blob: ea503911efa23dee9a6375c391e42ebf6401ba8e [file] [log] [blame]
//
// Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
// Copyright (C) 2012-2015 LunarG, Inc.
// Copyright (C) 2015-2018 Google, Inc.
// Copyright (C) 2017 ARM Limited.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#include "ParseHelper.h"
#include "Scan.h"
#include "../OSDependent/osinclude.h"
#include <algorithm>
#include "preprocessor/PpContext.h"
extern int yyparse(glslang::TParseContext*);
namespace glslang {
TParseContext::TParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
TInfoSink& infoSink, bool forwardCompatible, EShMessages messages,
const TString* entryPoint) :
TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language,
infoSink, forwardCompatible, messages, entryPoint),
inMain(false),
blockName(nullptr),
limits(resources.limits),
atomicUintOffsets(nullptr), anyIndexLimits(false)
{
// decide whether precision qualifiers should be ignored or respected
if (profile == EEsProfile || spvVersion.vulkan > 0) {
precisionManager.respectPrecisionQualifiers();
if (! parsingBuiltins && language == EShLangFragment && profile != EEsProfile && spvVersion.vulkan > 0)
precisionManager.warnAboutDefaults();
}
setPrecisionDefaults();
globalUniformDefaults.clear();
globalUniformDefaults.layoutMatrix = ElmColumnMajor;
globalUniformDefaults.layoutPacking = spvVersion.spv != 0 ? ElpStd140 : ElpShared;
globalBufferDefaults.clear();
globalBufferDefaults.layoutMatrix = ElmColumnMajor;
globalBufferDefaults.layoutPacking = spvVersion.spv != 0 ? ElpStd430 : ElpShared;
// use storage buffer on SPIR-V 1.3 and up
if (spvVersion.spv >= EShTargetSpv_1_3)
intermediate.setUseStorageBuffer();
globalInputDefaults.clear();
globalOutputDefaults.clear();
// "Shaders in the transform
// feedback capturing mode have an initial global default of
// layout(xfb_buffer = 0) out;"
if (language == EShLangVertex ||
language == EShLangTessControl ||
language == EShLangTessEvaluation ||
language == EShLangGeometry)
globalOutputDefaults.layoutXfbBuffer = 0;
if (language == EShLangGeometry)
globalOutputDefaults.layoutStream = 0;
if (entryPoint != nullptr && entryPoint->size() > 0 && *entryPoint != "main")
infoSink.info.message(EPrefixError, "Source entry point must be \"main\"");
}
TParseContext::~TParseContext()
{
delete [] atomicUintOffsets;
}
// Set up all default precisions as needed by the current environment.
// Intended just as a TParseContext constructor helper.
void TParseContext::setPrecisionDefaults()
{
// Set all precision defaults to EpqNone, which is correct for all types
// when not obeying precision qualifiers, and correct for types that don't
// have defaults (thus getting an error on use) when obeying precision
// qualifiers.
for (int type = 0; type < EbtNumTypes; ++type)
defaultPrecision[type] = EpqNone;
for (int type = 0; type < maxSamplerIndex; ++type)
defaultSamplerPrecision[type] = EpqNone;
// replace with real precision defaults for those that have them
if (obeyPrecisionQualifiers()) {
if (profile == EEsProfile) {
// Most don't have defaults, a few default to lowp.
TSampler sampler;
sampler.set(EbtFloat, Esd2D);
defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow;
sampler.set(EbtFloat, EsdCube);
defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow;
sampler.set(EbtFloat, Esd2D);
sampler.external = true;
defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow;
}
// If we are parsing built-in computational variables/functions, it is meaningful to record
// whether the built-in has no precision qualifier, as that ambiguity
// is used to resolve the precision from the supplied arguments/operands instead.
// So, we don't actually want to replace EpqNone with a default precision for built-ins.
if (! parsingBuiltins) {
if (profile == EEsProfile && language == EShLangFragment) {
defaultPrecision[EbtInt] = EpqMedium;
defaultPrecision[EbtUint] = EpqMedium;
} else {
defaultPrecision[EbtInt] = EpqHigh;
defaultPrecision[EbtUint] = EpqHigh;
defaultPrecision[EbtFloat] = EpqHigh;
}
if (profile != EEsProfile) {
// Non-ES profile
// All sampler precisions default to highp.
for (int type = 0; type < maxSamplerIndex; ++type)
defaultSamplerPrecision[type] = EpqHigh;
}
}
defaultPrecision[EbtSampler] = EpqLow;
defaultPrecision[EbtAtomicUint] = EpqHigh;
}
}
void TParseContext::setLimits(const TBuiltInResource& r)
{
resources = r;
anyIndexLimits = ! limits.generalAttributeMatrixVectorIndexing ||
! limits.generalConstantMatrixVectorIndexing ||
! limits.generalSamplerIndexing ||
! limits.generalUniformIndexing ||
! limits.generalVariableIndexing ||
! limits.generalVaryingIndexing;
intermediate.setLimits(resources);
// "Each binding point tracks its own current default offset for
// inheritance of subsequent variables using the same binding. The initial state of compilation is that all
// binding points have an offset of 0."
atomicUintOffsets = new int[resources.maxAtomicCounterBindings];
for (int b = 0; b < resources.maxAtomicCounterBindings; ++b)
atomicUintOffsets[b] = 0;
}
//
// Parse an array of strings using yyparse, going through the
// preprocessor to tokenize the shader strings, then through
// the GLSL scanner.
//
// Returns true for successful acceptance of the shader, false if any errors.
//
bool TParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
{
currentScanner = &input;
ppContext.setInput(input, versionWillBeError);
yyparse(this);
finish();
return numErrors == 0;
}
// This is called from bison when it has a parse (syntax) error
// Note though that to stop cascading errors, we set EOF, which
// will usually cause a syntax error, so be more accurate that
// compilation is terminating.
void TParseContext::parserError(const char* s)
{
if (! getScanner()->atEndOfInput() || numErrors == 0)
error(getCurrentLoc(), "", "", s, "");
else
error(getCurrentLoc(), "compilation terminated", "", "");
}
void TParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
{
if (pragmaCallback)
pragmaCallback(loc.line, tokens);
if (tokens.size() == 0)
return;
if (tokens[0].compare("optimize") == 0) {
if (tokens.size() != 4) {
error(loc, "optimize pragma syntax is incorrect", "#pragma", "");
return;
}
if (tokens[1].compare("(") != 0) {
error(loc, "\"(\" expected after 'optimize' keyword", "#pragma", "");
return;
}
if (tokens[2].compare("on") == 0)
contextPragma.optimize = true;
else if (tokens[2].compare("off") == 0)
contextPragma.optimize = false;
else {
error(loc, "\"on\" or \"off\" expected after '(' for 'optimize' pragma", "#pragma", "");
return;
}
if (tokens[3].compare(")") != 0) {
error(loc, "\")\" expected to end 'optimize' pragma", "#pragma", "");
return;
}
} else if (tokens[0].compare("debug") == 0) {
if (tokens.size() != 4) {
error(loc, "debug pragma syntax is incorrect", "#pragma", "");
return;
}
if (tokens[1].compare("(") != 0) {
error(loc, "\"(\" expected after 'debug' keyword", "#pragma", "");
return;
}
if (tokens[2].compare("on") == 0)
contextPragma.debug = true;
else if (tokens[2].compare("off") == 0)
contextPragma.debug = false;
else {
error(loc, "\"on\" or \"off\" expected after '(' for 'debug' pragma", "#pragma", "");
return;
}
if (tokens[3].compare(")") != 0) {
error(loc, "\")\" expected to end 'debug' pragma", "#pragma", "");
return;
}
} else if (spvVersion.spv > 0 && tokens[0].compare("use_storage_buffer") == 0) {
if (tokens.size() != 1)
error(loc, "extra tokens", "#pragma", "");
intermediate.setUseStorageBuffer();
} else if (spvVersion.spv > 0 && tokens[0].compare("use_vulkan_memory_model") == 0) {
if (tokens.size() != 1)
error(loc, "extra tokens", "#pragma", "");
intermediate.setUseVulkanMemoryModel();
} else if (tokens[0].compare("once") == 0) {
warn(loc, "not implemented", "#pragma once", "");
} else if (tokens[0].compare("glslang_binary_double_output") == 0)
intermediate.setBinaryDoubleOutput();
}
//
// Handle seeing a variable identifier in the grammar.
//
TIntermTyped* TParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string)
{
TIntermTyped* node = nullptr;
// Error check for requiring specific extensions present.
if (symbol && symbol->getNumExtensions())
requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str());
if (symbol && symbol->isReadOnly()) {
// All shared things containing an unsized array must be copied up
// on first use, so that all future references will share its array structure,
// so that editing the implicit size will effect all nodes consuming it,
// and so that editing the implicit size won't change the shared one.
//
// If this is a variable or a block, check it and all it contains, but if this
// is a member of an anonymous block, check the whole block, as the whole block
// will need to be copied up if it contains an unsized array.
if (symbol->getType().containsUnsizedArray() ||
(symbol->getAsAnonMember() &&
symbol->getAsAnonMember()->getAnonContainer().getType().containsUnsizedArray()))
makeEditable(symbol);
}
const TVariable* variable;
const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
if (anon) {
// It was a member of an anonymous container.
// Create a subtree for its dereference.
variable = anon->getAnonContainer().getAsVariable();
TIntermTyped* container = intermediate.addSymbol(*variable, loc);
TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
if (node->getType().hiddenMember())
error(loc, "member of nameless block was not redeclared", string->c_str(), "");
} else {
// Not a member of an anonymous container.
// The symbol table search was done in the lexical phase.
// See if it was a variable.
variable = symbol ? symbol->getAsVariable() : nullptr;
if (variable) {
if ((variable->getType().getBasicType() == EbtBlock ||
variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
variable = nullptr;
}
} else {
if (symbol)
error(loc, "variable name expected", string->c_str(), "");
}
// Recovery, if it wasn't found or was not a variable.
if (! variable)
variable = new TVariable(string, TType(EbtVoid));
if (variable->getType().getQualifier().isFrontEndConstant())
node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
else
node = intermediate.addSymbol(*variable, loc);
}
if (variable->getType().getQualifier().isIo())
intermediate.addIoAccessed(*string);
if (variable->getType().getBasicType() == EbtReference &&
variable->getType().getQualifier().isMemory()) {
intermediate.setUseVulkanMemoryModel();
}
return node;
}
//
// Handle seeing a base[index] dereference in the grammar.
//
TIntermTyped* TParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
{
int indexValue = 0;
if (index->getQualifier().isFrontEndConstant())
indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
// basic type checks...
variableCheck(base);
if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
if (base->getAsSymbolNode())
error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), "");
else
error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
// Insert dummy error-recovery result
return intermediate.addConstantUnion(0.0, EbtFloat, loc);
}
if (!base->isArray() && base->isVector()) {
if (base->getType().containsBasicType(EbtFloat16))
requireFloat16Arithmetic(loc, "[", "does not operate on types containing float16");
if (base->getType().contains16BitInt())
requireInt16Arithmetic(loc, "[", "does not operate on types containing (u)int16");
if (base->getType().contains8BitInt())
requireInt8Arithmetic(loc, "[", "does not operate on types containing (u)int8");
}
// check for constant folding
if (base->getType().getQualifier().isFrontEndConstant() && index->getQualifier().isFrontEndConstant()) {
// both base and index are front-end constants
checkIndex(loc, base->getType(), indexValue);
return intermediate.foldDereference(base, indexValue, loc);
}
// at least one of base and index is not a front-end constant variable...
