp(-1.0, -1024) / 8.0, "-0x1p-1027"}, |
| |
| {ldexp(1.0, -1023) + (ldexp(1.0, -1023) / 2.0), "0x1.8p-1023"}, |
| {ldexp(1.0, -1023) / 2.0 + (ldexp(1.0, -1023) / 4.0), |
| "0x1.8p-1024"}, |
| |
| }))); |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float64NanTests, HexDoubleTest, |
| ::testing::ValuesIn(std::vector< |
| std::pair<FloatProxy<double>, std::string>>({ |
| // Various NAN and INF cases |
| {uint64_t(0xFFF0000000000000LL), "-0x1p+1024"}, //-inf |
| {uint64_t(0x7FF0000000000000LL), "0x1p+1024"}, //+inf |
| {uint64_t(0xFFF8000000000000LL), "-0x1.8p+1024"}, // -nan |
| {uint64_t(0xFFF0F00000000000LL), "-0x1.0fp+1024"}, // -nan |
| {uint64_t(0xFFF0000000000001LL), "-0x1.0000000000001p+1024"}, // -nan |
| {uint64_t(0xFFF0000300000000LL), "-0x1.00003p+1024"}, // -nan |
| {uint64_t(0xFFFFFFFFFFFFFFFFLL), "-0x1.fffffffffffffp+1024"}, // -nan |
| {uint64_t(0x7FF8000000000000LL), "0x1.8p+1024"}, // +nan |
| {uint64_t(0x7FF0F00000000000LL), "0x1.0fp+1024"}, // +nan |
| {uint64_t(0x7FF0000000000001LL), "0x1.0000000000001p+1024"}, // -nan |
| {uint64_t(0x7FF0000300000000LL), "0x1.00003p+1024"}, // -nan |
| {uint64_t(0x7FFFFFFFFFFFFFFFLL), "0x1.fffffffffffffp+1024"}, // -nan |
| }))); |
| |
| TEST(HexFloatStreamTest, OperatorLeftShiftPreservesFloatAndFill) { |
| std::stringstream s; |
| s << std::setw(4) << std::oct << std::setfill('x') << 8 << " " |
| << FloatProxy<float>(uint32_t(0xFF800100)) << " " << std::setw(4) << 9; |
| EXPECT_THAT(s.str(), Eq(std::string("xx10 -0x1.0002p+128 xx11"))); |
| } |
| |
| TEST(HexDoubleStreamTest, OperatorLeftShiftPreservesFloatAndFill) { |
| std::stringstream s; |
| s << std::setw(4) << std::oct << std::setfill('x') << 8 << " " |
| << FloatProxy<double>(uint64_t(0x7FF0F00000000000LL)) << " " << std::setw(4) |
| << 9; |
| EXPECT_THAT(s.str(), Eq(std::string("xx10 0x1.0fp+1024 xx11"))); |
| } |
| |
| TEST_P(DecodeHexFloatTest, DecodeCorrectly) { |
| EXPECT_THAT(Decode<float>(GetParam().first), Eq(GetParam().second)); |
| } |
| |
| TEST_P(DecodeHexDoubleTest, DecodeCorrectly) { |
| EXPECT_THAT(Decode<double>(GetParam().first), Eq(GetParam().second)); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float32DecodeTests, DecodeHexFloatTest, |
| ::testing::ValuesIn(std::vector<std::pair<std::string, FloatProxy<float>>>({ |
| {"0x0p+000", 0.f}, |
| {"0x0p0", 0.f}, |
| {"0x0p-0", 0.f}, |
| |
| // flush to zero cases |
| {"0x1p-500", 0.f}, // Exponent underflows. |
| {"-0x1p-500", -0.f}, |
| {"0x0.00000000001p-126", 0.f}, // Fraction causes underflow. |
| {"-0x0.0000000001p-127", -0.f}, |
| {"-0x0.01p-142", -0.f}, // Fraction causes additional underflow. |
| {"0x0.01p-142", 0.f}, |
| |
| // Some floats that do not encode the same way as they decode. |
| {"0x2p+0", 2.f}, |
| {"0xFFp+0", 255.f}, |
| {"0x0.8p+0", 0.5f}, |
| {"0x0.4p+0", 0.25f}, |
| }))); |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float32DecodeInfTests, DecodeHexFloatTest, |
| ::testing::ValuesIn(std::vector<std::pair<std::string, FloatProxy<float>>>({ |
| // inf cases |
| {"-0x1p+128", uint32_t(0xFF800000)}, // -inf |
| {"0x32p+127", uint32_t(0x7F800000)}, // inf |
| {"0x32p+500", uint32_t(0x7F800000)}, // inf |
| {"-0x32p+127", uint32_t(0xFF800000)}, // -inf |
| }))); |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float64DecodeTests, DecodeHexDoubleTest, |
| ::testing::ValuesIn( |
| std::vector<std::pair<std::string, FloatProxy<double>>>({ |
| {"0x0p+000", 0.}, |
| {"0x0p0", 0.}, |
| {"0x0p-0", 0.}, |
| |
| // flush to zero cases |
| {"0x1p-5000", 0.}, // Exponent underflows. |
| {"-0x1p-5000", -0.}, |
| {"0x0.0000000000000001p-1023", 0.}, // Fraction causes underflow. |
| {"-0x0.000000000000001p-1024", -0.}, |
| {"-0x0.01p-1090", -0.f}, // Fraction causes additional underflow. |
| {"0x0.01p-1090", 0.}, |
| |
| // Some floats that do not encode the same way as they decode. |
| {"0x2p+0", 2.}, |
| {"0xFFp+0", 255.}, |
| {"0x0.8p+0", 0.5}, |
| {"0x0.4p+0", 0.25}, |
| }))); |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float64DecodeInfTests, DecodeHexDoubleTest, |
| ::testing::ValuesIn( |
| std::vector<std::pair<std::string, FloatProxy<double>>>({ |
| // inf cases |
| {"-0x1p+1024", uint64_t(0xFFF0000000000000)}, // -inf |
| {"0x32p+1023", uint64_t(0x7FF0000000000000)}, // inf |
| {"0x32p+5000", uint64_t(0x7FF0000000000000)}, // inf |
| {"-0x32p+1023", uint64_t(0xFFF0000000000000)}, // -inf |
| }))); |
| |
| TEST(FloatProxy, ValidConversion) { |
| EXPECT_THAT(FloatProxy<float>(1.f).getAsFloat(), Eq(1.0f)); |
| EXPECT_THAT(FloatProxy<float>(32.f).getAsFloat(), Eq(32.0f)); |
| EXPECT_THAT(FloatProxy<float>(-1.f).getAsFloat(), Eq(-1.0f)); |
| EXPECT_THAT(FloatProxy<float>(0.f).getAsFloat(), Eq(0.0f)); |
| EXPECT_THAT(FloatProxy<float>(-0.f).getAsFloat(), Eq(-0.0f)); |
| EXPECT_THAT(FloatProxy<float>(1.2e32f).getAsFloat(), Eq(1.2e32f)); |
| |
| EXPECT_TRUE(std::isinf(FloatProxy<float>(uint32_t(0xFF800000)).getAsFloat())); |
