blob: 03d6fe1457244b6283982edf0761d0933493feae [file] [log] [blame]
//
// Copyright (C) 2013-2016 LunarG, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#ifndef GLSLANG_WEB
#include "../Include/Common.h"
#include "reflection.h"
#include "LiveTraverser.h"
#include "localintermediate.h"
#include "gl_types.h"
//
// Grow the reflection database through a friend traverser class of TReflection and a
// collection of functions to do a liveness traversal that note what uniforms are used
// in semantically non-dead code.
//
// Can be used multiple times, once per stage, to grow a program reflection.
//
// High-level algorithm for one stage:
//
// 1. Put the entry point on the list of live functions.
//
// 2. Traverse any live function, while skipping if-tests with a compile-time constant
// condition of false, and while adding any encountered function calls to the live
// function list.
//
// Repeat until the live function list is empty.
//
// 3. Add any encountered uniform variables and blocks to the reflection database.
//
// Can be attempted with a failed link, but will return false if recursion had been detected, or
// there wasn't exactly one entry point.
//
namespace glslang {
//
// The traverser: mostly pass through, except
// - processing binary nodes to see if they are dereferences of an aggregates to track
// - processing symbol nodes to see if they are non-aggregate objects to track
//
// This ignores semantically dead code by using TLiveTraverser.
//
// This is in the glslang namespace directly so it can be a friend of TReflection.
//
class TReflectionTraverser : public TIntermTraverser {
public:
TReflectionTraverser(const TIntermediate& i, TReflection& r) :
TIntermTraverser(), intermediate(i), reflection(r), updateStageMasks(true) { }
virtual bool visitBinary(TVisit, TIntermBinary* node);
virtual void visitSymbol(TIntermSymbol* base);
// Add a simple reference to a uniform variable to the uniform database, no dereference involved.
// However, no dereference doesn't mean simple... it could be a complex aggregate.
void addUniform(const TIntermSymbol& base)
{
if (processedDerefs.find(&base) == processedDerefs.end()) {
processedDerefs.insert(&base);
int blockIndex = -1;
int offset = -1;
TList<TIntermBinary*> derefs;
TString baseName = base.getName();
if (base.getType().getBasicType() == EbtBlock) {
offset = 0;
bool anonymous = IsAnonymous(baseName);
const TString& blockName = base.getType().getTypeName();
if (!anonymous)
baseName = blockName;
else
baseName = "";
blockIndex = addBlockName(blockName, base.getType(), intermediate.getBlockSize(base.getType()));
}
// Use a degenerate (empty) set of dereferences to immediately put as at the end of
// the dereference change expected by blowUpActiveAggregate.
blowUpActiveAggregate(base.getType(), baseName, derefs, derefs.end(), offset, blockIndex, 0, -1, 0,
base.getQualifier().storage, updateStageMasks);
}
}
void addPipeIOVariable(const TIntermSymbol& base)
{
if (processedDerefs.find(&base) == processedDerefs.end()) {
processedDerefs.insert(&base);
const TString &name = base.getName();
const TType &type = base.getType();
const bool input = base.getQualifier().isPipeInput();
TReflection::TMapIndexToReflection &ioItems =
input ? reflection.indexToPipeInput : reflection.indexToPipeOutput;
TReflection::TNameToIndex &ioMapper =
input ? reflection.pipeInNameToIndex : reflection.pipeOutNameToIndex;
if (reflection.options & EShReflectionUnwrapIOBlocks) {
bool anonymous = IsAnonymous(name);
TString baseName;
if (type.getBasicType() == EbtBlock) {
baseName = anonymous ? TString() : type.getTypeName();
} else {
baseName = anonymous ? TString() : name;
}
// by convention if this is an arrayed block we ignore the array in the reflection
if (type.isArray() && type.getBasicType() == EbtBlock) {
blowUpIOAggregate(input, baseName, TType(type, 0));
} else {
blowUpIOAggregate(input, baseName, type);
}
} else {
TReflection::TNameToIndex::const_iterator it = ioMapper.find(name.c_str());
if (it == ioMapper.end()) {
// seperate pipe i/o params from uniforms and blocks
// in is only for input in first stage as out is only for last stage. check traverse in call stack.
ioMapper[name.c_str()] = static_cast<int>(ioItems.size());
ioItems.push_back(
TObjectReflection(name.c_str(), type, 0, mapToGlType(type), mapToGlArraySize(type), 0));
EShLanguageMask& stages = ioItems.back().stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
} else {
EShLanguageMask& stages = ioItems[it->second].stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
}
}
}
}
// Lookup or calculate the offset of all block members at once, using the recursively
// defined block offset rules.