TIntermTyped* result = nullptr;
if (index->getQualifier().isFrontEndConstant())
checkIndex(loc, base->getType(), indexValue);
if (base->getAsSymbolNode() && isIoResizeArray(base->getType()))
handleIoResizeArrayAccess(loc, base);
if (index->getQualifier().isFrontEndConstant()) {
if (base->getType().isUnsizedArray()) {
base->getWritableType().updateImplicitArraySize(indexValue + 1);
#ifdef NV_EXTENSIONS
// For 2D per-view builtin arrays, update the inner dimension size in parent type
if (base->getQualifier().isPerView() && base->getQualifier().builtIn != EbvNone) {
TIntermBinary* binaryNode = base->getAsBinaryNode();
if (binaryNode) {
TType& leftType = binaryNode->getLeft()->getWritableType();
TArraySizes& arraySizes = *leftType.getArraySizes();
assert(arraySizes.getNumDims() == 2);
arraySizes.setDimSize(1, std::max(arraySizes.getDimSize(1), indexValue + 1));
}
}
#endif
} else
checkIndex(loc, base->getType(), indexValue);
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
} else {
if (base->getType().isUnsizedArray()) {
// we have a variable index into an unsized array, which is okay,
// depending on the situation
if (base->getAsSymbolNode() && isIoResizeArray(base->getType()))
error(loc, "", "[", "array must be sized by a redeclaration or layout qualifier before being indexed with a variable");
else {
// it is okay for a run-time sized array
checkRuntimeSizable(loc, *base);
}
base->getWritableType().setArrayVariablyIndexed();
}
if (base->getBasicType() == EbtBlock) {
if (base->getQualifier().storage == EvqBuffer)
requireProfile(base->getLoc(), ~EEsProfile, "variable indexing buffer block array");
else if (base->getQualifier().storage == EvqUniform)
profileRequires(base->getLoc(), EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5,
"variable indexing uniform block array");
else {
// input/output blocks either don't exist or can be variable indexed
}
} else if (language == EShLangFragment && base->getQualifier().isPipeOutput())
requireProfile(base->getLoc(), ~EEsProfile, "variable indexing fragment shader output array");
else if (base->getBasicType() == EbtSampler && version >= 130) {
const char* explanation = "variable indexing sampler array";
requireProfile(base->getLoc(), EEsProfile | ECoreProfile | ECompatibilityProfile, explanation);
profileRequires(base->getLoc(), EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, explanation);
profileRequires(base->getLoc(), ECoreProfile | ECompatibilityProfile, 400, nullptr, explanation);
}
result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
}
// Insert valid dereferenced result
TType newType(base->getType(), 0); // dereferenced type
if (base->getType().getQualifier().isConstant() && index->getQualifier().isConstant()) {
newType.getQualifier().storage = EvqConst;
// If base or index is a specialization constant, the result should also be a specialization constant.
if (base->getType().getQualifier().isSpecConstant() || index->getQualifier().isSpecConstant()) {
newType.getQualifier().makeSpecConstant();
}
} else {
newType.getQualifier().makePartialTemporary();
}
result->setType(newType);
// Propagate nonuniform
if (base->getQualifier().isNonUniform() || index->getQualifier().isNonUniform())
result->getWritableType().getQualifier().nonUniform = true;
if (anyIndexLimits)
handleIndexLimits(loc, base, index);
return result;
}
// for ES 2.0 (version 100) limitations for almost all index operations except vertex-shader uniforms
void TParseContext::handleIndexLimits(const TSourceLoc& /*loc*/, TIntermTyped* base, TIntermTyped* index)
{
if ((! limits.generalSamplerIndexing && base->getBasicType() == EbtSampler) ||
(! limits.generalUniformIndexing && base->getQualifier().isUniformOrBuffer() && language != EShLangVertex) ||
(! limits.generalAttributeMatrixVectorIndexing && base->getQualifier().isPipeInput() && language == EShLangVertex && (base->getType().isMatrix() || base->getType().isVector())) ||
(! limits.generalConstantMatrixVectorIndexing && base->getAsConstantUnion()) ||
(! limits.generalVariableIndexing && ! base->getType().getQualifier().isUniformOrBuffer() &&
! base->getType().getQualifier().isPipeInput() &&
! base->getType().getQualifier().isPipeOutput() &&
! base->getType().getQualifier().isConstant()) ||
(! limits.generalVaryingIndexing && (base->getType().getQualifier().isPipeInput() ||
base->getType().getQualifier().isPipeOutput()))) {
// it's too early to know what the inductive variables are, save it for post processing
needsIndexLimitationChecking.push_back(index);
}
}
// Make a shared symbol have a non-shared version that can be edited by the current
// compile, such that editing its type will not change the shared version and will
// effect all nodes sharing it.
void TParseContext::makeEditable(TSymbol*& symbol)
{
TParseContextBase::makeEditable(symbol);
// See if it's tied to IO resizing
if (isIoResizeArray(symbol->getType()))
ioArraySymbolResizeList.push_back(symbol);
}
// Return true if this is a geometry shader input array or tessellation control output array
// or mesh shader output array.
bool TParseContext::isIoResizeArray(const TType& type) const
{
return type.isArray() &&
((language == EShLangGeometry && type.getQualifier().storage == EvqVaryingIn) ||
(language == EShLangTessControl && type.getQualifier().storage == EvqVaryingOut && ! type.getQualifier().patch)
#ifdef NV_EXTENSIONS
||
(language == EShLangFragment && type.getQualifier().storage == EvqVaryingIn && type.getQualifier().pervertexNV) ||
(language == EShLangMeshNV && type.getQualifier().storage == EvqVaryingOut && !type.getQualifier().perTaskNV)
#endif
);
}
// If an array is not isIoResizeArray() but is an io array, make sure it has the right size
void TParseContext::fixIoArraySize(const TSourceLoc& loc, TType& type)
{
if (! type.isArray() || type.getQualifier().patch || symbolTable.atBuiltInLevel())
return;
assert(! isIoResizeArray(type));
if (type.getQualifier().storage != EvqVaryingIn || type.getQualifier().patch)
return;
if (language == EShLangTessControl || language == EShLangTessEvaluation) {
if (type.getOuterArraySize() != resources.maxPatchVertices) {
if (type.isSizedArray())
error(loc, "tessellation input array size must be gl_MaxPatchVertices or implicitly sized", "[]", "");
type.changeOuterArraySize(resources.maxPatchVertices);
}
}
}
// Issue any errors if the non-array object is missing arrayness WRT
// shader I/O that has array requirements.
// All arrayness checking is handled in array paths, this is for
void TParseContext::ioArrayCheck(const TSourceLoc& loc, const TType& type, const TString& identifier)
{
if (! type.isArray() && ! symbolTable.atBuiltInLevel()) {
if (type.getQualifier().isArrayedIo(language)
#ifdef NV_EXTENSIONS
&& !type.getQualifier().layoutPassthrough
#endif
)
error(loc, "type must be an array:", type.getStorageQualifierString(), identifier.c_str());
}
}
// Handle a dereference of a geometry shader input array or tessellation control output array.
// See ioArraySymbolResizeList comment in ParseHelper.h.
//
void TParseContext::handleIoResizeArrayAccess(const TSourceLoc& /*loc*/, TIntermTyped* base)
{
TIntermSymbol* symbolNode = base->getAsSymbolNode();
assert(symbolNode);
if (! symbolNode)
return;
// fix array size, if it can be fixed and needs to be fixed (will allow variable indexing)
if (symbolNode->getType().isUnsizedArray()) {
int newSize = getIoArrayImplicitSize(symbolNode->getType().getQualifier().isPerPrimitive());
if (newSize > 0)
symbolNode->getWritableType().changeOuterArraySize(newSize);
}
}
// If there has been an input primitive declaration (geometry shader) or an output
// number of vertices declaration(tessellation shader), make sure all input array types
// match it in size. Types come either from nodes in the AST or symbols in the
// symbol table.
//
// Types without an array size will be given one.
// Types already having a size that is wrong will get an error.
//
void TParseContext::checkIoArraysConsistency(const TSourceLoc& loc, bool tailOnly, bool isPerPrimitive)
{
int requiredSize = getIoArrayImplicitSize(isPerPrimitive);
if (requiredSize == 0)
return;
const char* feature;
if (language == EShLangGeometry)
feature = TQualifier::getGeometryString(intermediate.getInputPrimitive());
else if (language == EShLangTessControl
#ifdef NV_EXTENSIONS
|| language == EShLangFragment
#endif
)
feature = "vertices";
#ifdef NV_EXTENSIONS
else if (language == EShLangMeshNV) {
feature = isPerPrimitive ? "max_primitives" : "max_vertices";
}
#endif
else
feature = "unknown";
if (tailOnly) {
checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList.back()->getWritableType(), ioArraySymbolResizeList.back()->getName());
return;
}
for (size_t i = 0; i < ioArraySymbolResizeList.size(); ++i)
checkIoArrayConsistency(loc, requiredSize, feature, ioArraySymbolResizeList[i]->getWritableType(), ioArraySymbolResizeList[i]->getName());
}
int TParseContext::getIoArrayImplicitSize(bool isPerPrimitive) const
{
if (language == EShLangGeometry)
return TQualifier::mapGeometryToSize(intermediate.getInputPrimitive());
else if (language == EShLangTessControl)
return intermediate.getVertices() != TQualifier::layoutNotSet ? intermediate.getVertices() : 0;
#ifdef NV_EXTENSIONS
else if (language == EShLangFragment)
return 3; //Number of vertices for Fragment shader is always three.
else if (language == EShLangMeshNV) {
if (isPerPrimitive) {
return intermediate.getPrimitives() != TQualifier::layoutNotSet ? intermediate.getPrimitives() : 0;
} else {
return intermediate.getVertices() != TQualifier::layoutNotSet ? intermediate.getVertices() : 0;
}
}
#endif
else
return 0;
}
void TParseContext::checkIoArrayConsistency(const TSourceLoc& loc, int requiredSize, const char* feature, TType& type, const TString& name)
{
if (type.isUnsizedArray())
type.changeOuterArraySize(requiredSize);
else if (type.getOuterArraySize() != requiredSize) {
if (language == EShLangGeometry)
error(loc, "inconsistent input primitive for array size of", feature, name.c_str());
else if (language == EShLangTessControl)
error(loc, "inconsistent output number of vertices for array size of", feature, name.c_str());
#ifdef NV_EXTENSIONS
else if (language == EShLangFragment) {
if (type.getOuterArraySize() > requiredSize)
error(loc, " cannot be greater than 3 for pervertexNV", feature, name.c_str());
}
else if (language == EShLangMeshNV)
error(loc, "inconsistent output array size of", feature, name.c_str());
#endif
else
assert(0);
}
}
// Handle seeing a binary node with a math operation.