| EXPECT_TRUE(std::isinf(FloatProxy<float>(uint32_t(0x7F800000)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFFC00000)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFF800100)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFF800c00)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFF80F000)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0xFFFFFFFF)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7FC00000)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7F800100)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7f800c00)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7F80F000)).getAsFloat())); |
| EXPECT_TRUE(std::isnan(FloatProxy<float>(uint32_t(0x7FFFFFFF)).getAsFloat())); |
| |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF800000)).data(), Eq(0xFF800000u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0x7F800000)).data(), Eq(0x7F800000u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0xFFC00000)).data(), Eq(0xFFC00000u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF800100)).data(), Eq(0xFF800100u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF800c00)).data(), Eq(0xFF800c00u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0xFF80F000)).data(), Eq(0xFF80F000u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0xFFFFFFFF)).data(), Eq(0xFFFFFFFFu)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0x7FC00000)).data(), Eq(0x7FC00000u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0x7F800100)).data(), Eq(0x7F800100u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0x7f800c00)).data(), Eq(0x7f800c00u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0x7F80F000)).data(), Eq(0x7F80F000u)); |
| EXPECT_THAT(FloatProxy<float>(uint32_t(0x7FFFFFFF)).data(), Eq(0x7FFFFFFFu)); |
| } |
| |
| TEST(FloatProxy, Nan) { |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFFC00000)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFF800100)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFF800c00)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFF80F000)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0xFFFFFFFF)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7FC00000)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7F800100)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7f800c00)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7F80F000)).isNan()); |
| EXPECT_TRUE(FloatProxy<float>(uint32_t(0x7FFFFFFF)).isNan()); |
| } |
| |
| TEST(FloatProxy, Negation) { |
| EXPECT_THAT((-FloatProxy<float>(1.f)).getAsFloat(), Eq(-1.0f)); |
| EXPECT_THAT((-FloatProxy<float>(0.f)).getAsFloat(), Eq(-0.0f)); |
| |
| EXPECT_THAT((-FloatProxy<float>(-1.f)).getAsFloat(), Eq(1.0f)); |
| EXPECT_THAT((-FloatProxy<float>(-0.f)).getAsFloat(), Eq(0.0f)); |
| |
| EXPECT_THAT((-FloatProxy<float>(32.f)).getAsFloat(), Eq(-32.0f)); |
| EXPECT_THAT((-FloatProxy<float>(-32.f)).getAsFloat(), Eq(32.0f)); |
| |
| EXPECT_THAT((-FloatProxy<float>(1.2e32f)).getAsFloat(), Eq(-1.2e32f)); |
| EXPECT_THAT((-FloatProxy<float>(-1.2e32f)).getAsFloat(), Eq(1.2e32f)); |
| |
| EXPECT_THAT( |
| (-FloatProxy<float>(std::numeric_limits<float>::infinity())).getAsFloat(), |
| Eq(-std::numeric_limits<float>::infinity())); |
| EXPECT_THAT((-FloatProxy<float>(-std::numeric_limits<float>::infinity())) |
| .getAsFloat(), |
| Eq(std::numeric_limits<float>::infinity())); |
| } |
| |
| // Test conversion of FloatProxy values to strings. |
| // |
| // In previous cases, we always wrapped the FloatProxy value in a HexFloat |
| // before conversion to a string. In the following cases, the FloatProxy |
| // decides for itself whether to print as a regular number or as a hex float. |
| |
| using FloatProxyFloatTest = |
| ::testing::TestWithParam<std::pair<FloatProxy<float>, std::string>>; |
| using FloatProxyDoubleTest = |
| ::testing::TestWithParam<std::pair<FloatProxy<double>, std::string>>; |
| |
| // Converts a float value to a string via a FloatProxy. |
| template <typename T> |
| std::string EncodeViaFloatProxy(const T& value) { |
| std::stringstream ss; |
| ss << value; |
| return ss.str(); |
| } |
| |
| // Converts a floating point string so that the exponent prefix |
| // is 'e', and the exponent value does not have leading zeros. |
| // The Microsoft runtime library likes to write things like "2.5E+010". |
| // Convert that to "2.5e+10". |
| // We don't care what happens to strings that are not floating point |
| // strings. |
| std::string NormalizeExponentInFloatString(std::string in) { |
| std::string result; |
| // Reserve one spot for the terminating null, even when the sscanf fails. |
| std::vector<char> prefix(in.size() + 1); |
| char e; |
| char plus_or_minus; |
| int exponent; // in base 10 |
| if ((4 == std::sscanf(in.c_str(), "%[-+.0123456789]%c%c%d", prefix.data(), &e, |
| &plus_or_minus, &exponent)) && |
| (e == 'e' || e == 'E') && |
| (plus_or_minus == '-' || plus_or_minus == '+')) { |
| // It looks like a floating point value with exponent. |
| std::stringstream out; |
| out << prefix.data() << 'e' << plus_or_minus << exponent; |
| result = out.str(); |
| } else { |
| result = in; |
| } |
| return result; |
| } |
| |
| TEST(NormalizeFloat, Sample) { |
| EXPECT_THAT(NormalizeExponentInFloatString(""), Eq("")); |
| EXPECT_THAT(NormalizeExponentInFloatString("1e-12"), Eq("1e-12")); |
| EXPECT_THAT(NormalizeExponentInFloatString("1E+14"), Eq("1e+14")); |
| EXPECT_THAT(NormalizeExponentInFloatString("1e-0012"), Eq("1e-12")); |