void getOffsets(const TType& type, TVector<int>& offsets)
{
const TTypeList& memberList = *type.getStruct();
int memberSize = 0;
int offset = 0;
for (size_t m = 0; m < offsets.size(); ++m) {
// if the user supplied an offset, snap to it now
if (memberList[m].type->getQualifier().hasOffset())
offset = memberList[m].type->getQualifier().layoutOffset;
// calculate the offset of the next member and align the current offset to this member
intermediate.updateOffset(type, *memberList[m].type, offset, memberSize);
// save the offset of this member
offsets[m] = offset;
// update for the next member
offset += memberSize;
}
}
// Calculate the stride of an array type
int getArrayStride(const TType& baseType, const TType& type)
{
int dummySize;
int stride;
// consider blocks to have 0 stride, so that all offsets are relative to the start of their block
if (type.getBasicType() == EbtBlock)
return 0;
TLayoutMatrix subMatrixLayout = type.getQualifier().layoutMatrix;
intermediate.getMemberAlignment(type, dummySize, stride,
baseType.getQualifier().layoutPacking,
subMatrixLayout != ElmNone
? subMatrixLayout == ElmRowMajor
: baseType.getQualifier().layoutMatrix == ElmRowMajor);
return stride;
}
// count the total number of leaf members from iterating out of a block type
int countAggregateMembers(const TType& parentType)
{
if (! parentType.isStruct())
return 1;
const bool strictArraySuffix = (reflection.options & EShReflectionStrictArraySuffix);
bool blockParent = (parentType.getBasicType() == EbtBlock && parentType.getQualifier().storage == EvqBuffer);
const TTypeList &memberList = *parentType.getStruct();
int ret = 0;
for (size_t i = 0; i < memberList.size(); i++)
{
const TType &memberType = *memberList[i].type;
int numMembers = countAggregateMembers(memberType);
// for sized arrays of structs, apply logic to expand out the same as we would below in
// blowUpActiveAggregate
if (memberType.isArray() && ! memberType.getArraySizes()->hasUnsized() && memberType.isStruct()) {
if (! strictArraySuffix || ! blockParent)
numMembers *= memberType.getArraySizes()->getCumulativeSize();
}
ret += numMembers;
}
return ret;
}
// Traverse the provided deref chain, including the base, and
// - build a full reflection-granularity name, array size, etc. entry out of it, if it goes down to that granularity
// - recursively expand any variable array index in the middle of that traversal
// - recursively expand what's left at the end if the deref chain did not reach down to reflection granularity
//
// arraySize tracks, just for the final dereference in the chain, if there was a specific known size.
// A value of 0 for arraySize will mean to use the full array's size.
void blowUpActiveAggregate(const TType& baseType, const TString& baseName, const TList<TIntermBinary*>& derefs,
TList<TIntermBinary*>::const_iterator deref, int offset, int blockIndex, int arraySize,
int topLevelArraySize, int topLevelArrayStride, TStorageQualifier baseStorage, bool active)
{
// when strictArraySuffix is enabled, we closely follow the rules from ARB_program_interface_query.
// Broadly:
// * arrays-of-structs always have a [x] suffix.
// * with array-of-struct variables in the root of a buffer block, only ever return [0].
// * otherwise, array suffixes are added whenever we iterate, even if that means expanding out an array.
const bool strictArraySuffix = (reflection.options & EShReflectionStrictArraySuffix);
// is this variable inside a buffer block. This flag is set back to false after we iterate inside the first array element.
bool blockParent = (baseType.getBasicType() == EbtBlock && baseType.getQualifier().storage == EvqBuffer);
// process the part of the dereference chain that was explicit in the shader
TString name = baseName;
const TType* terminalType = &baseType;
for (; deref != derefs.end(); ++deref) {
TIntermBinary* visitNode = *deref;
terminalType = &visitNode->getType();
int index;
switch (visitNode->getOp()) {
case EOpIndexIndirect: {
int stride = getArrayStride(baseType, visitNode->getLeft()->getType());
if (topLevelArrayStride == 0)
topLevelArrayStride = stride;
// Visit all the indices of this array, and for each one add on the remaining dereferencing
for (int i = 0; i < std::max(visitNode->getLeft()->getType().getOuterArraySize(), 1); ++i) {
TString newBaseName = name;
if (terminalType->getBasicType() == EbtBlock) {}
else if (strictArraySuffix && blockParent)
newBaseName.append(TString("[0]"));
else if (strictArraySuffix || baseType.getBasicType() != EbtBlock)
newBaseName.append(TString("[") + String(i) + "]");
TList<TIntermBinary*>::const_iterator nextDeref = deref;
++nextDeref;
blowUpActiveAggregate(*terminalType, newBaseName, derefs, nextDeref, offset, blockIndex, arraySize,
topLevelArraySize, topLevelArrayStride, baseStorage, active);
if (offset >= 0)
offset += stride;
}
// it was all completed in the recursive calls above
return;
}
case EOpIndexDirect: {
int stride = getArrayStride(baseType, visitNode->getLeft()->getType());
index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
if (terminalType->getBasicType() == EbtBlock) {}
else if (strictArraySuffix && blockParent)
name.append(TString("[0]"));
else if (strictArraySuffix || baseType.getBasicType() != EbtBlock) {
name.append(TString("[") + String(index) + "]");
if (offset >= 0)
offset += stride * index;
}
if (topLevelArrayStride == 0)
topLevelArrayStride = stride;
// expand top-level arrays in blocks with [0] suffix
if (topLevelArrayStride != 0 && visitNode->getLeft()->getType().isArray()) {
blockParent = false;
}
break;
}
case EOpIndexDirectStruct:
index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
if (offset >= 0)
offset += intermediate.getOffset(visitNode->getLeft()->getType(), index);
if (name.size() > 0)
name.append(".");
name.append((*visitNode->getLeft()->getType().getStruct())[index].type->getFieldName());
// expand non top-level arrays with [x] suffix
if (visitNode->getLeft()->getType().getBasicType() != EbtBlock && terminalType->isArray())
{
blockParent = false;
}
break;
default:
break;
}
}
// if the terminalType is still too coarse a granularity, this is still an aggregate to expand, expand it...