// Returns nullptr if not semantically allowed.
TIntermTyped* TParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right)
{
rValueErrorCheck(loc, str, left->getAsTyped());
rValueErrorCheck(loc, str, right->getAsTyped());
bool allowed = true;
switch (op) {
// TODO: Bring more source language-specific checks up from intermediate.cpp
// to the specific parse helpers for that source language.
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if (! left->isScalar() || ! right->isScalar())
allowed = false;
break;
default:
break;
}
if (((left->getType().containsBasicType(EbtFloat16) || right->getType().containsBasicType(EbtFloat16)) && !float16Arithmetic()) ||
((left->getType().contains16BitInt() || right->getType().contains16BitInt()) && !int16Arithmetic()) ||
((left->getType().contains8BitInt() || right->getType().contains8BitInt()) && !int8Arithmetic())) {
allowed = false;
}
TIntermTyped* result = nullptr;
if (allowed)
result = intermediate.addBinaryMath(op, left, right, loc);
if (result == nullptr)
binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
return result;
}
// Handle seeing a unary node with a math operation.
TIntermTyped* TParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode)
{
rValueErrorCheck(loc, str, childNode);
bool allowed = true;
if ((childNode->getType().containsBasicType(EbtFloat16) && !float16Arithmetic()) ||
(childNode->getType().contains16BitInt() && !int16Arithmetic()) ||
(childNode->getType().contains8BitInt() && !int8Arithmetic())) {
allowed = false;
}
TIntermTyped* result = nullptr;
if (allowed)
result = intermediate.addUnaryMath(op, childNode, loc);
if (result)
return result;
else
unaryOpError(loc, str, childNode->getCompleteString());
return childNode;
}
//
// Handle seeing a base.field dereference in the grammar.
//
TIntermTyped* TParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
{
variableCheck(base);
//
// .length() can't be resolved until we later see the function-calling syntax.
// Save away the name in the AST for now. Processing is completed in
// handleLengthMethod().
//
if (field == "length") {
if (base->isArray()) {
profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, ".length");
profileRequires(loc, EEsProfile, 300, nullptr, ".length");
} else if (base->isVector() || base->isMatrix()) {
const char* feature = ".length() on vectors and matrices";
requireProfile(loc, ~EEsProfile, feature);
profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, feature);
} else {
error(loc, "does not operate on this type:", field.c_str(), base->getType().getCompleteString().c_str());
return base;
}
return intermediate.addMethod(base, TType(EbtInt), &field, loc);
}
// It's not .length() if we get to here.
if (base->isArray()) {
error(loc, "cannot apply to an array:", ".", field.c_str());
return base;
}
// It's neither an array nor .length() if we get here,
// leaving swizzles and struct/block dereferences.
TIntermTyped* result = base;
if ((base->isVector() || base->isScalar()) &&
(base->isFloatingDomain() || base->isIntegerDomain() || base->getBasicType() == EbtBool)) {
if (base->isScalar()) {
const char* dotFeature = "scalar swizzle";
requireProfile(loc, ~EEsProfile, dotFeature);
profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, dotFeature);
}
TSwizzleSelectors<TVectorSelector> selectors;
parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
if (base->isVector() && selectors.size() != 1 && base->getType().containsBasicType(EbtFloat16))
requireFloat16Arithmetic(loc, ".", "can't swizzle types containing float16");
if (base->isVector() && selectors.size() != 1 && base->getType().contains16BitInt())
requireInt16Arithmetic(loc, ".", "can't swizzle types containing (u)int16");
if (base->isVector() && selectors.size() != 1 && base->getType().contains8BitInt())
requireInt8Arithmetic(loc, ".", "can't swizzle types containing (u)int8");
if (base->isScalar()) {
if (selectors.size() == 1)
return result;
else {
TType type(base->getBasicType(), EvqTemporary, selectors.size());
// Swizzle operations propagate specialization-constantness
if (base->getQualifier().isSpecConstant())
type.getQualifier().makeSpecConstant();
return addConstructor(loc, base, type);
}
}
if (base->getType().getQualifier().isFrontEndConstant())
result = intermediate.foldSwizzle(base, selectors, loc);
else {
if (selectors.size() == 1) {
TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision));
} else {
TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, selectors.size()));
}
// Swizzle operations propagate specialization-constantness
if (base->getType().getQualifier().isSpecConstant())
result->getWritableType().getQualifier().makeSpecConstant();
}
} else if (base->getBasicType() == EbtStruct ||
base->getBasicType() == EbtBlock ||
base->getBasicType() == EbtReference) {
const TTypeList* fields = base->getBasicType() == EbtReference ?
base->getType().getReferentType()->getStruct() :
base->getType().getStruct();
bool fieldFound = false;
int member;
for (member = 0; member < (int)fields->size(); ++member) {
if ((*fields)[member].type->getFieldName() == field) {
fieldFound = true;
break;
}
}
if (fieldFound) {
if (base->getType().getQualifier().isFrontEndConstant())
result = intermediate.foldDereference(base, member, loc);
else {
blockMemberExtensionCheck(loc, base, member, field);
TIntermTyped* index = intermediate.addConstantUnion(member, loc);
result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
result->setType(*(*fields)[member].type);
if ((*fields)[member].type->getQualifier().isIo())
intermediate.addIoAccessed(field);
}
} else
error(loc, "no such field in structure", field.c_str(), "");
} else
error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
// Propagate noContraction up the dereference chain
if (base->getQualifier().noContraction)
result->getWritableType().getQualifier().noContraction = true;
// Propagate nonuniform
if (base->getQualifier().isNonUniform())
result->getWritableType().getQualifier().nonUniform = true;
return result;
}
void TParseContext::blockMemberExtensionCheck(const TSourceLoc& loc, const TIntermTyped* base, int member, const TString& memberName)
{
// a block that needs extension checking is either 'base', or if arrayed,
// one level removed to the left
const TIntermSymbol* baseSymbol = nullptr;
if (base->getAsBinaryNode() == nullptr)
baseSymbol = base->getAsSymbolNode();
else
baseSymbol = base->getAsBinaryNode()->getLeft()->getAsSymbolNode();
if (baseSymbol == nullptr)
return;
const TSymbol* symbol = symbolTable.find(baseSymbol->getName());
if (symbol == nullptr)
return;
const TVariable* variable = symbol->getAsVariable();
if (variable == nullptr)
return;
if (!variable->hasMemberExtensions())
return;
// We now have a variable that is the base of a dot reference
// with members that need extension checking.
if (variable->getNumMemberExtensions(member) > 0)
requireExtensions(loc, variable->getNumMemberExtensions(member), variable->getMemberExtensions(member), memberName.c_str());
}
//
// Handle seeing a function declarator in the grammar. This is the precursor
// to recognizing a function prototype or function definition.
//
TFunction* TParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
{
// ES can't declare prototypes inside functions
if (! symbolTable.atGlobalLevel())
requireProfile(loc, ~EEsProfile, "local function declaration");
//
// Multiple declarations of the same function name are allowed.
//
// If this is a definition, the definition production code will check for redefinitions
// (we don't know at this point if it's a definition or not).
//
// Redeclarations (full signature match) are allowed. But, return types and parameter qualifiers must also match.
// - except ES 100, which only allows a single prototype
//
// ES 100 does not allow redefining, but does allow overloading of built-in functions.
// ES 300 does not allow redefining or overloading of built-in functions.
//
bool builtIn;
TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
if (symbol && symbol->getAsFunction() && builtIn)
requireProfile(loc, ~EEsProfile, "redefinition of built-in function");
const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
if (prevDec) {
if (prevDec->isPrototyped() && prototype)
profileRequires(loc, EEsProfile, 300, nullptr, "multiple prototypes for same function");
if (prevDec->getType() != function.getType())
error(loc, "overloaded functions must have the same return type", function.getName().c_str(), "");
for (int i = 0; i < prevDec->getParamCount(); ++i) {
if ((*prevDec)[i].type->getQualifier().storage != function[i].type->getQualifier().storage)
error(loc, "overloaded functions must have the same parameter storage qualifiers for argument", function[i].type->getStorageQualifierString(), "%d", i+1);
if ((*prevDec)[i].type->getQualifier().precision != function[i].type->getQualifier().precision)
error(loc, "overloaded functions must have the same parameter precision qualifiers for argument", function[i].type->getPrecisionQualifierString(), "%d", i+1);
}
}
arrayObjectCheck(loc, function.getType(), "array in function return type");
if (prototype) {
// All built-in functions are defined, even though they don't have a body.
// Count their prototype as a definition instead.
if (symbolTable.atBuiltInLevel())
function.setDefined();
else {
if (prevDec && ! builtIn)
symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
function.setPrototyped();
}
}
// This insert won't actually insert it if it's a duplicate signature, but it will still check for
// other forms of name collisions.
if (! symbolTable.insert(function))
error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
//
// If this is a redeclaration, it could also be a definition,
// in which case, we need to use the parameter names from this one, and not the one that's
// being redeclared. So, pass back this declaration, not the one in the symbol table.
//
return &function;
}
//
// Handle seeing the function prototype in front of a function definition in the grammar.
// The body is handled after this function returns.
//
TIntermAggregate* TParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function)
{
currentCaller = function.getMangledName();
TSymbol* symbol = symbolTable.find(function.getMangledName());
TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
if (! prevDec)
error(loc, "can't find function", function.getName().c_str(), "");
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
// as it would have just been put in the symbol table. Otherwise, we're looking up
// an earlier occurrence.
if (prevDec && prevDec->isDefined()) {
// Then this function already has a body.
error(loc, "function already has a body", function.getName().c_str(), "");
}
if (prevDec && ! prevDec->isDefined()) {
prevDec->setDefined();
// Remember the return type for later checking for RETURN statements.
currentFunctionType = &(prevDec->getType());
} else
currentFunctionType = new TType(EbtVoid);
functionReturnsValue = false;
// Check for entry point
if (function.getName().compare(intermediate.getEntryPointName().c_str()) == 0) {
intermediate.setEntryPointMangledName(function.getMangledName().c_str());
intermediate.incrementEntryPointCount();
inMain = true;
} else
inMain = false;
//
// Raise error message if main function takes any parameters or returns anything other than void
//
if (inMain) {
if (function.getParamCount() > 0)
error(loc, "function cannot take any parameter(s)", function.getName().c_str(), "");
if (function.getType().getBasicType() != EbtVoid)
error(loc, "", function.getType().getBasicTypeString().c_str(), "entry point cannot return a value");
}
//
// New symbol table scope for body of function plus its arguments
//
symbolTable.push();
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the HIL, so lower level code
// knows where to find parameters.