| EXPECT_THAT(NormalizeExponentInFloatString("1.263E+014"), Eq("1.263e+14")); |
| } |
| |
| // The following two tests can't be DRY because they take different parameter |
| // types. |
| TEST_P(FloatProxyFloatTest, EncodeCorrectly) { |
| EXPECT_THAT( |
| NormalizeExponentInFloatString(EncodeViaFloatProxy(GetParam().first)), |
| Eq(GetParam().second)); |
| } |
| |
| TEST_P(FloatProxyDoubleTest, EncodeCorrectly) { |
| EXPECT_THAT( |
| NormalizeExponentInFloatString(EncodeViaFloatProxy(GetParam().first)), |
| Eq(GetParam().second)); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float32Tests, FloatProxyFloatTest, |
| ::testing::ValuesIn(std::vector<std::pair<FloatProxy<float>, std::string>>({ |
| // Zero |
| {0.f, "0"}, |
| // Normal numbers |
| {1.f, "1"}, |
| {-0.25f, "-0.25"}, |
| {1000.0f, "1000"}, |
| |
| // Still normal numbers, but with large magnitude exponents. |
| {float(ldexp(1.f, 126)), "8.50706e+37"}, |
| {float(ldexp(-1.f, -126)), "-1.17549e-38"}, |
| |
| // denormalized values are printed as hex floats. |
| {float(ldexp(1.0f, -127)), "0x1p-127"}, |
| {float(ldexp(1.5f, -128)), "0x1.8p-128"}, |
| {float(ldexp(1.25, -129)), "0x1.4p-129"}, |
| {float(ldexp(1.125, -130)), "0x1.2p-130"}, |
| {float(ldexp(-1.0f, -127)), "-0x1p-127"}, |
| {float(ldexp(-1.0f, -128)), "-0x1p-128"}, |
| {float(ldexp(-1.0f, -129)), "-0x1p-129"}, |
| {float(ldexp(-1.5f, -130)), "-0x1.8p-130"}, |
| |
| // NaNs |
| {FloatProxy<float>(uint32_t(0xFFC00000)), "-0x1.8p+128"}, |
| {FloatProxy<float>(uint32_t(0xFF800100)), "-0x1.0002p+128"}, |
| |
| {std::numeric_limits<float>::infinity(), "0x1p+128"}, |
| {-std::numeric_limits<float>::infinity(), "-0x1p+128"}, |
| }))); |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float64Tests, FloatProxyDoubleTest, |
| ::testing::ValuesIn( |
| std::vector<std::pair<FloatProxy<double>, std::string>>({ |
| {0., "0"}, |
| {1., "1"}, |
| {-0.25, "-0.25"}, |
| {1000.0, "1000"}, |
| |
| // Large outside the range of normal floats |
| {ldexp(1.0, 128), "3.40282366920938e+38"}, |
| {ldexp(1.5, 129), "1.02084710076282e+39"}, |
| {ldexp(-1.0, 128), "-3.40282366920938e+38"}, |
| {ldexp(-1.5, 129), "-1.02084710076282e+39"}, |
| |
| // Small outside the range of normal floats |
| {ldexp(1.5, -129), "2.20405190779179e-39"}, |
| {ldexp(-1.5, -129), "-2.20405190779179e-39"}, |
| |
| // lowest non-denorm |
| {ldexp(1.0, -1022), "2.2250738585072e-308"}, |
| {ldexp(-1.0, -1022), "-2.2250738585072e-308"}, |
| |
| // Denormalized values |
| {ldexp(1.125, -1023), "0x1.2p-1023"}, |
| {ldexp(-1.375, -1024), "-0x1.6p-1024"}, |
| |
| // NaNs |
| {uint64_t(0x7FF8000000000000LL), "0x1.8p+1024"}, |
| {uint64_t(0xFFF0F00000000000LL), "-0x1.0fp+1024"}, |
| |
| // Infinity |
| {std::numeric_limits<double>::infinity(), "0x1p+1024"}, |
| {-std::numeric_limits<double>::infinity(), "-0x1p+1024"}, |
| |
| }))); |
| |
| // double is used so that unbiased_exponent can be used with the output |
| // of ldexp directly. |
| int32_t unbiased_exponent(double f) { |
| return spvutils::HexFloat<spvutils::FloatProxy<float>>( |
| static_cast<float>(f)).getUnbiasedNormalizedExponent(); |
| } |
| |
| int16_t unbiased_half_exponent(uint16_t f) { |
| return spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>(f) |
| .getUnbiasedNormalizedExponent(); |
| } |
| |
| TEST(HexFloatOperationTest, UnbiasedExponent) { |
| // Float cases |
| EXPECT_EQ(0, unbiased_exponent(ldexp(1.0f, 0))); |
| EXPECT_EQ(-32, unbiased_exponent(ldexp(1.0f, -32))); |
| EXPECT_EQ(42, unbiased_exponent(ldexp(1.0f, 42))); |
| EXPECT_EQ(125, unbiased_exponent(ldexp(1.0f, 125))); |
| // Saturates to 128 |
| EXPECT_EQ(128, unbiased_exponent(ldexp(1.0f, 256))); |
| |
| EXPECT_EQ(-100, unbiased_exponent(ldexp(1.0f, -100))); |
| EXPECT_EQ(-127, unbiased_exponent(ldexp(1.0f, -127))); // First denorm |
| EXPECT_EQ(-128, unbiased_exponent(ldexp(1.0f, -128))); |
| EXPECT_EQ(-129, unbiased_exponent(ldexp(1.0f, -129))); |
| EXPECT_EQ(-140, unbiased_exponent(ldexp(1.0f, -140))); |
| // Smallest representable number |
| EXPECT_EQ(-126 - 23, unbiased_exponent(ldexp(1.0f, -126 - 23))); |
| // Should get rounded to 0 first. |
| EXPECT_EQ(0, unbiased_exponent(ldexp(1.0f, -127 - 23))); |
| |
| // Float16 cases |
| // The exponent is represented in the bits 0x7C00 |
| // The offset is -15 |
| EXPECT_EQ(0, unbiased_half_exponent(0x3C00)); |
| EXPECT_EQ(3, unbiased_half_exponent(0x4800)); |
| EXPECT_EQ(-1, unbiased_half_exponent(0x3800)); |
| EXPECT_EQ(-14, unbiased_half_exponent(0x0400)); |
| EXPECT_EQ(16, unbiased_half_exponent(0x7C00)); |
| EXPECT_EQ(10, unbiased_half_exponent(0x6400)); |
| |
| // Smallest representable number |
| EXPECT_EQ(-24, unbiased_half_exponent(0x0001)); |
| } |
| |
| // Creates a float that is the sum of 1/(2 ^ fractions[i]) for i in factions |
| float float_fractions(const std::vector<uint32_t>& fractions) { |
| float f = 0; |
| for(int32_t i: fractions) { |
| f += std::ldexp(1.0f, -i); |
| } |
| return f; |
| } |
| |
| // Returns the normalized significand of a HexFloat<FloatProxy<float>> |
| // that was created by calling float_fractions with the input fractions, |
| // raised to the power of exp. |
| uint32_t normalized_significand(const std::vector<uint32_t>& fractions, uint32_t exp) { |