if (! isReflectionGranularity(*terminalType)) {
// the base offset of this node, that children are relative to
int baseOffset = offset;
if (terminalType->isArray()) {
// Visit all the indices of this array, and for each one,
// fully explode the remaining aggregate to dereference
int stride = 0;
if (offset >= 0)
stride = getArrayStride(baseType, *terminalType);
int arrayIterateSize = std::max(terminalType->getOuterArraySize(), 1);
// for top-level arrays in blocks, only expand [0] to avoid explosion of items
if ((strictArraySuffix && blockParent) ||
((topLevelArraySize == arrayIterateSize) && (topLevelArrayStride == 0))) {
arrayIterateSize = 1;
}
if (topLevelArrayStride == 0)
topLevelArrayStride = stride;
for (int i = 0; i < arrayIterateSize; ++i) {
TString newBaseName = name;
if (terminalType->getBasicType() != EbtBlock)
newBaseName.append(TString("[") + String(i) + "]");
TType derefType(*terminalType, 0);
if (offset >= 0)
offset = baseOffset + stride * i;
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0,
topLevelArraySize, topLevelArrayStride, baseStorage, active);
}
} else {
// Visit all members of this aggregate, and for each one,
// fully explode the remaining aggregate to dereference
const TTypeList& typeList = *terminalType->getStruct();
TVector<int> memberOffsets;
if (baseOffset >= 0) {
memberOffsets.resize(typeList.size());
getOffsets(*terminalType, memberOffsets);
}
for (int i = 0; i < (int)typeList.size(); ++i) {
TString newBaseName = name;
if (newBaseName.size() > 0)
newBaseName.append(".");
newBaseName.append(typeList[i].type->getFieldName());
TType derefType(*terminalType, i);
if (offset >= 0)
offset = baseOffset + memberOffsets[i];
int arrayStride = topLevelArrayStride;
if (terminalType->getBasicType() == EbtBlock && terminalType->getQualifier().storage == EvqBuffer &&
derefType.isArray()) {
arrayStride = getArrayStride(baseType, derefType);
}
if (topLevelArraySize == -1 && arrayStride == 0 && blockParent)
topLevelArraySize = 1;
if (strictArraySuffix && blockParent) {
// if this member is an array, store the top-level array stride but start the explosion from
// the inner struct type.
if (derefType.isArray() && derefType.isStruct()) {
newBaseName.append("[0]");
auto dimSize = derefType.isUnsizedArray() ? 0 : derefType.getArraySizes()->getDimSize(0);
blowUpActiveAggregate(TType(derefType, 0), newBaseName, derefs, derefs.end(), memberOffsets[i],
blockIndex, 0, dimSize, arrayStride, terminalType->getQualifier().storage, false);
}
else if (derefType.isArray()) {
auto dimSize = derefType.isUnsizedArray() ? 0 : derefType.getArraySizes()->getDimSize(0);
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), memberOffsets[i], blockIndex,
0, dimSize, 0, terminalType->getQualifier().storage, false);
}
else {
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), memberOffsets[i], blockIndex,
0, 1, 0, terminalType->getQualifier().storage, false);
}
} else {
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0,
topLevelArraySize, arrayStride, baseStorage, active);
}
}
}
// it was all completed in the recursive calls above
return;
}
if ((reflection.options & EShReflectionBasicArraySuffix) && terminalType->isArray()) {
name.append(TString("[0]"));
}
// Finally, add a full string to the reflection database, and update the array size if necessary.
// If the dereferenced entity to record is an array, compute the size and update the maximum size.
// there might not be a final array dereference, it could have been copied as an array object
if (arraySize == 0)
arraySize = mapToGlArraySize(*terminalType);
TReflection::TMapIndexToReflection& variables = reflection.GetVariableMapForStorage(baseStorage);
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name.c_str());
if (it == reflection.nameToIndex.end()) {
int uniformIndex = (int)variables.size();
reflection.nameToIndex[name.c_str()] = uniformIndex;
variables.push_back(TObjectReflection(name.c_str(), *terminalType, offset, mapToGlType(*terminalType),
arraySize, blockIndex));
if (terminalType->isArray()) {
variables.back().arrayStride = getArrayStride(baseType, *terminalType);
if (topLevelArrayStride == 0)
topLevelArrayStride = variables.back().arrayStride;
}
if ((reflection.options & EShReflectionSeparateBuffers) && terminalType->isAtomic())
reflection.atomicCounterUniformIndices.push_back(uniformIndex);
variables.back().topLevelArraySize = topLevelArraySize;
variables.back().topLevelArrayStride = topLevelArrayStride;
if ((reflection.options & EShReflectionAllBlockVariables) && active) {
EShLanguageMask& stages = variables.back().stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
}
} else {
if (arraySize > 1) {
int& reflectedArraySize = variables[it->second].size;
reflectedArraySize = std::max(arraySize, reflectedArraySize);
}
if ((reflection.options & EShReflectionAllBlockVariables) && active) {
EShLanguageMask& stages = variables[it->second].stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
}
}
}
// similar to blowUpActiveAggregate, but with simpler rules and no dereferences to follow.
void blowUpIOAggregate(bool input, const TString &baseName, const TType &type)
{
TString name = baseName;
// if the type is still too coarse a granularity, this is still an aggregate to expand, expand it...