//
TIntermAggregate* paramNodes = new TIntermAggregate;
for (int i = 0; i < function.getParamCount(); i++) {
TParameter& param = function[i];
if (param.name != nullptr) {
TVariable *variable = new TVariable(param.name, *param.type);
// Insert the parameters with name in the symbol table.
if (! symbolTable.insert(*variable))
error(loc, "redefinition", variable->getName().c_str(), "");
else {
// Transfer ownership of name pointer to symbol table.
param.name = nullptr;
// Add the parameter to the HIL
paramNodes = intermediate.growAggregate(paramNodes,
intermediate.addSymbol(*variable, loc),
loc);
}
} else
paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
}
intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
loopNestingLevel = 0;
statementNestingLevel = 0;
controlFlowNestingLevel = 0;
postEntryPointReturn = false;
return paramNodes;
}
//
// Handle seeing function call syntax in the grammar, which could be any of
// - .length() method
// - constructor
// - a call to a built-in function mapped to an operator
// - a call to a built-in function that will remain a function call (e.g., texturing)
// - user function
// - subroutine call (not implemented yet)
//
TIntermTyped* TParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermNode* arguments)
{
TIntermTyped* result = nullptr;
if (function->getBuiltInOp() == EOpArrayLength)
result = handleLengthMethod(loc, function, arguments);
else if (function->getBuiltInOp() != EOpNull) {
//
// Then this should be a constructor.
// Don't go through the symbol table for constructors.
// Their parameters will be verified algorithmically.
//
TType type(EbtVoid); // use this to get the type back
if (! constructorError(loc, arguments, *function, function->getBuiltInOp(), type)) {
//
// It's a constructor, of type 'type'.
//
result = addConstructor(loc, arguments, type);
if (result == nullptr)
error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
}
} else {
//
// Find it in the symbol table.
//
const TFunction* fnCandidate;
bool builtIn;
fnCandidate = findFunction(loc, *function, builtIn);
if (fnCandidate) {
// This is a declared function that might map to
// - a built-in operator,
// - a built-in function not mapped to an operator, or
// - a user function.
// Error check for a function requiring specific extensions present.
if (builtIn && fnCandidate->getNumExtensions())
requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str());
if (builtIn && fnCandidate->getType().containsBasicType(EbtFloat16))
requireFloat16Arithmetic(loc, "built-in function", "float16 types can only be in uniform block or buffer storage");
if (builtIn && fnCandidate->getType().contains16BitInt())
requireInt16Arithmetic(loc, "built-in function", "(u)int16 types can only be in uniform block or buffer storage");
if (builtIn && fnCandidate->getType().contains8BitInt())
requireInt8Arithmetic(loc, "built-in function", "(u)int8 types can only be in uniform block or buffer storage");
if (arguments != nullptr) {
// Make sure qualifications work for these arguments.
TIntermAggregate* aggregate = arguments->getAsAggregate();
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
// At this early point there is a slight ambiguity between whether an aggregate 'arguments'
// is the single argument itself or its children are the arguments. Only one argument
// means take 'arguments' itself as the one argument.
TIntermNode* arg = fnCandidate->getParamCount() == 1 ? arguments : (aggregate ? aggregate->getSequence()[i] : arguments);
TQualifier& formalQualifier = (*fnCandidate)[i].type->getQualifier();
if (formalQualifier.isParamOutput()) {
if (lValueErrorCheck(arguments->getLoc(), "assign", arg->getAsTyped()))
error(arguments->getLoc(), "Non-L-value cannot be passed for 'out' or 'inout' parameters.", "out", "");
}
TQualifier& argQualifier = arg->getAsTyped()->getQualifier();
if (argQualifier.isMemory()) {
const char* message = "argument cannot drop memory qualifier when passed to formal parameter";
if (argQualifier.volatil && ! formalQualifier.volatil)
error(arguments->getLoc(), message, "volatile", "");
if (argQualifier.coherent && ! (formalQualifier.devicecoherent || formalQualifier.coherent))
error(arguments->getLoc(), message, "coherent", "");
if (argQualifier.devicecoherent && ! (formalQualifier.devicecoherent || formalQualifier.coherent))
error(arguments->getLoc(), message, "devicecoherent", "");
if (argQualifier.queuefamilycoherent && ! (formalQualifier.queuefamilycoherent || formalQualifier.devicecoherent || formalQualifier.coherent))
error(arguments->getLoc(), message, "queuefamilycoherent", "");
if (argQualifier.workgroupcoherent && ! (formalQualifier.workgroupcoherent || formalQualifier.queuefamilycoherent || formalQualifier.devicecoherent || formalQualifier.coherent))
error(arguments->getLoc(), message, "workgroupcoherent", "");
if (argQualifier.subgroupcoherent && ! (formalQualifier.subgroupcoherent || formalQualifier.workgroupcoherent || formalQualifier.queuefamilycoherent || formalQualifier.devicecoherent || formalQualifier.coherent))
error(arguments->getLoc(), message, "subgroupcoherent", "");
if (argQualifier.readonly && ! formalQualifier.readonly)
error(arguments->getLoc(), message, "readonly", "");
if (argQualifier.writeonly && ! formalQualifier.writeonly)
error(arguments->getLoc(), message, "writeonly", "");
}
if (builtIn && arg->getAsTyped()->getType().containsBasicType(EbtFloat16))
requireFloat16Arithmetic(arguments->getLoc(), "built-in function", "float16 types can only be in uniform block or buffer storage");
if (builtIn && arg->getAsTyped()->getType().contains16BitInt())
requireInt16Arithmetic(arguments->getLoc(), "built-in function", "(u)int16 types can only be in uniform block or buffer storage");
if (builtIn && arg->getAsTyped()->getType().contains8BitInt())
requireInt8Arithmetic(arguments->getLoc(), "built-in function", "(u)int8 types can only be in uniform block or buffer storage");
// TODO 4.5 functionality: A shader will fail to compile
// if the value passed to the memargument of an atomic memory function does not correspond to a buffer or
// shared variable. It is acceptable to pass an element of an array or a single component of a vector to the
// memargument of an atomic memory function, as long as the underlying array or vector is a buffer or
// shared variable.
}
// Convert 'in' arguments
addInputArgumentConversions(*fnCandidate, arguments); // arguments may be modified if it's just a single argument node
}
if (builtIn && fnCandidate->getBuiltInOp() != EOpNull) {
// A function call mapped to a built-in operation.
result = handleBuiltInFunctionCall(loc, arguments, *fnCandidate);
} else {
// This is a function call not mapped to built-in operator.
// It could still be a built-in function, but only if PureOperatorBuiltins == false.
result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
TIntermAggregate* call = result->getAsAggregate();
call->setName(fnCandidate->getMangledName());
// this is how we know whether the given function is a built-in function or a user-defined function
// if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
// if builtIn == true, it's definitely a built-in function with EOpNull
if (! builtIn) {
call->setUserDefined();
if (symbolTable.atGlobalLevel()) {
requireProfile(loc, ~EEsProfile, "calling user function from global scope");
intermediate.addToCallGraph(infoSink, "main(", fnCandidate->getMangledName());
} else
intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName());
}
if (builtIn)
nonOpBuiltInCheck(loc, *fnCandidate, *call);
else
userFunctionCallCheck(loc, *call);
}
// Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
// Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
// Also, build the qualifier list for user function calls, which are always called with an aggregate.
if (result->getAsAggregate()) {
TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
qualifierList.push_back(qual);
}
result = addOutputArgumentConversions(*fnCandidate, *result->getAsAggregate());
}
}
}
// generic error recovery
// TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades
if (result == nullptr)
result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
return result;
}
TIntermTyped* TParseContext::handleBuiltInFunctionCall(TSourceLoc loc, TIntermNode* arguments,
const TFunction& function)
{
checkLocation(loc, function.getBuiltInOp());
TIntermTyped *result = intermediate.addBuiltInFunctionCall(loc, function.getBuiltInOp(),
function.getParamCount() == 1,
arguments, function.getType());
if (obeyPrecisionQualifiers())
computeBuiltinPrecisions(*result, function);
if (result == nullptr) {
if (arguments == nullptr)
error(loc, " wrong operand type", "Internal Error",
"built in unary operator function. Type: %s", "");
else
error(arguments->getLoc(), " wrong operand type", "Internal Error",
"built in unary operator function. Type: %s",
static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
} else if (result->getAsOperator())
builtInOpCheck(loc, function, *result->getAsOperator());
return result;
}
// "The operation of a built-in function can have a different precision
// qualification than the precision qualification of the resulting value.
// These two precision qualifications are established as follows.
//
// The precision qualification of the operation of a built-in function is
// based on the precision qualification of its input arguments and formal
// parameters: When a formal parameter specifies a precision qualifier,
// that is used, otherwise, the precision qualification of the calling
// argument is used. The highest precision of these will be the precision
// qualification of the operation of the built-in function. Generally,
// this is applied across all arguments to a built-in function, with the
// exceptions being:
// - bitfieldExtract and bitfieldInsert ignore the 'offset' and 'bits'
// arguments.
// - interpolateAt* functions only look at the 'interpolant' argument.
//
// The precision qualification of the result of a built-in function is
// determined in one of the following ways:
//
// - For the texture sampling, image load, and image store functions,
// the precision of the return type matches the precision of the
// sampler type
//
// Otherwise:
//
// - For prototypes that do not specify a resulting precision qualifier,
// the precision will be the same as the precision of the operation.
//
// - For prototypes that do specify a resulting precision qualifier,
// the specified precision qualifier is the precision qualification of
// the result."
//
void TParseContext::computeBuiltinPrecisions(TIntermTyped& node, const TFunction& function)
{
TPrecisionQualifier operationPrecision = EpqNone;
TPrecisionQualifier resultPrecision = EpqNone;
TIntermOperator* opNode = node.getAsOperator();
if (opNode == nullptr)
return;
if (TIntermUnary* unaryNode = node.getAsUnaryNode()) {
operationPrecision = std::max(function[0].type->getQualifier().precision,
unaryNode->getOperand()->getType().getQualifier().precision);
if (function.getType().getBasicType() != EbtBool)
resultPrecision = function.getType().getQualifier().precision == EpqNone ?
operationPrecision :
function.getType().getQualifier().precision;
} else if (TIntermAggregate* agg = node.getAsAggregate()) {
TIntermSequence& sequence = agg->getSequence();
unsigned int numArgs = (unsigned int)sequence.size();
switch (agg->getOp()) {
case EOpBitfieldExtract:
numArgs = 1;
break;
case EOpBitfieldInsert:
numArgs = 2;
break;
case EOpInterpolateAtCentroid:
case EOpInterpolateAtOffset:
case EOpInterpolateAtSample:
numArgs = 1;
break;
default:
break;
}
// find the maximum precision from the arguments and parameters
for (unsigned int arg = 0; arg < numArgs; ++arg) {
operationPrecision = std::max(operationPrecision, sequence[arg]->getAsTyped()->getQualifier().precision);
operationPrecision = std::max(operationPrecision, function[arg].type->getQualifier().precision);
}
// compute the result precision
#ifdef AMD_EXTENSIONS
if (agg->isSampling() ||
agg->getOp() == EOpImageLoad || agg->getOp() == EOpImageStore ||
agg->getOp() == EOpImageLoadLod || agg->getOp() == EOpImageStoreLod)
#else
if (agg->isSampling() || agg->getOp() == EOpImageLoad || agg->getOp() == EOpImageStore)
#endif
resultPrecision = sequence[0]->getAsTyped()->getQualifier().precision;
else if (function.getType().getBasicType() != EbtBool)
resultPrecision = function.getType().getQualifier().precision == EpqNone ?