| return spvutils::HexFloat<spvutils::FloatProxy<float>>( |
| static_cast<float>(ldexp(float_fractions(fractions), exp))) |
| .getNormalizedSignificand(); |
| } |
| |
| // Sets the bits from MSB to LSB of the significand part of a float. |
| // For example 0 would set the bit 23 (counting from LSB to MSB), |
| // and 1 would set the 22nd bit. |
| uint32_t bits_set(const std::vector<uint32_t>& bits) { |
| const uint32_t top_bit = 1u << 22u; |
| uint32_t val= 0; |
| for(uint32_t i: bits) { |
| val |= top_bit >> i; |
| } |
| return val; |
| } |
| |
| // The same as bits_set but for a Float16 value instead of 32-bit floating |
| // point. |
| uint16_t half_bits_set(const std::vector<uint32_t>& bits) { |
| const uint32_t top_bit = 1u << 9u; |
| uint32_t val= 0; |
| for(uint32_t i: bits) { |
| val |= top_bit >> i; |
| } |
| return static_cast<uint16_t>(val); |
| } |
| |
| TEST(HexFloatOperationTest, NormalizedSignificand) { |
| // For normalized numbers (the following) it should be a simple matter |
| // of getting rid of the top implicit bit |
| EXPECT_EQ(bits_set({}), normalized_significand({0}, 0)); |
| EXPECT_EQ(bits_set({0}), normalized_significand({0, 1}, 0)); |
| EXPECT_EQ(bits_set({0, 1}), normalized_significand({0, 1, 2}, 0)); |
| EXPECT_EQ(bits_set({1}), normalized_significand({0, 2}, 0)); |
| EXPECT_EQ(bits_set({1}), normalized_significand({0, 2}, 32)); |
| EXPECT_EQ(bits_set({1}), normalized_significand({0, 2}, 126)); |
| |
| // For denormalized numbers we expect the normalized significand to |
| // shift as if it were normalized. This means, in practice that the |
| // top_most set bit will be cut off. Looks very similar to above (on purpose) |
| EXPECT_EQ(bits_set({}), normalized_significand({0}, -127)); |
| EXPECT_EQ(bits_set({3}), normalized_significand({0, 4}, -128)); |
| EXPECT_EQ(bits_set({3}), normalized_significand({0, 4}, -127)); |
| EXPECT_EQ(bits_set({}), normalized_significand({22}, -127)); |
| EXPECT_EQ(bits_set({0}), normalized_significand({21, 22}, -127)); |
| } |
| |
| // Returns the 32-bit floating point value created by |
| // calling setFromSignUnbiasedExponentAndNormalizedSignificand |
| // on a HexFloat<FloatProxy<float>> |
| float set_from_sign(bool negative, int32_t unbiased_exponent, |
| uint32_t significand, bool round_denorm_up) { |
| spvutils::HexFloat<spvutils::FloatProxy<float>> f(0.f); |
| f.setFromSignUnbiasedExponentAndNormalizedSignificand( |
| negative, unbiased_exponent, significand, round_denorm_up); |
| return f.value().getAsFloat(); |
| } |
| |
| TEST(HexFloatOperationTests, |
| SetFromSignUnbiasedExponentAndNormalizedSignificand) { |
| |
| EXPECT_EQ(1.f, set_from_sign(false, 0, 0, false)); |
| |
| // Tests insertion of various denormalized numbers with and without round up. |
| EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), set_from_sign(false, -149, 0, false)); |
| EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), set_from_sign(false, -149, 0, true)); |
| EXPECT_EQ(0.f, set_from_sign(false, -150, 1, false)); |
| EXPECT_EQ(static_cast<float>(ldexp(1.f, -149)), set_from_sign(false, -150, 1, true)); |
| |
| EXPECT_EQ(ldexp(1.0f, -127), set_from_sign(false, -127, 0, false)); |
| EXPECT_EQ(ldexp(1.0f, -128), set_from_sign(false, -128, 0, false)); |
| EXPECT_EQ(float_fractions({0, 1, 2, 5}), |
| set_from_sign(false, 0, bits_set({0, 1, 4}), false)); |
| EXPECT_EQ(ldexp(float_fractions({0, 1, 2, 5}), -32), |
| set_from_sign(false, -32, bits_set({0, 1, 4}), false)); |
| EXPECT_EQ(ldexp(float_fractions({0, 1, 2, 5}), -128), |
| set_from_sign(false, -128, bits_set({0, 1, 4}), false)); |
| |
| // The negative cases from above. |
| EXPECT_EQ(-1.f, set_from_sign(true, 0, 0, false)); |
| EXPECT_EQ(-ldexp(1.0, -127), set_from_sign(true, -127, 0, false)); |
| EXPECT_EQ(-ldexp(1.0, -128), set_from_sign(true, -128, 0, false)); |
| EXPECT_EQ(-float_fractions({0, 1, 2, 5}), |
| set_from_sign(true, 0, bits_set({0, 1, 4}), false)); |
| EXPECT_EQ(-ldexp(float_fractions({0, 1, 2, 5}), -32), |
| set_from_sign(true, -32, bits_set({0, 1, 4}), false)); |
| EXPECT_EQ(-ldexp(float_fractions({0, 1, 2, 5}), -128), |
| set_from_sign(true, -128, bits_set({0, 1, 4}), false)); |
| } |
| |
| TEST(HexFloatOperationTests, NonRounding) { |
| // Rounding from 32-bit hex-float to 32-bit hex-float should be trivial, |
| // except in the denorm case which is a bit more complex. |
| using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>; |
| bool carry_bit = false; |
| |
| spvutils::round_direction rounding[] = { |
| spvutils::kRoundToZero, |
| spvutils::kRoundToNearestEven, |
| spvutils::kRoundToPositiveInfinity, |
| spvutils::kRoundToNegativeInfinity}; |
| |
| // Everything fits, so this should be straight-forward |
| for (spvutils::round_direction round : rounding) { |
| EXPECT_EQ(bits_set({}), HF(0.f).getRoundedNormalizedSignificand<HF>( |
| round, &carry_bit)); |
| EXPECT_FALSE(carry_bit); |
| |
| EXPECT_EQ(bits_set({0}), |
| HF(float_fractions({0, 1})) |
| .getRoundedNormalizedSignificand<HF>(round, &carry_bit)); |
| EXPECT_FALSE(carry_bit); |
| |
| EXPECT_EQ(bits_set({1, 3}), |
| HF(float_fractions({0, 2, 4})) |
| .getRoundedNormalizedSignificand<HF>(round, &carry_bit)); |
| EXPECT_FALSE(carry_bit); |