if (! isReflectionGranularity(type)) {
if (type.isArray()) {
// Visit all the indices of this array, and for each one,
// fully explode the remaining aggregate to dereference
for (int i = 0; i < std::max(type.getOuterArraySize(), 1); ++i) {
TString newBaseName = name;
newBaseName.append(TString("[") + String(i) + "]");
TType derefType(type, 0);
blowUpIOAggregate(input, newBaseName, derefType);
}
} else {
// Visit all members of this aggregate, and for each one,
// fully explode the remaining aggregate to dereference
const TTypeList& typeList = *type.getStruct();
for (int i = 0; i < (int)typeList.size(); ++i) {
TString newBaseName = name;
if (newBaseName.size() > 0)
newBaseName.append(".");
newBaseName.append(typeList[i].type->getFieldName());
TType derefType(type, i);
blowUpIOAggregate(input, newBaseName, derefType);
}
}
// it was all completed in the recursive calls above
return;
}
if ((reflection.options & EShReflectionBasicArraySuffix) && type.isArray()) {
name.append(TString("[0]"));
}
TReflection::TMapIndexToReflection &ioItems =
input ? reflection.indexToPipeInput : reflection.indexToPipeOutput;
std::string namespacedName = input ? "in " : "out ";
namespacedName += name.c_str();
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(namespacedName);
if (it == reflection.nameToIndex.end()) {
reflection.nameToIndex[namespacedName] = (int)ioItems.size();
ioItems.push_back(
TObjectReflection(name.c_str(), type, 0, mapToGlType(type), mapToGlArraySize(type), 0));
EShLanguageMask& stages = ioItems.back().stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
} else {
EShLanguageMask& stages = ioItems[it->second].stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
}
}
// Add a uniform dereference where blocks/struct/arrays are involved in the access.
// Handles the situation where the left node is at the correct or too coarse a
// granularity for reflection. (That is, further dereferences up the tree will be
// skipped.) Earlier dereferences, down the tree, will be handled
// at the same time, and logged to prevent reprocessing as the tree is traversed.
//
// Note: Other things like the following must be caught elsewhere:
// - a simple non-array, non-struct variable (no dereference even conceivable)
// - an aggregrate consumed en masse, without a dereference
//
// So, this code is for cases like
// - a struct/block dereferencing a member (whether the member is array or not)
// - an array of struct
// - structs/arrays containing the above
//
void addDereferencedUniform(TIntermBinary* topNode)
{
// See if too fine-grained to process (wait to get further down the tree)
const TType& leftType = topNode->getLeft()->getType();
if ((leftType.isVector() || leftType.isMatrix()) && ! leftType.isArray())
return;
// We have an array or structure or block dereference, see if it's a uniform
// based dereference (if not, skip it).
TIntermSymbol* base = findBase(topNode);
if (! base || ! base->getQualifier().isUniformOrBuffer())
return;
// See if we've already processed this (e.g., in the middle of something
// we did earlier), and if so skip it
if (processedDerefs.find(topNode) != processedDerefs.end())
return;
// Process this uniform dereference
int offset = -1;
int blockIndex = -1;
bool anonymous = false;
// See if we need to record the block itself
bool block = base->getBasicType() == EbtBlock;
if (block) {
offset = 0;
anonymous = IsAnonymous(base->getName());
const TString& blockName = base->getType().getTypeName();
TString baseName;
if (! anonymous)
baseName = blockName;
blockIndex = addBlockName(blockName, base->getType(), intermediate.getBlockSize(base->getType()));
if (reflection.options & EShReflectionAllBlockVariables) {
// Use a degenerate (empty) set of dereferences to immediately put as at the end of
// the dereference change expected by blowUpActiveAggregate.
TList<TIntermBinary*> derefs;
// otherwise - if we're not using strict array suffix rules, or this isn't a block so we are
// expanding root arrays anyway, just start the iteration from the base block type.
blowUpActiveAggregate(base->getType(), baseName, derefs, derefs.end(), 0, blockIndex, 0, -1, 0,
base->getQualifier().storage, false);
}
}
// Process the dereference chain, backward, accumulating the pieces for later forward traversal.
// If the topNode is a reflection-granularity-array dereference, don't include that last dereference.
TList<TIntermBinary*> derefs;
for (TIntermBinary* visitNode = topNode; visitNode; visitNode = visitNode->getLeft()->getAsBinaryNode()) {
if (isReflectionGranularity(visitNode->getLeft()->getType()))
continue;
derefs.push_front(visitNode);
processedDerefs.insert(visitNode);
}
processedDerefs.insert(base);
// See if we have a specific array size to stick to while enumerating the explosion of the aggregate
int arraySize = 0;
if (isReflectionGranularity(topNode->getLeft()->getType()) && topNode->getLeft()->isArray()) {
if (topNode->getOp() == EOpIndexDirect)
arraySize = topNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst() + 1;
}
// Put the dereference chain together, forward
TString baseName;
if (! anonymous) {
if (block)
baseName = base->getType().getTypeName();
else
baseName = base->getName();
}
blowUpActiveAggregate(base->getType(), baseName, derefs, derefs.begin(), offset, blockIndex, arraySize, -1, 0,
base->getQualifier().storage, true);
}
int addBlockName(const TString& name, const TType& type, int size)
{
int blockIndex;
if (type.isArray()) {
TType derefType(type, 0);
for (int e = 0; e < type.getOuterArraySize(); ++e) {
int memberBlockIndex = addBlockName(name + "[" + String(e) + "]", derefType, size);
if (e == 0)
blockIndex = memberBlockIndex;
}
} else {
TReflection::TMapIndexToReflection& blocks = reflection.GetBlockMapForStorage(type.getQualifier().storage);
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name.c_str());
if (reflection.nameToIndex.find(name.c_str()) == reflection.nameToIndex.end()) {
blockIndex = (int)blocks.size();
reflection.nameToIndex[name.c_str()] = blockIndex;
blocks.push_back(TObjectReflection(name.c_str(), type, -1, -1, size, blockIndex));
blocks.back().numMembers = countAggregateMembers(type);
EShLanguageMask& stages = blocks.back().stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
}
else {
blockIndex = it->second;
EShLanguageMask& stages = blocks[blockIndex].stages;
stages = static_cast<EShLanguageMask>(stages | 1 << intermediate.getStage());
}
}
return blockIndex;
}
// Are we at a level in a dereference chain at which individual active uniform queries are made?
bool isReflectionGranularity(const TType& type)
{
return type.getBasicType() != EbtBlock && type.getBasicType() != EbtStruct && !type.isArrayOfArrays();
}
// For a binary operation indexing into an aggregate, chase down the base of the aggregate.