operationPrecision :
function.getType().getQualifier().precision;
}
// Propagate precision through this node and its children. That algorithm stops
// when a precision is found, so start by clearing this subroot precision
opNode->getQualifier().precision = EpqNone;
if (operationPrecision != EpqNone) {
opNode->propagatePrecision(operationPrecision);
opNode->setOperationPrecision(operationPrecision);
}
// Now, set the result precision, which might not match
opNode->getQualifier().precision = resultPrecision;
}
TIntermNode* TParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
{
storage16BitAssignmentCheck(loc, value->getType(), "return");
functionReturnsValue = true;
if (currentFunctionType->getBasicType() == EbtVoid) {
error(loc, "void function cannot return a value", "return", "");
return intermediate.addBranch(EOpReturn, loc);
} else if (*currentFunctionType != value->getType()) {
TIntermTyped* converted = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
if (converted) {
if (*currentFunctionType != converted->getType())
error(loc, "cannot convert return value to function return type", "return", "");
if (version < 420)
warn(loc, "type conversion on return values was not explicitly allowed until version 420", "return", "");
return intermediate.addBranch(EOpReturn, converted, loc);
} else {
error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
return intermediate.addBranch(EOpReturn, value, loc);
}
} else
return intermediate.addBranch(EOpReturn, value, loc);
}
// See if the operation is being done in an illegal location.
void TParseContext::checkLocation(const TSourceLoc& loc, TOperator op)
{
switch (op) {
case EOpBarrier:
if (language == EShLangTessControl) {
if (controlFlowNestingLevel > 0)
error(loc, "tessellation control barrier() cannot be placed within flow control", "", "");
if (! inMain)
error(loc, "tessellation control barrier() must be in main()", "", "");
else if (postEntryPointReturn)
error(loc, "tessellation control barrier() cannot be placed after a return from main()", "", "");
}
break;
default:
break;
}
}
// Finish processing object.length(). This started earlier in handleDotDereference(), where
// the ".length" part was recognized and semantically checked, and finished here where the
// function syntax "()" is recognized.
//
// Return resulting tree node.
TIntermTyped* TParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode)
{
int length = 0;
if (function->getParamCount() > 0)
error(loc, "method does not accept any arguments", function->getName().c_str(), "");
else {
const TType& type = intermNode->getAsTyped()->getType();
if (type.isArray()) {
if (type.isUnsizedArray()) {
if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) {
// We could be between a layout declaration that gives a built-in io array implicit size and
// a user redeclaration of that array, meaning we have to substitute its implicit size here
// without actually redeclaring the array. (It is an error to use a member before the
// redeclaration, but not an error to use the array name itself.)
const TString& name = intermNode->getAsSymbolNode()->getName();
if (name == "gl_in" || name == "gl_out"
#ifdef NV_EXTENSIONS
|| name == "gl_MeshVerticesNV"
|| name == "gl_MeshPrimitivesNV"
#endif
)
{
length = getIoArrayImplicitSize(type.getQualifier().isPerPrimitive());
}
}
if (length == 0) {
if (intermNode->getAsSymbolNode() && isIoResizeArray(type))
error(loc, "", function->getName().c_str(), "array must first be sized by a redeclaration or layout qualifier");
else if (isRuntimeLength(*intermNode->getAsTyped())) {
// Create a unary op and let the back end handle it
return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt));
} else
error(loc, "", function->getName().c_str(), "array must be declared with a size before using this method");
}
} else if (type.getOuterArrayNode()) {
// If the array's outer size is specified by an intermediate node, it means the array's length
// was specified by a specialization constant. In such a case, we should return the node of the
// specialization constants to represent the length.
return type.getOuterArrayNode();
} else
length = type.getOuterArraySize();
} else if (type.isMatrix())
length = type.getMatrixCols();
else if (type.isVector())
length = type.getVectorSize();
else {
// we should not get here, because earlier semantic checking should have prevented this path
error(loc, ".length()", "unexpected use of .length()", "");
}
}
if (length == 0)
length = 1;
return intermediate.addConstantUnion(length, loc);
}
//
// Add any needed implicit conversions for function-call arguments to input parameters.
//
void TParseContext::addInputArgumentConversions(const TFunction& function, TIntermNode*& arguments) const
{
TIntermAggregate* aggregate = arguments->getAsAggregate();
// Process each argument's conversion
for (int i = 0; i < function.getParamCount(); ++i) {
// At this early point there is a slight ambiguity between whether an aggregate 'arguments'
// is the single argument itself or its children are the arguments. Only one argument
// means take 'arguments' itself as the one argument.
TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped());
if (*function[i].type != arg->getType()) {
if (function[i].type->getQualifier().isParamInput()) {
// In-qualified arguments just need an extra node added above the argument to
// convert to the correct type.
arg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg);
if (arg) {
if (function.getParamCount() == 1)
arguments = arg;
else {
if (aggregate)
aggregate->getSequence()[i] = arg;
else
arguments = arg;
}
}
}
}
}
}
//
// Add any needed implicit output conversions for function-call arguments. This
// can require a new tree topology, complicated further by whether the function
// has a return value.
//
// Returns a node of a subtree that evaluates to the return value of the function.
//
TIntermTyped* TParseContext::addOutputArgumentConversions(const TFunction& function, TIntermAggregate& intermNode) const
{
TIntermSequence& arguments = intermNode.getSequence();
// Will there be any output conversions?
bool outputConversions = false;
for (int i = 0; i < function.getParamCount(); ++i) {
if (*function[i].type != arguments[i]->getAsTyped()->getType() && function[i].type->getQualifier().isParamOutput()) {
outputConversions = true;
break;
}
}
if (! outputConversions)
return &intermNode;
// Setup for the new tree, if needed:
//
// Output conversions need a different tree topology.
// Out-qualified arguments need a temporary of the correct type, with the call
// followed by an assignment of the temporary to the original argument:
// void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
// ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
// Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
TIntermTyped* conversionTree = nullptr;
TVariable* tempRet = nullptr;
if (intermNode.getBasicType() != EbtVoid) {
// do the "tempRet = function(...), " bit from above
tempRet = makeInternalVariable("tempReturn", intermNode.getType());
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, intermNode.getLoc());
} else
conversionTree = &intermNode;
conversionTree = intermediate.makeAggregate(conversionTree);
// Process each argument's conversion
for (int i = 0; i < function.getParamCount(); ++i) {
if (*function[i].type != arguments[i]->getAsTyped()->getType()) {
if (function[i].type->getQualifier().isParamOutput()) {
// Out-qualified arguments need to use the topology set up above.
// do the " ...(tempArg, ...), arg = tempArg" bit from above
TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
tempArg->getWritableType().getQualifier().makeTemporary();
TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, intermNode.getLoc());
TIntermTyped* tempAssign = intermediate.addAssign(EOpAssign, arguments[i]->getAsTyped(), tempArgNode, arguments[i]->getLoc());
conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
// replace the argument with another node for the same tempArg variable
arguments[i] = intermediate.addSymbol(*tempArg, intermNode.getLoc());
}
}
}
// Finalize the tree topology (see bigger comment above).
if (tempRet) {
// do the "..., tempRet" bit from above
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc());
conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, intermNode.getLoc());
}
conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), intermNode.getLoc());
return conversionTree;
}
void TParseContext::memorySemanticsCheck(const TSourceLoc& loc, const TFunction& fnCandidate, const TIntermOperator& callNode)
{
const TIntermSequence* argp = &callNode.getAsAggregate()->getSequence();
//const int gl_SemanticsRelaxed = 0x0;
const int gl_SemanticsAcquire = 0x2;
const int gl_SemanticsRelease = 0x4;
const int gl_SemanticsAcquireRelease = 0x8;
const int gl_SemanticsMakeAvailable = 0x2000;
const int gl_SemanticsMakeVisible = 0x4000;
//const int gl_StorageSemanticsNone = 0x0;
const int gl_StorageSemanticsBuffer = 0x40;
const int gl_StorageSemanticsShared = 0x100;
const int gl_StorageSemanticsImage = 0x800;
const int gl_StorageSemanticsOutput = 0x1000;
unsigned int semantics = 0, storageClassSemantics = 0;
unsigned int semantics2 = 0, storageClassSemantics2 = 0;
// Grab the semantics and storage class semantics from the operands, based on opcode
switch (callNode.getOp()) {
case EOpAtomicAdd:
case EOpAtomicMin:
case EOpAtomicMax:
case EOpAtomicAnd:
case EOpAtomicOr:
case EOpAtomicXor:
case EOpAtomicExchange:
case EOpAtomicStore:
storageClassSemantics = (*argp)[3]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[4]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
case EOpAtomicLoad:
storageClassSemantics = (*argp)[2]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[3]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
case EOpAtomicCompSwap:
storageClassSemantics = (*argp)[4]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[5]->getAsConstantUnion()->getConstArray()[0].getIConst();
storageClassSemantics2 = (*argp)[6]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics2 = (*argp)[7]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
case EOpImageAtomicAdd:
case EOpImageAtomicMin:
case EOpImageAtomicMax:
case EOpImageAtomicAnd:
case EOpImageAtomicOr:
case EOpImageAtomicXor:
case EOpImageAtomicExchange:
case EOpImageAtomicStore:
storageClassSemantics = (*argp)[4]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[5]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
case EOpImageAtomicLoad:
storageClassSemantics = (*argp)[3]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[4]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
case EOpImageAtomicCompSwap:
storageClassSemantics = (*argp)[5]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[6]->getAsConstantUnion()->getConstArray()[0].getIConst();
storageClassSemantics2 = (*argp)[7]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics2 = (*argp)[8]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
case EOpBarrier:
storageClassSemantics = (*argp)[2]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[3]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
case EOpMemoryBarrier:
storageClassSemantics = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getIConst();
semantics = (*argp)[2]->getAsConstantUnion()->getConstArray()[0].getIConst();
break;
default:
break;
}
if ((semantics & gl_SemanticsAcquire) &&
(callNode.getOp() == EOpAtomicStore || callNode.getOp() == EOpImageAtomicStore)) {
error(loc, "gl_SemanticsAcquire must not be used with (image) atomic store",
fnCandidate.getName().c_str(), "");
}
if ((semantics & gl_SemanticsRelease) &&
(callNode.getOp() == EOpAtomicLoad || callNode.getOp() == EOpImageAtomicLoad)) {
error(loc, "gl_SemanticsRelease must not be used with (image) atomic load",
fnCandidate.getName().c_str(), "");
}
if ((semantics & gl_SemanticsAcquireRelease) &&
(callNode.getOp() == EOpAtomicStore || callNode.getOp() == EOpImageAtomicStore ||
callNode.getOp() == EOpAtomicLoad || callNode.getOp() == EOpImageAtomicLoad)) {
error(loc, "gl_SemanticsAcquireRelease must not be used with (image) atomic load/store",
fnCandidate.getName().c_str(), "");
}
if (((semantics | semantics2) & ~(gl_SemanticsAcquire |
gl_SemanticsRelease |
gl_SemanticsAcquireRelease |
gl_SemanticsMakeAvailable |
gl_SemanticsMakeVisible))) {
error(loc, "Invalid semantics value", fnCandidate.getName().c_str(), "");
}
if (((storageClassSemantics | storageClassSemantics2) & ~(gl_StorageSemanticsBuffer |
gl_StorageSemanticsShared |
gl_StorageSemanticsImage |
gl_StorageSemanticsOutput))) {
error(loc, "Invalid storage class semantics value", fnCandidate.getName().c_str(), "");
}
if (callNode.getOp() == EOpMemoryBarrier) {
if (!IsPow2(semantics & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease))) {
error(loc, "Semantics must include exactly one of gl_SemanticsRelease, gl_SemanticsAcquire, or "
"gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), "");
}
} else {
if (semantics & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease)) {
if (!IsPow2(semantics & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease))) {
error(loc, "Semantics must not include multiple of gl_SemanticsRelease, gl_SemanticsAcquire, or "
"gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), "");
}
}
if (semantics2 & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease)) {
if (!IsPow2(semantics2 & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease))) {
error(loc, "semUnequal must not include multiple of gl_SemanticsRelease, gl_SemanticsAcquire, or "
"gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), "");
}
}
}
if (callNode.getOp() == EOpMemoryBarrier) {
if (storageClassSemantics == 0) {
error(loc, "Storage class semantics must not be zero", fnCandidate.getName().c_str(), "");
}
}
if (callNode.getOp() == EOpBarrier && semantics != 0 && storageClassSemantics == 0) {
error(loc, "Storage class semantics must not be zero", fnCandidate.getName().c_str(), "");
}
if ((callNode.getOp() == EOpAtomicCompSwap || callNode.getOp() == EOpImageAtomicCompSwap) &&
(semantics2 & (gl_SemanticsRelease | gl_SemanticsAcquireRelease))) {
error(loc, "semUnequal must not be gl_SemanticsRelease or gl_SemanticsAcquireRelease",
fnCandidate.getName().c_str(), "");
}
if ((semantics & gl_SemanticsMakeAvailable) &&
!(semantics & (gl_SemanticsRelease | gl_SemanticsAcquireRelease))) {
error(loc, "gl_SemanticsMakeAvailable requires gl_SemanticsRelease or gl_SemanticsAcquireRelease",
fnCandidate.getName().c_str(), "");
}
if ((semantics & gl_SemanticsMakeVisible) &&
!(semantics & (gl_SemanticsAcquire | gl_SemanticsAcquireRelease))) {
error(loc, "gl_SemanticsMakeVisible requires gl_SemanticsAcquire or gl_SemanticsAcquireRelease",
fnCandidate.getName().c_str(), "");
}
}
//
// Do additional checking of built-in function calls that is not caught
// by normal semantic checks on argument type, extension tagging, etc.