| |
| EXPECT_EQ( |
| bits_set({0, 1, 4}), |
| HF(static_cast<float>(-ldexp(float_fractions({0, 1, 2, 5}), -128))) |
| .getRoundedNormalizedSignificand<HF>(round, &carry_bit)); |
| EXPECT_FALSE(carry_bit); |
| |
| EXPECT_EQ( |
| bits_set({0, 1, 4, 22}), |
| HF(static_cast<float>(float_fractions({0, 1, 2, 5, 23}))) |
| .getRoundedNormalizedSignificand<HF>(round, &carry_bit)); |
| EXPECT_FALSE(carry_bit); |
| } |
| } |
| |
| struct RoundSignificandCase { |
| float source_float; |
| std::pair<int16_t, bool> expected_results; |
| spvutils::round_direction round; |
| }; |
| |
| using HexFloatRoundTest = |
| ::testing::TestWithParam<RoundSignificandCase>; |
| |
| TEST_P(HexFloatRoundTest, RoundDownToFP16) { |
| using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>; |
| using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>; |
| |
| HF input_value(GetParam().source_float); |
| bool carry_bit = false; |
| EXPECT_EQ(GetParam().expected_results.first, |
| input_value.getRoundedNormalizedSignificand<HF16>( |
| GetParam().round, &carry_bit)); |
| EXPECT_EQ(carry_bit, GetParam().expected_results.second); |
| } |
| |
| // clang-format off |
| INSTANTIATE_TEST_SUITE_P(F32ToF16, HexFloatRoundTest, |
| ::testing::ValuesIn(std::vector<RoundSignificandCase>( |
| { |
| {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToZero}, |
| {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNearestEven}, |
| {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToPositiveInfinity}, |
| {float_fractions({0}), std::make_pair(half_bits_set({}), false), spvutils::kRoundToNegativeInfinity}, |
| {float_fractions({0, 1}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero}, |
| |
| {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero}, |
| {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity}, |
| {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity}, |
| {float_fractions({0, 1, 11}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNearestEven}, |
| |
| {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToZero}, |
| {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToPositiveInfinity}, |
| {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity}, |
| {float_fractions({0, 1, 10, 11}), std::make_pair(half_bits_set({0, 8}), false), spvutils::kRoundToNearestEven}, |
| |
| {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero}, |
| {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity}, |
| {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity}, |
| {float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven}, |
| |
| {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero}, |
| {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToPositiveInfinity}, |
| {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNegativeInfinity}, |
| {-float_fractions({0, 1, 11, 12}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven}, |
| |
| {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero}, |
| {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity}, |
| {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity}, |
| {float_fractions({0, 1, 11, 22}), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven}, |
| |
| // Carries |
| {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToZero}, |
| {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToPositiveInfinity}, |
| {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}), false), spvutils::kRoundToNegativeInfinity}, |
| {float_fractions({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}), std::make_pair(half_bits_set({}), true), spvutils::kRoundToNearestEven}, |
| |
| // Cases where original number was denorm. Note: this should have no effect |
| // the number is pre-normalized. |
| {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -128)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToZero}, |
| {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -129)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToPositiveInfinity}, |
| {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -131)), std::make_pair(half_bits_set({0}), false), spvutils::kRoundToNegativeInfinity}, |
| {static_cast<float>(ldexp(float_fractions({0, 1, 11, 13}), -130)), std::make_pair(half_bits_set({0, 9}), false), spvutils::kRoundToNearestEven}, |
| }))); |
| // clang-format on |
| |
| struct UpCastSignificandCase { |
| uint16_t source_half; |
| uint32_t expected_result; |
| }; |
| |
| using HexFloatRoundUpSignificandTest = |
| ::testing::TestWithParam<UpCastSignificandCase>; |
| TEST_P(HexFloatRoundUpSignificandTest, Widening) { |
| using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>; |
| using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>; |
| bool carry_bit = false; |
| |
| spvutils::round_direction rounding[] = { |
| spvutils::kRoundToZero, |
| spvutils::kRoundToNearestEven, |
| spvutils::kRoundToPositiveInfinity, |
| spvutils::kRoundToNegativeInfinity}; |
| |
| // Everything fits, so everything should just be bit-shifts. |
| for (spvutils::round_direction round : rounding) { |
| carry_bit = false; |
| HF16 input_value(GetParam().source_half); |
| EXPECT_EQ( |
| GetParam().expected_result, |
| input_value.getRoundedNormalizedSignificand<HF>(round, &carry_bit)) |