// Return 0 if the topology does not fit this situation.
TIntermSymbol* findBase(const TIntermBinary* node)
{
TIntermSymbol *base = node->getLeft()->getAsSymbolNode();
if (base)
return base;
TIntermBinary* left = node->getLeft()->getAsBinaryNode();
if (! left)
return nullptr;
return findBase(left);
}
//
// Translate a glslang sampler type into the GL API #define number.
//
int mapSamplerToGlType(TSampler sampler)
{
if (! sampler.image) {
// a sampler...
switch (sampler.type) {
case EbtFloat:
switch ((int)sampler.dim) {
case Esd1D:
switch ((int)sampler.shadow) {
case false: return sampler.arrayed ? GL_SAMPLER_1D_ARRAY : GL_SAMPLER_1D;
case true: return sampler.arrayed ? GL_SAMPLER_1D_ARRAY_SHADOW : GL_SAMPLER_1D_SHADOW;
}
case Esd2D:
switch ((int)sampler.ms) {
case false:
switch ((int)sampler.shadow) {
case false: return sampler.arrayed ? GL_SAMPLER_2D_ARRAY : GL_SAMPLER_2D;
case true: return sampler.arrayed ? GL_SAMPLER_2D_ARRAY_SHADOW : GL_SAMPLER_2D_SHADOW;
}
case true: return sampler.arrayed ? GL_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_SAMPLER_2D_MULTISAMPLE;
}
case Esd3D:
return GL_SAMPLER_3D;
case EsdCube:
switch ((int)sampler.shadow) {
case false: return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY : GL_SAMPLER_CUBE;
case true: return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW : GL_SAMPLER_CUBE_SHADOW;
}
case EsdRect:
return sampler.shadow ? GL_SAMPLER_2D_RECT_SHADOW : GL_SAMPLER_2D_RECT;
case EsdBuffer:
return GL_SAMPLER_BUFFER;
}
case EbtFloat16:
switch ((int)sampler.dim) {
case Esd1D:
switch ((int)sampler.shadow) {
case false: return sampler.arrayed ? GL_FLOAT16_SAMPLER_1D_ARRAY_AMD : GL_FLOAT16_SAMPLER_1D_AMD;
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_1D_ARRAY_SHADOW_AMD : GL_FLOAT16_SAMPLER_1D_SHADOW_AMD;
}
case Esd2D:
switch ((int)sampler.ms) {
case false:
switch ((int)sampler.shadow) {
case false: return sampler.arrayed ? GL_FLOAT16_SAMPLER_2D_ARRAY_AMD : GL_FLOAT16_SAMPLER_2D_AMD;
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_2D_ARRAY_SHADOW_AMD : GL_FLOAT16_SAMPLER_2D_SHADOW_AMD;
}
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_2D_MULTISAMPLE_ARRAY_AMD : GL_FLOAT16_SAMPLER_2D_MULTISAMPLE_AMD;
}
case Esd3D:
return GL_FLOAT16_SAMPLER_3D_AMD;
case EsdCube:
switch ((int)sampler.shadow) {
case false: return sampler.arrayed ? GL_FLOAT16_SAMPLER_CUBE_MAP_ARRAY_AMD : GL_FLOAT16_SAMPLER_CUBE_AMD;
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_CUBE_MAP_ARRAY_SHADOW_AMD : GL_FLOAT16_SAMPLER_CUBE_SHADOW_AMD;
}
case EsdRect:
return sampler.shadow ? GL_FLOAT16_SAMPLER_2D_RECT_SHADOW_AMD : GL_FLOAT16_SAMPLER_2D_RECT_AMD;
case EsdBuffer:
return GL_FLOAT16_SAMPLER_BUFFER_AMD;
}
case EbtInt:
switch ((int)sampler.dim) {
case Esd1D:
return sampler.arrayed ? GL_INT_SAMPLER_1D_ARRAY : GL_INT_SAMPLER_1D;
case Esd2D:
switch ((int)sampler.ms) {
case false: return sampler.arrayed ? GL_INT_SAMPLER_2D_ARRAY : GL_INT_SAMPLER_2D;
case true: return sampler.arrayed ? GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY
: GL_INT_SAMPLER_2D_MULTISAMPLE;
}
case Esd3D:
return GL_INT_SAMPLER_3D;
case EsdCube:
return sampler.arrayed ? GL_INT_SAMPLER_CUBE_MAP_ARRAY : GL_INT_SAMPLER_CUBE;
case EsdRect:
return GL_INT_SAMPLER_2D_RECT;
case EsdBuffer:
return GL_INT_SAMPLER_BUFFER;
}
case EbtUint:
switch ((int)sampler.dim) {
case Esd1D:
return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_1D_ARRAY : GL_UNSIGNED_INT_SAMPLER_1D;
case Esd2D:
switch ((int)sampler.ms) {
case false: return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_ARRAY : GL_UNSIGNED_INT_SAMPLER_2D;
case true: return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY
: GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE;
}
case Esd3D:
return GL_UNSIGNED_INT_SAMPLER_3D;
case EsdCube:
return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_SAMPLER_CUBE;
case EsdRect:
return GL_UNSIGNED_INT_SAMPLER_2D_RECT;
case EsdBuffer:
return GL_UNSIGNED_INT_SAMPLER_BUFFER;
}
default:
return 0;
}
} else {
// an image...