//
// Assumes there has been a semantically correct match to a built-in function prototype.
//
void TParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
{
// Set up convenience accessors to the argument(s). There is almost always
// multiple arguments for the cases below, but when there might be one,
// check the unaryArg first.
const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
const TIntermTyped* unaryArg = nullptr;
const TIntermTyped* arg0 = nullptr;
if (callNode.getAsAggregate()) {
argp = &callNode.getAsAggregate()->getSequence();
if (argp->size() > 0)
arg0 = (*argp)[0]->getAsTyped();
} else {
assert(callNode.getAsUnaryNode());
unaryArg = callNode.getAsUnaryNode()->getOperand();
arg0 = unaryArg;
}
TString featureString;
const char* feature = nullptr;
switch (callNode.getOp()) {
case EOpTextureGather:
case EOpTextureGatherOffset:
case EOpTextureGatherOffsets:
{
// Figure out which variants are allowed by what extensions,
// and what arguments must be constant for which situations.
featureString = fnCandidate.getName();
featureString += "(...)";
feature = featureString.c_str();
profileRequires(loc, EEsProfile, 310, nullptr, feature);
int compArg = -1; // track which argument, if any, is the constant component argument
switch (callNode.getOp()) {
case EOpTextureGather:
// More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
// otherwise, need GL_ARB_texture_gather.
if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) {
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature);
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 2;
} else
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature);
break;
case EOpTextureGatherOffset:
// GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
if (fnCandidate[0].type->getSampler().dim == Esd2D && ! fnCandidate[0].type->getSampler().shadow && fnCandidate.getParamCount() == 3)
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature);
else
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature);
if (! (*argp)[fnCandidate[0].type->getSampler().shadow ? 3 : 2]->getAsConstantUnion())
profileRequires(loc, EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5,
"non-constant offset argument");
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
break;
case EOpTextureGatherOffsets:
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature);
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
// check for constant offsets
if (! (*argp)[fnCandidate[0].type->getSampler().shadow ? 3 : 2]->getAsConstantUnion())
error(loc, "must be a compile-time constant:", feature, "offsets argument");
break;
default:
break;
}
if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
if ((*argp)[compArg]->getAsConstantUnion()) {
int value = (*argp)[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
if (value < 0 || value > 3)
error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
} else
error(loc, "must be a compile-time constant:", feature, "component argument");
}
#ifdef AMD_EXTENSIONS
bool bias = false;
if (callNode.getOp() == EOpTextureGather)
bias = fnCandidate.getParamCount() > 3;
else if (callNode.getOp() == EOpTextureGatherOffset ||
callNode.getOp() == EOpTextureGatherOffsets)
bias = fnCandidate.getParamCount() > 4;
if (bias) {
featureString = fnCandidate.getName();
featureString += "with bias argument";
feature = featureString.c_str();
profileRequires(loc, ~EEsProfile, 450, nullptr, feature);
requireExtensions(loc, 1, &E_GL_AMD_texture_gather_bias_lod, feature);
}
#endif
break;
}
#ifdef AMD_EXTENSIONS
case EOpSparseTextureGather:
case EOpSparseTextureGatherOffset:
case EOpSparseTextureGatherOffsets:
{
bool bias = false;
if (callNode.getOp() == EOpSparseTextureGather)
bias = fnCandidate.getParamCount() > 4;
else if (callNode.getOp() == EOpSparseTextureGatherOffset ||
callNode.getOp() == EOpSparseTextureGatherOffsets)
bias = fnCandidate.getParamCount() > 5;
if (bias) {
featureString = fnCandidate.getName();
featureString += "with bias argument";
feature = featureString.c_str();
profileRequires(loc, ~EEsProfile, 450, nullptr, feature);
requireExtensions(loc, 1, &E_GL_AMD_texture_gather_bias_lod, feature);
}
break;
}
case EOpSparseTextureGatherLod:
case EOpSparseTextureGatherLodOffset:
case EOpSparseTextureGatherLodOffsets:
{
requireExtensions(loc, 1, &E_GL_ARB_sparse_texture2, fnCandidate.getName().c_str());
break;
}
case EOpSwizzleInvocations:
{
if (! (*argp)[1]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "offset", "");
else {
unsigned offset[4] = {};
offset[0] = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getUConst();
offset[1] = (*argp)[1]->getAsConstantUnion()->getConstArray()[1].getUConst();
offset[2] = (*argp)[1]->getAsConstantUnion()->getConstArray()[2].getUConst();
offset[3] = (*argp)[1]->getAsConstantUnion()->getConstArray()[3].getUConst();
if (offset[0] > 3 || offset[1] > 3 || offset[2] > 3 || offset[3] > 3)
error(loc, "components must be in the range [0, 3]", "offset", "");
}
break;
}
case EOpSwizzleInvocationsMasked:
{
if (! (*argp)[1]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "mask", "");
else {
unsigned mask[3] = {};
mask[0] = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getUConst();
mask[1] = (*argp)[1]->getAsConstantUnion()->getConstArray()[1].getUConst();
mask[2] = (*argp)[1]->getAsConstantUnion()->getConstArray()[2].getUConst();
if (mask[0] > 31 || mask[1] > 31 || mask[2] > 31)
error(loc, "components must be in the range [0, 31]", "mask", "");
}
break;
}
#endif
case EOpTextureOffset:
case EOpTextureFetchOffset:
case EOpTextureProjOffset:
case EOpTextureLodOffset:
case EOpTextureProjLodOffset:
case EOpTextureGradOffset:
case EOpTextureProjGradOffset:
{
// Handle texture-offset limits checking
// Pick which argument has to hold constant offsets
int arg = -1;
switch (callNode.getOp()) {
case EOpTextureOffset: arg = 2; break;
case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
case EOpTextureProjOffset: arg = 2; break;
case EOpTextureLodOffset: arg = 3; break;
case EOpTextureProjLodOffset: arg = 3; break;
case EOpTextureGradOffset: arg = 4; break;
case EOpTextureProjGradOffset: arg = 4; break;
default:
assert(0);
break;
}
if (arg > 0) {
#ifdef AMD_EXTENSIONS
bool f16ShadowCompare = (*argp)[1]->getAsTyped()->getBasicType() == EbtFloat16 && arg0->getType().getSampler().shadow;
if (f16ShadowCompare)
++arg;
#endif
if (! (*argp)[arg]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "texel offset", "");
else {
const TType& type = (*argp)[arg]->getAsTyped()->getType();
for (int c = 0; c < type.getVectorSize(); ++c) {
int offset = (*argp)[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
}
}
}
break;
}
#ifdef NV_EXTENSIONS
case EOpTraceNV:
if (!(*argp)[10]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "payload number", "");
break;
case EOpExecuteCallableNV:
if (!(*argp)[1]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "callable data number", "");
break;
#endif
case EOpTextureQuerySamples:
case EOpImageQuerySamples:
// GL_ARB_shader_texture_image_samples
profileRequires(loc, ~EEsProfile, 450, E_GL_ARB_shader_texture_image_samples, "textureSamples and imageSamples");
break;
case EOpImageAtomicAdd:
case EOpImageAtomicMin:
case EOpImageAtomicMax:
case EOpImageAtomicAnd:
case EOpImageAtomicOr:
case EOpImageAtomicXor:
case EOpImageAtomicExchange:
case EOpImageAtomicCompSwap:
case EOpImageAtomicLoad:
case EOpImageAtomicStore:
{
// Make sure the image types have the correct layout() format and correct argument types
const TType& imageType = arg0->getType();
if (imageType.getSampler().type == EbtInt || imageType.getSampler().type == EbtUint) {
if (imageType.getQualifier().layoutFormat != ElfR32i && imageType.getQualifier().layoutFormat != ElfR32ui)
error(loc, "only supported on image with format r32i or r32ui", fnCandidate.getName().c_str(), "");
} else {
if (fnCandidate.getName().compare(0, 19, "imageAtomicExchange") != 0)
error(loc, "only supported on integer images", fnCandidate.getName().c_str(), "");
else if (imageType.getQualifier().layoutFormat != ElfR32f && profile == EEsProfile)
error(loc, "only supported on image with format r32f", fnCandidate.getName().c_str(), "");
}
const size_t maxArgs = imageType.getSampler().isMultiSample() ? 5 : 4;
if (argp->size() > maxArgs) {
requireExtensions(loc, 1, &E_GL_KHR_memory_scope_semantics, fnCandidate.getName().c_str());
memorySemanticsCheck(loc, fnCandidate, callNode);
}
break;
}
case EOpAtomicAdd:
case EOpAtomicMin:
case EOpAtomicMax:
case EOpAtomicAnd:
case EOpAtomicOr:
case EOpAtomicXor:
case EOpAtomicExchange:
case EOpAtomicCompSwap:
case EOpAtomicLoad:
case EOpAtomicStore:
{
if (argp->size() > 3) {
requireExtensions(loc, 1, &E_GL_KHR_memory_scope_semantics, fnCandidate.getName().c_str());
memorySemanticsCheck(loc, fnCandidate, callNode);
} else if (arg0->getType().getBasicType() == EbtInt64 || arg0->getType().getBasicType() == EbtUint64) {
#ifdef NV_EXTENSIONS
const char* const extensions[2] = { E_GL_NV_shader_atomic_int64,
E_GL_EXT_shader_atomic_int64 };
requireExtensions(loc, 2, extensions, fnCandidate.getName().c_str());
#else
requireExtensions(loc, 1, &E_GL_EXT_shader_atomic_int64, fnCandidate.getName().c_str());
#endif
}
break;
}
case EOpInterpolateAtCentroid:
case EOpInterpolateAtSample:
case EOpInterpolateAtOffset:
#ifdef AMD_EXTENSIONS
case EOpInterpolateAtVertex:
#endif
// Make sure the first argument is an interpolant, or an array element of an interpolant
if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
// It might still be an array element.