| << std::hex << "0x" |
| << input_value.getRoundedNormalizedSignificand<HF>(round, &carry_bit) |
| << " 0x" << GetParam().expected_result; |
| EXPECT_FALSE(carry_bit); |
| } |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(F16toF32, HexFloatRoundUpSignificandTest, |
| // 0xFC00 of the source 16-bit hex value cover the sign and the exponent. |
| // They are ignored for this test. |
| ::testing::ValuesIn(std::vector<UpCastSignificandCase>( |
| { |
| {0x3F00, 0x600000}, |
| {0x0F00, 0x600000}, |
| {0x0F01, 0x602000}, |
| {0x0FFF, 0x7FE000}, |
| }))); |
| |
| struct DownCastTest { |
| float source_float; |
| uint16_t expected_half; |
| std::vector<spvutils::round_direction> directions; |
| }; |
| |
| std::string get_round_text(spvutils::round_direction direction) { |
| #define CASE(round_direction) \ |
| case round_direction: \ |
| return #round_direction |
| |
| switch (direction) { |
| CASE(spvutils::kRoundToZero); |
| CASE(spvutils::kRoundToPositiveInfinity); |
| CASE(spvutils::kRoundToNegativeInfinity); |
| CASE(spvutils::kRoundToNearestEven); |
| } |
| #undef CASE |
| return ""; |
| } |
| |
| using HexFloatFP32To16Tests = ::testing::TestWithParam<DownCastTest>; |
| |
| TEST_P(HexFloatFP32To16Tests, NarrowingCasts) { |
| using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>; |
| using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>; |
| HF f(GetParam().source_float); |
| for (auto round : GetParam().directions) { |
| HF16 half(0); |
| f.castTo(half, round); |
| EXPECT_EQ(GetParam().expected_half, half.value().getAsFloat().get_value()) |
| << get_round_text(round) << " " << std::hex |
| << spvutils::BitwiseCast<uint32_t>(GetParam().source_float) |
| << " cast to: " << half.value().getAsFloat().get_value(); |
| } |
| } |
| |
| const uint16_t positive_infinity = 0x7C00; |
| const uint16_t negative_infinity = 0xFC00; |
| |
| INSTANTIATE_TEST_SUITE_P(F32ToF16, HexFloatFP32To16Tests, |
| ::testing::ValuesIn(std::vector<DownCastTest>( |
| { |
| // Exactly representable as half. |
| {0.f, 0x0, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {-0.f, 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {1.0f, 0x3C00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {-1.0f, 0xBC00, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| |
| {float_fractions({0, 1, 10}) , 0x3E01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {-float_fractions({0, 1, 10}) , 0xBE01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(ldexp(float_fractions({0, 1, 10}), 3)), 0x4A01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(-ldexp(float_fractions({0, 1, 10}), 3)), 0xCA01, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| |
| |
| // Underflow |
| {static_cast<float>(ldexp(1.0f, -25)), 0x0, {spvutils::kRoundToZero, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(ldexp(1.0f, -25)), 0x1, {spvutils::kRoundToPositiveInfinity}}, |
| {static_cast<float>(-ldexp(1.0f, -25)), 0x8000, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(-ldexp(1.0f, -25)), 0x8001, {spvutils::kRoundToNegativeInfinity}}, |
| {static_cast<float>(ldexp(1.0f, -24)), 0x1, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| |
| // Overflow |
| {static_cast<float>(ldexp(1.0f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(ldexp(1.0f, 18)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(ldexp(1.3f, 16)), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(-ldexp(1.0f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(-ldexp(1.0f, 18)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {static_cast<float>(-ldexp(1.3f, 16)), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| |
| // Transfer of Infinities |
| {std::numeric_limits<float>::infinity(), positive_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| {-std::numeric_limits<float>::infinity(), negative_infinity, {spvutils::kRoundToZero, spvutils::kRoundToPositiveInfinity, spvutils::kRoundToNegativeInfinity, spvutils::kRoundToNearestEven}}, |
| |
| // Nans are below because we cannot test for equality. |
| }))); |
| |
| struct UpCastCase{ |
| uint16_t source_half; |
| float expected_float; |
| }; |
| |
| using HexFloatFP16To32Tests = ::testing::TestWithParam<UpCastCase>; |
| TEST_P(HexFloatFP16To32Tests, WideningCasts) { |
| using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>; |
| using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>; |
| HF16 f(GetParam().source_half); |
| |
| spvutils::round_direction rounding[] = { |
| spvutils::kRoundToZero, |
| spvutils::kRoundToNearestEven, |
| spvutils::kRoundToPositiveInfinity, |
| spvutils::kRoundToNegativeInfinity}; |
| |
| // Everything fits, so everything should just be bit-shifts. |
| for (spvutils::round_direction round : rounding) { |
| HF flt(0.f); |
| f.castTo(flt, round); |
| EXPECT_EQ(GetParam().expected_float, flt.value().getAsFloat()) |
| << get_round_text(round) << " " << std::hex |
| << spvutils::BitwiseCast<uint16_t>(GetParam().source_half) |
| << " cast to: " << flt.value().getAsFloat(); |
| } |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(F16ToF32, HexFloatFP16To32Tests, |
| ::testing::ValuesIn(std::vector<UpCastCase>( |
| { |
| {0x0000, 0.f}, |
| {0x8000, -0.f}, |