switch (sampler.type) {
case EbtFloat:
switch ((int)sampler.dim) {
case Esd1D:
return sampler.arrayed ? GL_IMAGE_1D_ARRAY : GL_IMAGE_1D;
case Esd2D:
switch ((int)sampler.ms) {
case false: return sampler.arrayed ? GL_IMAGE_2D_ARRAY : GL_IMAGE_2D;
case true: return sampler.arrayed ? GL_IMAGE_2D_MULTISAMPLE_ARRAY : GL_IMAGE_2D_MULTISAMPLE;
}
case Esd3D:
return GL_IMAGE_3D;
case EsdCube:
return sampler.arrayed ? GL_IMAGE_CUBE_MAP_ARRAY : GL_IMAGE_CUBE;
case EsdRect:
return GL_IMAGE_2D_RECT;
case EsdBuffer:
return GL_IMAGE_BUFFER;
}
case EbtFloat16:
switch ((int)sampler.dim) {
case Esd1D:
return sampler.arrayed ? GL_FLOAT16_IMAGE_1D_ARRAY_AMD : GL_FLOAT16_IMAGE_1D_AMD;
case Esd2D:
switch ((int)sampler.ms) {
case false: return sampler.arrayed ? GL_FLOAT16_IMAGE_2D_ARRAY_AMD : GL_FLOAT16_IMAGE_2D_AMD;
case true: return sampler.arrayed ? GL_FLOAT16_IMAGE_2D_MULTISAMPLE_ARRAY_AMD : GL_FLOAT16_IMAGE_2D_MULTISAMPLE_AMD;
}
case Esd3D:
return GL_FLOAT16_IMAGE_3D_AMD;
case EsdCube:
return sampler.arrayed ? GL_FLOAT16_IMAGE_CUBE_MAP_ARRAY_AMD : GL_FLOAT16_IMAGE_CUBE_AMD;
case EsdRect:
return GL_FLOAT16_IMAGE_2D_RECT_AMD;
case EsdBuffer:
return GL_FLOAT16_IMAGE_BUFFER_AMD;
}
case EbtInt:
switch ((int)sampler.dim) {
case Esd1D:
return sampler.arrayed ? GL_INT_IMAGE_1D_ARRAY : GL_INT_IMAGE_1D;
case Esd2D:
switch ((int)sampler.ms) {
case false: return sampler.arrayed ? GL_INT_IMAGE_2D_ARRAY : GL_INT_IMAGE_2D;
case true: return sampler.arrayed ? GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY : GL_INT_IMAGE_2D_MULTISAMPLE;
}
case Esd3D:
return GL_INT_IMAGE_3D;
case EsdCube:
return sampler.arrayed ? GL_INT_IMAGE_CUBE_MAP_ARRAY : GL_INT_IMAGE_CUBE;
case EsdRect:
return GL_INT_IMAGE_2D_RECT;
case EsdBuffer:
return GL_INT_IMAGE_BUFFER;
}
case EbtUint:
switch ((int)sampler.dim) {
case Esd1D:
return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_1D_ARRAY : GL_UNSIGNED_INT_IMAGE_1D;
case Esd2D:
switch ((int)sampler.ms) {
case false: return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_ARRAY : GL_UNSIGNED_INT_IMAGE_2D;
case true: return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY
: GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE;
}
case Esd3D:
return GL_UNSIGNED_INT_IMAGE_3D;
case EsdCube:
return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_IMAGE_CUBE;
case EsdRect:
return GL_UNSIGNED_INT_IMAGE_2D_RECT;
case EsdBuffer:
return GL_UNSIGNED_INT_IMAGE_BUFFER;
}
default:
return 0;
}
}
}
//
// Translate a glslang type into the GL API #define number.
// Ignores arrayness.
//
int mapToGlType(const TType& type)
{
switch (type.getBasicType()) {
case EbtSampler:
return mapSamplerToGlType(type.getSampler());
case EbtStruct:
case EbtBlock:
case EbtVoid:
return 0;
default:
break;
}
if (type.isVector()) {
int offset = type.getVectorSize() - 2;
switch (type.getBasicType()) {
case EbtFloat: return GL_FLOAT_VEC2 + offset;
case EbtDouble: return GL_DOUBLE_VEC2 + offset;
case EbtFloat16: return GL_FLOAT16_VEC2_NV + offset;
case EbtInt: return GL_INT_VEC2 + offset;
case EbtUint: return GL_UNSIGNED_INT_VEC2 + offset;
case EbtInt64: return GL_INT64_ARB + offset;
case EbtUint64: return GL_UNSIGNED_INT64_ARB + offset;
case EbtBool: return GL_BOOL_VEC2 + offset;
case EbtAtomicUint: return GL_UNSIGNED_INT_ATOMIC_COUNTER + offset;
default: return 0;
}
}
if (type.isMatrix()) {
switch (type.getBasicType()) {
case EbtFloat:
switch (type.getMatrixCols()) {
case 2:
switch (type.getMatrixRows()) {
case 2: return GL_FLOAT_MAT2;
case 3: return GL_FLOAT_MAT2x3;
case 4: return GL_FLOAT_MAT2x4;
default: return 0;
}
case 3:
switch (type.getMatrixRows()) {
case 2: return GL_FLOAT_MAT3x2;
case 3: return GL_FLOAT_MAT3;
case 4: return GL_FLOAT_MAT3x4;
default: return 0;
}
case 4:
switch (type.getMatrixRows()) {
case 2: return GL_FLOAT_MAT4x2;
case 3: return GL_FLOAT_MAT4x3;
case 4: return GL_FLOAT_MAT4;
default: return 0;
}
}
case EbtDouble:
switch (type.getMatrixCols()) {
case 2:
switch (type.getMatrixRows()) {
case 2: return GL_DOUBLE_MAT2;
case 3: return GL_DOUBLE_MAT2x3;
case 4: return GL_DOUBLE_MAT2x4;
default: return 0;
}
case 3:
switch (type.getMatrixRows()) {