//
// We could check more, but the semantics of the first argument are already met; the
// only way to turn an array into a float/vec* is array dereference and swizzle.
//
// ES and desktop 4.3 and earlier: swizzles may not be used
// desktop 4.4 and later: swizzles may be used
bool swizzleOkay = (profile != EEsProfile) && (version >= 440);
const TIntermTyped* base = TIntermediate::findLValueBase(arg0, swizzleOkay);
if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), "");
}
#ifdef AMD_EXTENSIONS
if (callNode.getOp() == EOpInterpolateAtVertex) {
if (!arg0->getType().getQualifier().isExplicitInterpolation())
error(loc, "argument must be qualified as __explicitInterpAMD in", "interpolant", "");
else {
if (! (*argp)[1]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "vertex index", "");
else {
unsigned vertexIdx = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getUConst();
if (vertexIdx > 2)
error(loc, "must be in the range [0, 2]", "vertex index", "");
}
}
}
#endif
break;
case EOpEmitStreamVertex:
case EOpEndStreamPrimitive:
intermediate.setMultiStream();
break;
case EOpSubgroupClusteredAdd:
case EOpSubgroupClusteredMul:
case EOpSubgroupClusteredMin:
case EOpSubgroupClusteredMax:
case EOpSubgroupClusteredAnd:
case EOpSubgroupClusteredOr:
case EOpSubgroupClusteredXor:
// The <clusterSize> as used in the subgroupClustered<op>() operations must be:
// - An integral constant expression.
// - At least 1.
// - A power of 2.
if ((*argp)[1]->getAsConstantUnion() == nullptr)
error(loc, "argument must be compile-time constant", "cluster size", "");
else {
int size = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getIConst();
if (size < 1)
error(loc, "argument must be at least 1", "cluster size", "");
else if (!IsPow2(size))
error(loc, "argument must be a power of 2", "cluster size", "");
}
break;
case EOpSubgroupBroadcast:
// <id> must be an integral constant expression.
if ((*argp)[1]->getAsConstantUnion() == nullptr)
error(loc, "argument must be compile-time constant", "id", "");
break;
case EOpBarrier:
case EOpMemoryBarrier:
if (argp->size() > 0) {
requireExtensions(loc, 1, &E_GL_KHR_memory_scope_semantics, fnCandidate.getName().c_str());
memorySemanticsCheck(loc, fnCandidate, callNode);
}
break;
default:
break;
}
// Texture operations on texture objects (aside from texelFetch on a
// textureBuffer) require EXT_samplerless_texture_functions.
switch (callNode.getOp()) {
case EOpTextureQuerySize:
case EOpTextureQueryLevels:
case EOpTextureQuerySamples:
case EOpTextureFetch:
case EOpTextureFetchOffset:
{
const TSampler& sampler = fnCandidate[0].type->getSampler();
const bool isTexture = sampler.isTexture() && !sampler.isCombined();
const bool isBuffer = sampler.dim == EsdBuffer;
const bool isFetch = callNode.getOp() == EOpTextureFetch || callNode.getOp() == EOpTextureFetchOffset;
if (isTexture && (!isBuffer || !isFetch))
requireExtensions(loc, 1, &E_GL_EXT_samplerless_texture_functions, fnCandidate.getName().c_str());
break;
}
default:
break;
}
if (callNode.getOp() > EOpSubgroupGuardStart && callNode.getOp() < EOpSubgroupGuardStop) {
// these require SPIR-V 1.3
if (spvVersion.spv > 0 && spvVersion.spv < EShTargetSpv_1_3)
error(loc, "requires SPIR-V 1.3", "subgroup op", "");
}
}
extern bool PureOperatorBuiltins;
// Deprecated! Use PureOperatorBuiltins == true instead, in which case this
// functionality is handled in builtInOpCheck() instead of here.
//
// Do additional checking of built-in function calls that were not mapped
// to built-in operations (e.g., texturing functions).
//
// Assumes there has been a semantically correct match to a built-in function.
//
void TParseContext::nonOpBuiltInCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermAggregate& callNode)
{
// Further maintenance of this function is deprecated, because the "correct"
// future-oriented design is to not have to do string compares on function names.
// If PureOperatorBuiltins == true, then all built-ins should be mapped
// to a TOperator, and this function would then never get called.
assert(PureOperatorBuiltins == false);
// built-in texturing functions get their return value precision from the precision of the sampler
if (fnCandidate.getType().getQualifier().precision == EpqNone &&
fnCandidate.getParamCount() > 0 && fnCandidate[0].type->getBasicType() == EbtSampler)
callNode.getQualifier().precision = callNode.getSequence()[0]->getAsTyped()->getQualifier().precision;
if (fnCandidate.getName().compare(0, 7, "texture") == 0) {
if (fnCandidate.getName().compare(0, 13, "textureGather") == 0) {
TString featureString = fnCandidate.getName() + "(...)";
const char* feature = featureString.c_str();
profileRequires(loc, EEsProfile, 310, nullptr, feature);
int compArg = -1; // track which argument, if any, is the constant component argument
if (fnCandidate.getName().compare("textureGatherOffset") == 0) {
// GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
if (fnCandidate[0].type->getSampler().dim == Esd2D && ! fnCandidate[0].type->getSampler().shadow && fnCandidate.getParamCount() == 3)
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature);
else
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature);
int offsetArg = fnCandidate[0].type->getSampler().shadow ? 3 : 2;
if (! callNode.getSequence()[offsetArg]->getAsConstantUnion())
profileRequires(loc, EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5,
"non-constant offset argument");
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
} else if (fnCandidate.getName().compare("textureGatherOffsets") == 0) {
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature);
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 3;
// check for constant offsets
int offsetArg = fnCandidate[0].type->getSampler().shadow ? 3 : 2;
if (! callNode.getSequence()[offsetArg]->getAsConstantUnion())
error(loc, "must be a compile-time constant:", feature, "offsets argument");
} else if (fnCandidate.getName().compare("textureGather") == 0) {
// More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
// otherwise, need GL_ARB_texture_gather.
if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) {
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature);
if (! fnCandidate[0].type->getSampler().shadow)
compArg = 2;
} else
profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature);
}
if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
if (callNode.getSequence()[compArg]->getAsConstantUnion()) {
int value = callNode.getSequence()[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
if (value < 0 || value > 3)
error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
} else
error(loc, "must be a compile-time constant:", feature, "component argument");
}
} else {
// this is only for functions not starting "textureGather"...
if (fnCandidate.getName().find("Offset") != TString::npos) {
// Handle texture-offset limits checking
int arg = -1;
if (fnCandidate.getName().compare("textureOffset") == 0)
arg = 2;
else if (fnCandidate.getName().compare("texelFetchOffset") == 0)
arg = 3;
else if (fnCandidate.getName().compare("textureProjOffset") == 0)
arg = 2;
else if (fnCandidate.getName().compare("textureLodOffset") == 0)
arg = 3;
else if (fnCandidate.getName().compare("textureProjLodOffset") == 0)
arg = 3;
else if (fnCandidate.getName().compare("textureGradOffset") == 0)
arg = 4;
else if (fnCandidate.getName().compare("textureProjGradOffset") == 0)
arg = 4;
if (arg > 0) {
if (! callNode.getSequence()[arg]->getAsConstantUnion())
error(loc, "argument must be compile-time constant", "texel offset", "");
else {
const TType& type = callNode.getSequence()[arg]->getAsTyped()->getType();
for (int c = 0; c < type.getVectorSize(); ++c) {
int offset = callNode.getSequence()[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
}
}
}
}
}
}
// GL_ARB_shader_texture_image_samples
if (fnCandidate.getName().compare(0, 14, "textureSamples") == 0 || fnCandidate.getName().compare(0, 12, "imageSamples") == 0)
profileRequires(loc, ~EEsProfile, 450, E_GL_ARB_shader_texture_image_samples, "textureSamples and imageSamples");
if (fnCandidate.getName().compare(0, 11, "imageAtomic") == 0) {
const TType& imageType = callNode.getSequence()[0]->getAsTyped()->getType();
if (imageType.getSampler().type == EbtInt || imageType.getSampler().type == EbtUint) {
if (imageType.getQualifier().layoutFormat != ElfR32i && imageType.getQualifier().layoutFormat != ElfR32ui)
error(loc, "only supported on image with format r32i or r32ui", fnCandidate.getName().c_str(), "");
} else {
if (fnCandidate.getName().compare(0, 19, "imageAtomicExchange") != 0)
error(loc, "only supported on integer images", fnCandidate.getName().c_str(), "");
else if (imageType.getQualifier().layoutFormat != ElfR32f && profile == EEsProfile)
error(loc, "only supported on image with format r32f", fnCandidate.getName().c_str(), "");
}
}
}
//
// Do any extra checking for a user function call.