| {0x3C00, 1.0f}, |
| {0xBC00, -1.0f}, |
| {0x3F00, float_fractions({0, 1, 2})}, |
| {0xBF00, -float_fractions({0, 1, 2})}, |
| {0x3F01, float_fractions({0, 1, 2, 10})}, |
| {0xBF01, -float_fractions({0, 1, 2, 10})}, |
| |
| // denorm |
| {0x0001, static_cast<float>(ldexp(1.0, -24))}, |
| {0x0002, static_cast<float>(ldexp(1.0, -23))}, |
| {0x8001, static_cast<float>(-ldexp(1.0, -24))}, |
| {0x8011, static_cast<float>(-ldexp(1.0, -20) + -ldexp(1.0, -24))}, |
| |
| // inf |
| {0x7C00, std::numeric_limits<float>::infinity()}, |
| {0xFC00, -std::numeric_limits<float>::infinity()}, |
| }))); |
| |
| TEST(HexFloatOperationTests, NanTests) { |
| using HF = spvutils::HexFloat<spvutils::FloatProxy<float>>; |
| using HF16 = spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>>; |
| spvutils::round_direction rounding[] = { |
| spvutils::kRoundToZero, |
| spvutils::kRoundToNearestEven, |
| spvutils::kRoundToPositiveInfinity, |
| spvutils::kRoundToNegativeInfinity}; |
| |
| // Everything fits, so everything should just be bit-shifts. |
| for (spvutils::round_direction round : rounding) { |
| HF16 f16(0); |
| HF f(0.f); |
| HF(std::numeric_limits<float>::quiet_NaN()).castTo(f16, round); |
| EXPECT_TRUE(f16.value().isNan()); |
| HF(std::numeric_limits<float>::signaling_NaN()).castTo(f16, round); |
| EXPECT_TRUE(f16.value().isNan()); |
| |
| HF16(0x7C01).castTo(f, round); |
| EXPECT_TRUE(f.value().isNan()); |
| HF16(0x7C11).castTo(f, round); |
| EXPECT_TRUE(f.value().isNan()); |
| HF16(0xFC01).castTo(f, round); |
| EXPECT_TRUE(f.value().isNan()); |
| HF16(0x7C10).castTo(f, round); |
| EXPECT_TRUE(f.value().isNan()); |
| HF16(0xFF00).castTo(f, round); |
| EXPECT_TRUE(f.value().isNan()); |
| } |
| } |
| |
| // A test case for parsing good and bad HexFloat<FloatProxy<T>> literals. |
| template <typename T> |
| struct FloatParseCase { |
| std::string literal; |
| bool negate_value; |
| bool expect_success; |
| HexFloat<FloatProxy<T>> expected_value; |
| }; |
| |
| using ParseNormalFloatTest = ::testing::TestWithParam<FloatParseCase<float>>; |
| |
| TEST_P(ParseNormalFloatTest, Samples) { |
| std::stringstream input(GetParam().literal); |
| HexFloat<FloatProxy<float>> parsed_value(0.0f); |
| ParseNormalFloat(input, GetParam().negate_value, parsed_value); |
| EXPECT_NE(GetParam().expect_success, input.fail()) |
| << " literal: " << GetParam().literal |
| << " negate: " << GetParam().negate_value; |
| if (GetParam().expect_success) { |
| EXPECT_THAT(parsed_value.value(), Eq(GetParam().expected_value.value())) |
| << " literal: " << GetParam().literal |
| << " negate: " << GetParam().negate_value; |
| } |
| } |
| |
| // Returns a FloatParseCase with expected failure. |
| template <typename T> |
| FloatParseCase<T> BadFloatParseCase(std::string literal, bool negate_value, |
| T expected_value) { |
| HexFloat<FloatProxy<T>> proxy_expected_value(expected_value); |
| return FloatParseCase<T>{literal, negate_value, false, proxy_expected_value}; |
| } |
| |
| // Returns a FloatParseCase that should successfully parse to a given value. |
| template <typename T> |
| FloatParseCase<T> GoodFloatParseCase(std::string literal, bool negate_value, |
| T expected_value) { |
| HexFloat<FloatProxy<T>> proxy_expected_value(expected_value); |
| return FloatParseCase<T>{literal, negate_value, true, proxy_expected_value}; |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| FloatParse, ParseNormalFloatTest, |
| ::testing::ValuesIn(std::vector<FloatParseCase<float>>{ |
| // Failing cases due to trivially incorrect syntax. |
| BadFloatParseCase("abc", false, 0.0f), |
| BadFloatParseCase("abc", true, 0.0f), |
| |
| // Valid cases. |
| GoodFloatParseCase("0", false, 0.0f), |
| GoodFloatParseCase("0.0", false, 0.0f), |
| GoodFloatParseCase("-0.0", false, -0.0f), |
| GoodFloatParseCase("2.0", false, 2.0f), |
| GoodFloatParseCase("-2.0", false, -2.0f), |
| GoodFloatParseCase("+2.0", false, 2.0f), |
| // Cases with negate_value being true. |
| GoodFloatParseCase("0.0", true, -0.0f), |
| GoodFloatParseCase("2.0", true, -2.0f), |
| |
| // When negate_value is true, we should not accept a |
| // leading minus or plus. |
| BadFloatParseCase("-0.0", true, 0.0f), |
| BadFloatParseCase("-2.0", true, 0.0f), |
| BadFloatParseCase("+0.0", true, 0.0f), |
| BadFloatParseCase("+2.0", true, 0.0f), |
| |
| // Overflow is an error for 32-bit float parsing. |
| BadFloatParseCase("1e40", false, FLT_MAX), |
| BadFloatParseCase("1e40", true, -FLT_MAX), |
| BadFloatParseCase("-1e40", false, -FLT_MAX), |
| // We can't have -1e40 and negate_value == true since |
| // that represents an original case of "--1e40" which |
| // is invalid. |
| })); |
| |
| using ParseNormalFloat16Test = |
| ::testing::TestWithParam<FloatParseCase<Float16>>; |
| |
| TEST_P(ParseNormalFloat16Test, Samples) { |
| std::stringstream input(GetParam().literal); |
| HexFloat<FloatProxy<Float16>> parsed_value(0); |
| ParseNormalFloat(input, GetParam().negate_value, parsed_value); |
| EXPECT_NE(GetParam().expect_success, input.fail()) |
| << " literal: " << GetParam().literal |
| << " negate: " << GetParam().negate_value; |
| if (GetParam().expect_success) { |
| EXPECT_THAT(parsed_value.value(), Eq(GetParam().expected_value.value())) |