case 2: return GL_DOUBLE_MAT3x2;
case 3: return GL_DOUBLE_MAT3;
case 4: return GL_DOUBLE_MAT3x4;
default: return 0;
}
case 4:
switch (type.getMatrixRows()) {
case 2: return GL_DOUBLE_MAT4x2;
case 3: return GL_DOUBLE_MAT4x3;
case 4: return GL_DOUBLE_MAT4;
default: return 0;
}
}
case EbtFloat16:
switch (type.getMatrixCols()) {
case 2:
switch (type.getMatrixRows()) {
case 2: return GL_FLOAT16_MAT2_AMD;
case 3: return GL_FLOAT16_MAT2x3_AMD;
case 4: return GL_FLOAT16_MAT2x4_AMD;
default: return 0;
}
case 3:
switch (type.getMatrixRows()) {
case 2: return GL_FLOAT16_MAT3x2_AMD;
case 3: return GL_FLOAT16_MAT3_AMD;
case 4: return GL_FLOAT16_MAT3x4_AMD;
default: return 0;
}
case 4:
switch (type.getMatrixRows()) {
case 2: return GL_FLOAT16_MAT4x2_AMD;
case 3: return GL_FLOAT16_MAT4x3_AMD;
case 4: return GL_FLOAT16_MAT4_AMD;
default: return 0;
}
}
default:
return 0;
}
}
if (type.getVectorSize() == 1) {
switch (type.getBasicType()) {
case EbtFloat: return GL_FLOAT;
case EbtDouble: return GL_DOUBLE;
case EbtFloat16: return GL_FLOAT16_NV;
case EbtInt: return GL_INT;
case EbtUint: return GL_UNSIGNED_INT;
case EbtInt64: return GL_INT64_ARB;
case EbtUint64: return GL_UNSIGNED_INT64_ARB;
case EbtBool: return GL_BOOL;
case EbtAtomicUint: return GL_UNSIGNED_INT_ATOMIC_COUNTER;
default: return 0;
}
}
return 0;
}
int mapToGlArraySize(const TType& type)
{
return type.isArray() ? type.getOuterArraySize() : 1;
}
const TIntermediate& intermediate;
TReflection& reflection;
std::set<const TIntermNode*> processedDerefs;
bool updateStageMasks;
protected:
TReflectionTraverser(TReflectionTraverser&);
TReflectionTraverser& operator=(TReflectionTraverser&);
};
//
// Implement the traversal functions of interest.
//
// To catch dereferenced aggregates that must be reflected.
// This catches them at the highest level possible in the tree.
bool TReflectionTraverser::visitBinary(TVisit /* visit */, TIntermBinary* node)
{
switch (node->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
addDereferencedUniform(node);
break;
default:
break;
}
// still need to visit everything below, which could contain sub-expressions
// containing different uniforms
return true;
}
// To reflect non-dereferenced objects.
void TReflectionTraverser::visitSymbol(TIntermSymbol* base)
{
if (base->getQualifier().storage == EvqUniform) {
if (base->getBasicType() == EbtBlock) {
if (reflection.options & EShReflectionSharedStd140UBO) {
addUniform(*base);
}
} else {
addUniform(*base);
}
}
// #TODO add std140/layout active rules for ssbo, same with ubo.
// Storage buffer blocks will be collected and expanding in this part.
if((reflection.options & EShReflectionSharedStd140SSBO) &&
(base->getQualifier().storage == EvqBuffer && base->getBasicType() == EbtBlock &&
(base->getQualifier().layoutPacking == ElpStd140 || base->getQualifier().layoutPacking == ElpShared)))
addUniform(*base);
if ((intermediate.getStage() == reflection.firstStage && base->getQualifier().isPipeInput()) ||
(intermediate.getStage() == reflection.lastStage && base->getQualifier().isPipeOutput()))
addPipeIOVariable(*base);
}
//
// Implement TObjectReflection methods.
//
TObjectReflection::TObjectReflection(const std::string &pName, const TType &pType, int pOffset, int pGLDefineType,
int pSize, int pIndex)
: name(pName), offset(pOffset), glDefineType(pGLDefineType), size(pSize), index(pIndex), counterIndex(-1),
numMembers(-1), arrayStride(0), topLevelArrayStride(0), stages(EShLanguageMask(0)), type(pType.clone())
{
}
int TObjectReflection::getBinding() const
{
if (type == nullptr || !type->getQualifier().hasBinding())
return -1;
return type->getQualifier().layoutBinding;
}
void TObjectReflection::dump() const
{
printf("%s: offset %d, type %x, size %d, index %d, binding %d, stages %d", name.c_str(), offset, glDefineType, size,
index, getBinding(), stages);
if (counterIndex != -1)
printf(", counter %d", counterIndex);
if (numMembers != -1)
printf(", numMembers %d", numMembers);
if (arrayStride != 0)
printf(", arrayStride %d", arrayStride);
if (topLevelArrayStride != 0)
printf(", topLevelArrayStride %d", topLevelArrayStride);
printf("\n");
}
//
// Implement TReflection methods.