| << " literal: " << GetParam().literal |
| << " negate: " << GetParam().negate_value; |
| } |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float16Parse, ParseNormalFloat16Test, |
| ::testing::ValuesIn(std::vector<FloatParseCase<Float16>>{ |
| // Failing cases due to trivially incorrect syntax. |
| BadFloatParseCase<Float16>("abc", false, uint16_t{0}), |
| BadFloatParseCase<Float16>("abc", true, uint16_t{0}), |
| |
| // Valid cases. |
| GoodFloatParseCase<Float16>("0", false, uint16_t{0}), |
| GoodFloatParseCase<Float16>("0.0", false, uint16_t{0}), |
| GoodFloatParseCase<Float16>("-0.0", false, uint16_t{0x8000}), |
| GoodFloatParseCase<Float16>("2.0", false, uint16_t{0x4000}), |
| GoodFloatParseCase<Float16>("-2.0", false, uint16_t{0xc000}), |
| GoodFloatParseCase<Float16>("+2.0", false, uint16_t{0x4000}), |
| // Cases with negate_value being true. |
| GoodFloatParseCase<Float16>("0.0", true, uint16_t{0x8000}), |
| GoodFloatParseCase<Float16>("2.0", true, uint16_t{0xc000}), |
| |
| // When negate_value is true, we should not accept a leading minus or |
| // plus. |
| BadFloatParseCase<Float16>("-0.0", true, uint16_t{0}), |
| BadFloatParseCase<Float16>("-2.0", true, uint16_t{0}), |
| BadFloatParseCase<Float16>("+0.0", true, uint16_t{0}), |
| BadFloatParseCase<Float16>("+2.0", true, uint16_t{0}), |
| })); |
| |
| // A test case for detecting infinities. |
| template <typename T> |
| struct OverflowParseCase { |
| std::string input; |
| bool expect_success; |
| T expected_value; |
| }; |
| |
| using FloatProxyParseOverflowFloatTest = |
| ::testing::TestWithParam<OverflowParseCase<float>>; |
| |
| TEST_P(FloatProxyParseOverflowFloatTest, Sample) { |
| std::istringstream input(GetParam().input); |
| HexFloat<FloatProxy<float>> value(0.0f); |
| input >> value; |
| EXPECT_NE(GetParam().expect_success, input.fail()); |
| if (GetParam().expect_success) { |
| EXPECT_THAT(value.value().getAsFloat(), GetParam().expected_value); |
| } |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| FloatOverflow, FloatProxyParseOverflowFloatTest, |
| ::testing::ValuesIn(std::vector<OverflowParseCase<float>>({ |
| {"0", true, 0.0f}, |
| {"0.0", true, 0.0f}, |
| {"1.0", true, 1.0f}, |
| {"1e38", true, 1e38f}, |
| {"-1e38", true, -1e38f}, |
| {"1e40", false, FLT_MAX}, |
| {"-1e40", false, -FLT_MAX}, |
| {"1e400", false, FLT_MAX}, |
| {"-1e400", false, -FLT_MAX}, |
| }))); |
| |
| using FloatProxyParseOverflowDoubleTest = |
| ::testing::TestWithParam<OverflowParseCase<double>>; |
| |
| TEST_P(FloatProxyParseOverflowDoubleTest, Sample) { |
| std::istringstream input(GetParam().input); |
| HexFloat<FloatProxy<double>> value(0.0); |
| input >> value; |
| EXPECT_NE(GetParam().expect_success, input.fail()); |
| if (GetParam().expect_success) { |
| EXPECT_THAT(value.value().getAsFloat(), Eq(GetParam().expected_value)); |
| } |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| DoubleOverflow, FloatProxyParseOverflowDoubleTest, |
| ::testing::ValuesIn(std::vector<OverflowParseCase<double>>({ |
| {"0", true, 0.0}, |
| {"0.0", true, 0.0}, |
| {"1.0", true, 1.0}, |
| {"1e38", true, 1e38}, |
| {"-1e38", true, -1e38}, |
| {"1e40", true, 1e40}, |
| {"-1e40", true, -1e40}, |
| {"1e400", false, DBL_MAX}, |
| {"-1e400", false, -DBL_MAX}, |
| }))); |
| |
| using FloatProxyParseOverflowFloat16Test = |
| ::testing::TestWithParam<OverflowParseCase<uint16_t>>; |
| |
| TEST_P(FloatProxyParseOverflowFloat16Test, Sample) { |
| std::istringstream input(GetParam().input); |
| HexFloat<FloatProxy<Float16>> value(0); |
| input >> value; |
| EXPECT_NE(GetParam().expect_success, input.fail()) << " literal: " |
| << GetParam().input; |
| if (GetParam().expect_success) { |
| EXPECT_THAT(value.value().data(), Eq(GetParam().expected_value)) |
| << " literal: " << GetParam().input; |
| } |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| Float16Overflow, FloatProxyParseOverflowFloat16Test, |
| ::testing::ValuesIn(std::vector<OverflowParseCase<uint16_t>>({ |
| {"0", true, uint16_t{0}}, |
| {"0.0", true, uint16_t{0}}, |
| {"1.0", true, uint16_t{0x3c00}}, |
| // Overflow for 16-bit float is an error, and returns max or |
| // lowest value. |
| {"1e38", false, uint16_t{0x7bff}}, |
| {"1e40", false, uint16_t{0x7bff}}, |
| {"1e400", false, uint16_t{0x7bff}}, |
| {"-1e38", false, uint16_t{0xfbff}}, |
| {"-1e40", false, uint16_t{0xfbff}}, |
| {"-1e400", false, uint16_t{0xfbff}}, |
| }))); |
| |
| TEST(FloatProxy, Max) { |
| EXPECT_THAT(FloatProxy<Float16>::max().getAsFloat().get_value(), |
| Eq(uint16_t{0x7bff})); |
| EXPECT_THAT(FloatProxy<float>::max().getAsFloat(), |
| Eq(std::numeric_limits<float>::max())); |
| EXPECT_THAT(FloatProxy<double>::max().getAsFloat(), |
| Eq(std::numeric_limits<double>::max())); |
| } |
| |
| TEST(FloatProxy, Lowest) { |
| EXPECT_THAT(FloatProxy<Float16>::lowest().getAsFloat().get_value(), |
| Eq(uint16_t{0xfbff})); |
| EXPECT_THAT(FloatProxy<float>::lowest().getAsFloat(), |
| Eq(std::numeric_limits<float>::lowest())); |
| EXPECT_THAT(FloatProxy<double>::lowest().getAsFloat(), |
| Eq(std::numeric_limits<double>::lowest())); |
| } |
| |
| // TODO(awoloszyn): Add fp16 tests and HexFloatTraits. |
| } // anonymous namespace |