//
// Track any required attribute reflection, such as compute shader numthreads.
//
void TReflection::buildAttributeReflection(EShLanguage stage, const TIntermediate& intermediate)
{
if (stage == EShLangCompute) {
// Remember thread dimensions
for (int dim=0; dim<3; ++dim)
localSize[dim] = intermediate.getLocalSize(dim);
}
}
// build counter block index associations for buffers
void TReflection::buildCounterIndices(const TIntermediate& intermediate)
{
#ifdef ENABLE_HLSL
// search for ones that have counters
for (int i = 0; i < int(indexToUniformBlock.size()); ++i) {
const TString counterName(intermediate.addCounterBufferName(indexToUniformBlock[i].name).c_str());
const int index = getIndex(counterName);
if (index >= 0)
indexToUniformBlock[i].counterIndex = index;
}
#endif
}
// build Shader Stages mask for all uniforms
void TReflection::buildUniformStageMask(const TIntermediate& intermediate)
{
if (options & EShReflectionAllBlockVariables)
return;
for (int i = 0; i < int(indexToUniform.size()); ++i) {
indexToUniform[i].stages = static_cast<EShLanguageMask>(indexToUniform[i].stages | 1 << intermediate.getStage());
}
for (int i = 0; i < int(indexToBufferVariable.size()); ++i) {
indexToBufferVariable[i].stages =
static_cast<EShLanguageMask>(indexToBufferVariable[i].stages | 1 << intermediate.getStage());
}
}
// Merge live symbols from 'intermediate' into the existing reflection database.
//
// Returns false if the input is too malformed to do this.
bool TReflection::addStage(EShLanguage stage, const TIntermediate& intermediate)
{
if (intermediate.getTreeRoot() == nullptr ||
intermediate.getNumEntryPoints() != 1 ||
intermediate.isRecursive())
return false;
buildAttributeReflection(stage, intermediate);
TReflectionTraverser it(intermediate, *this);
for (auto& sequnence : intermediate.getTreeRoot()->getAsAggregate()->getSequence()) {
if (sequnence->getAsAggregate() != nullptr) {
if (sequnence->getAsAggregate()->getOp() == glslang::EOpLinkerObjects) {
it.updateStageMasks = false;
TIntermAggregate* linkerObjects = sequnence->getAsAggregate();
for (auto& sequnence : linkerObjects->getSequence()) {
auto pNode = sequnence->getAsSymbolNode();
if (pNode != nullptr) {
if ((pNode->getQualifier().storage == EvqUniform &&
(options & EShReflectionSharedStd140UBO)) ||
(pNode->getQualifier().storage == EvqBuffer &&
(options & EShReflectionSharedStd140SSBO))) {
// collect std140 and shared uniform block form AST
if ((pNode->getBasicType() == EbtBlock) &&
((pNode->getQualifier().layoutPacking == ElpStd140) ||
(pNode->getQualifier().layoutPacking == ElpShared))) {
pNode->traverse(&it);
}
}
else if ((options & EShReflectionAllIOVariables) &&
(pNode->getQualifier().isPipeInput() || pNode->getQualifier().isPipeOutput()))
{
pNode->traverse(&it);
}
}
}
} else {
// This traverser will travers all function in AST.
// If we want reflect uncalled function, we need set linke message EShMsgKeepUncalled.
// When EShMsgKeepUncalled been set to true, all function will be keep in AST, even it is a uncalled function.
// This will keep some uniform variables in reflection, if those uniform variables is used in these uncalled function.
//
// If we just want reflect only live node, we can use a default link message or set EShMsgKeepUncalled false.
// When linke message not been set EShMsgKeepUncalled, linker won't keep uncalled function in AST.
// So, travers all function node can equivalent to travers live function.
it.updateStageMasks = true;
sequnence->getAsAggregate()->traverse(&it);
}
}
}
it.updateStageMasks = true;
buildCounterIndices(intermediate);
buildUniformStageMask(intermediate);
return true;
}
void TReflection::dump()
{
printf("Uniform reflection:\n");
for (size_t i = 0; i < indexToUniform.size(); ++i)
indexToUniform[i].dump();
printf("\n");
printf("Uniform block reflection:\n");
for (size_t i = 0; i < indexToUniformBlock.size(); ++i)
indexToUniformBlock[i].dump();
printf("\n");
printf("Buffer variable reflection:\n");
for (size_t i = 0; i < indexToBufferVariable.size(); ++i)
indexToBufferVariable[i].dump();
printf("\n");
printf("Buffer block reflection:\n");
for (size_t i = 0; i < indexToBufferBlock.size(); ++i)
indexToBufferBlock[i].dump();
printf("\n");
printf("Pipeline input reflection:\n");
for (size_t i = 0; i < indexToPipeInput.size(); ++i)
indexToPipeInput[i].dump();
printf("\n");
printf("Pipeline output reflection:\n");
for (size_t i = 0; i < indexToPipeOutput.size(); ++i)
indexToPipeOutput[i].dump();
printf("\n");
if (getLocalSize(0) > 1) {
static const char* axis[] = { "X", "Y", "Z" };
for (int dim=0; dim<3; ++dim)
if (getLocalSize(dim) > 1)
printf("Local size %s: %u\n", axis[dim], getLocalSize(dim));
printf("\n");
}
// printf("Live names\n");
// for (TNameToIndex::const_iterator it = nameToIndex.begin(); it != nameToIndex.end(); ++it)
// printf("%s: %d\n", it->first.c_str(), it->second);
// printf("\n");
}
} // end namespace glslang
#endif // GLSLANG_WEB