//
void TParseContext::userFunctionCallCheck(const TSourceLoc& loc, TIntermAggregate& callNode)
{
TIntermSequence& arguments = callNode.getSequence();
for (int i = 0; i < (int)arguments.size(); ++i)
samplerConstructorLocationCheck(loc, "call argument", arguments[i]);
}
//
// Emit an error if this is a sampler constructor
//
void TParseContext::samplerConstructorLocationCheck(const TSourceLoc& loc, const char* token, TIntermNode* node)
{
if (node->getAsOperator() && node->getAsOperator()->getOp() == EOpConstructTextureSampler)
error(loc, "sampler constructor must appear at point of use", token, "");
}
//
// Handle seeing a built-in constructor in a grammar production.
//
TFunction* TParseContext::handleConstructorCall(const TSourceLoc& loc, const TPublicType& publicType)
{
TType type(publicType);
type.getQualifier().precision = EpqNone;
if (type.isArray()) {
profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "arrayed constructor");
profileRequires(loc, EEsProfile, 300, nullptr, "arrayed constructor");
}
TOperator op = intermediate.mapTypeToConstructorOp(type);
if (op == EOpNull) {
error(loc, "cannot construct this type", type.getBasicString(), "");
op = EOpConstructFloat;
TType errorType(EbtFloat);
type.shallowCopy(errorType);
}
TString empty("");
return new TFunction(&empty, type, op);
}
// Handle seeing a precision qualifier in the grammar.
void TParseContext::handlePrecisionQualifier(const TSourceLoc& /*loc*/, TQualifier& qualifier, TPrecisionQualifier precision)
{
if (obeyPrecisionQualifiers())
qualifier.precision = precision;
}
// Check for messages to give on seeing a precision qualifier used in a
// declaration in the grammar.
void TParseContext::checkPrecisionQualifier(const TSourceLoc& loc, TPrecisionQualifier)
{
if (precisionManager.shouldWarnAboutDefaults()) {
warn(loc, "all default precisions are highp; use precision statements to quiet warning, e.g.:\n"
" \"precision mediump int; precision highp float;\"", "", "");
precisionManager.defaultWarningGiven();
}
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
{
error(loc, "", op, "cannot convert from '%s' to '%s'",
right.c_str(), left.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
{
error(loc, " wrong operand type", op,
"no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
op, operand.c_str());
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
{
error(loc, " wrong operand types:", op,
"no operation '%s' exists that takes a left-hand operand of type '%s' and "
"a right operand of type '%s' (or there is no acceptable conversion)",
op, left.c_str(), right.c_str());
}
//
// A basic type of EbtVoid is a key that the name string was seen in the source, but
// it was not found as a variable in the symbol table. If so, give the error
// message and insert a dummy variable in the symbol table to prevent future errors.
//
void TParseContext::variableCheck(TIntermTyped*& nodePtr)
{
TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
if (! symbol)
return;
if (symbol->getType().getBasicType() == EbtVoid) {
const char *extraInfoFormat = "";
if (spvVersion.vulkan != 0 && symbol->getName() == "gl_VertexID") {
extraInfoFormat = "(Did you mean gl_VertexIndex?)";
} else if (spvVersion.vulkan != 0 && symbol->getName() == "gl_InstanceID") {
extraInfoFormat = "(Did you mean gl_InstanceIndex?)";
}
error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), extraInfoFormat);
// Add to symbol table to prevent future error messages on the same name
if (symbol->getName().size() > 0) {
TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
symbolTable.insert(*fakeVariable);
// substitute a symbol node for this new variable
nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
}
} else {
switch (symbol->getQualifier().storage) {
case EvqPointCoord:
profileRequires(symbol->getLoc(), ENoProfile, 120, nullptr, "gl_PointCoord");
break;
default: break; // some compilers want this
}
}
}
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if there was an error.
//
bool TParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
TIntermBinary* binaryNode = node->getAsBinaryNode();
if (binaryNode) {
bool errorReturn = false;
switch(binaryNode->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect:
// ... tessellation control shader ...
// If a per-vertex output variable is used as an l-value, it is a
// compile-time or link-time error if the expression indicating the
// vertex index is not the identifier gl_InvocationID.
if (language == EShLangTessControl) {
const TType& leftType = binaryNode->getLeft()->getType();
if (leftType.getQualifier().storage == EvqVaryingOut && ! leftType.getQualifier().patch && binaryNode->getLeft()->getAsSymbolNode()) {
// we have a per-vertex output
const TIntermSymbol* rightSymbol = binaryNode->getRight()->getAsSymbolNode();
if (! rightSymbol || rightSymbol->getQualifier().builtIn != EbvInvocationId)
error(loc, "tessellation-control per-vertex output l-value must be indexed with gl_InvocationID", "[]", "");
}
}
break; // left node is checked by base class
case EOpIndexDirectStruct:
break; // left node is checked by base class
case EOpVectorSwizzle:
errorReturn = lValueErrorCheck(loc, op, binaryNode->getLeft());
if (!errorReturn) {
int offset[4] = {0,0,0,0};
TIntermTyped* rightNode = binaryNode->getRight();
TIntermAggregate *aggrNode = rightNode->getAsAggregate();
for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
p != aggrNode->getSequence().end(); p++) {
int value = (*p)->getAsTyped()->getAsConstantUnion()->getConstArray()[0].getIConst();
offset[value]++;
if (offset[value] > 1) {
error(loc, " l-value of swizzle cannot have duplicate components", op, "", "");
return true;
}
}
}
return errorReturn;
default:
break;
}
if (errorReturn) {
error(loc, " l-value required", op, "", "");
return true;
}
}
if (binaryNode && binaryNode->getOp() == EOpIndexDirectStruct &&
binaryNode->getLeft()->getBasicType() == EbtReference)
return false;
// Let the base class check errors
if (TParseContextBase::lValueErrorCheck(loc, op, node))
return true;
const char* symbol = nullptr;
TIntermSymbol* symNode = node->getAsSymbolNode();
if (symNode != nullptr)
symbol = symNode->getName().c_str();
const char* message = nullptr;
switch (node->getQualifier().storage) {
case EvqVaryingIn: message = "can't modify shader input"; break;
case EvqInstanceId: message = "can't modify gl_InstanceID"; break;
case EvqVertexId: message = "can't modify gl_VertexID"; break;
case EvqFace: message = "can't modify gl_FrontFace"; break;
case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
case EvqFragDepth:
intermediate.setDepthReplacing();
// "In addition, it is an error to statically write to gl_FragDepth in the fragment shader."
if (profile == EEsProfile && intermediate.getEarlyFragmentTests())
message = "can't modify gl_FragDepth if using early_fragment_tests";
break;
default:
break;
}
if (message == nullptr && binaryNode == nullptr && symNode == nullptr) {
error(loc, " l-value required", op, "", "");
return true;
}
//
// Everything else is okay, no error.
//
if (message == nullptr)
return false;
//
// If we get here, we have an error and a message.
//
if (symNode)
error(loc, " l-value required", op, "\"%s\" (%s)", symbol, message);
else
error(loc, " l-value required", op, "(%s)", message);
return true;
}
// Test for and give an error if the node can't be read from.
void TParseContext::rValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
// Let the base class check errors
TParseContextBase::rValueErrorCheck(loc, op, node);
#ifdef AMD_EXTENSIONS
TIntermSymbol* symNode = node->getAsSymbolNode();
if (!(symNode && symNode->getQualifier().writeonly)) // base class checks
if (symNode && symNode->getQualifier().explicitInterp)
error(loc, "can't read from explicitly-interpolated object: ", op, symNode->getName().c_str());
#endif
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
//
void TParseContext::constantValueCheck(TIntermTyped* node, const char* token)
{
if (! node->getQualifier().isConstant())
error(node->getLoc(), "constant expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
//
void TParseContext::integerCheck(const TIntermTyped* node, const char* token)
{
if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
return;
error(node->getLoc(), "scalar integer expression required", token, "");
}
//
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
//
void TParseContext::globalCheck(const TSourceLoc& loc, const char* token)
{
if (! symbolTable.atGlobalLevel())
error(loc, "not allowed in nested scope", token, "");
}
//
// Reserved errors for GLSL.
//
void TParseContext::reservedErrorCheck(const TSourceLoc& loc, const TString& identifier)
{
// "Identifiers starting with "gl_" are reserved for use by OpenGL, and may not be
// declared in a shader; this results in a compile-time error."
if (! symbolTable.atBuiltInLevel()) {
if (builtInName(identifier))
error(loc, "identifiers starting with \"gl_\" are reserved", identifier.c_str(), "");
// "__" are not supposed to be an error. ES 310 (and desktop) added the clarification:
// "In addition, all identifiers containing two consecutive underscores (__) are
// reserved; using such a name does not itself result in an error, but may result
// in undefined behavior."
// however, before that, ES tests required an error.
if (identifier.find("__") != TString::npos) {
if (profile == EEsProfile && version <= 300)
error(loc, "identifiers containing consecutive underscores (\"__\") are reserved, and an error if version <= 300", identifier.c_str(), "");
else
warn(loc, "identifiers containing consecutive underscores (\"__\") are reserved", identifier.c_str(), "");
}
}
}
//
// Reserved errors for the preprocessor.
//
void TParseContext::reservedPpErrorCheck(const TSourceLoc& loc, const char* identifier, const char* op)
{
// "__" are not supposed to be an error. ES 310 (and desktop) added the clarification:
// "All macro names containing two consecutive underscores ( __ ) are reserved;
// defining such a name does not itself result in an error, but may result in
// undefined behavior. All macro names prefixed with "GL_" ("GL" followed by a
// single underscore) are also reserved, and defining such a name results in a
// compile-time error."
// however, before that, ES tests required an error.
if (strncmp(identifier, "GL_", 3) == 0)
ppError(loc, "names beginning with \"GL_\" can't be (un)defined:", op, identifier);
else if (strncmp(identifier, "defined", 8) == 0)
ppError(loc, "\"defined\" can't be (un)defined:", op, identifier);
else if (strstr(identifier, "__") != 0) {
if (profile == EEsProfile && version >= 300 &&
(strcmp(identifier, "__LINE__") == 0 ||
strcmp(identifier, "__FILE__") == 0 ||
strcmp(identifier, "__VERSION__") == 0))
ppError(loc, "predefined names can't be (un)defined:", op, identifier);
else {
if (profile == EEsProfile && version <= 300)
ppError(loc, "names containing consecutive underscores are reserved, and an error if version <= 300:", op, identifier);
else
ppWarn(loc, "names containing consecutive underscores are reserved:", op, identifier);
}
}
}
//
// See if this version/profile allows use of the line-continuation character '\'.
//
// Returns true if a line continuation should be done.
//
bool TParseContext::lineContinuationCheck(const TSourceLoc& loc, bool endOfComment)
{
const char* message = "line continuation";
bool lineContinuationAllowed = (profile == EEsProfile && version >= 300) ||
(profile != EEsProfile && (version >= 420 || extensionTurnedOn(E_GL_ARB_shading_language_420pack)));
if (endOfComment) {
if (lineContinuationAllowed)
warn(loc, "used at end of comment; the following line is still part of the comment", message, "");
else
warn(loc, "used at end of comment, but this version does not provide line continuation", message, "");
return lineContinuationAllowed;
}
if (relaxedErrors()) {
if (! lineContinuationAllowed)
warn(loc, "not allowed in this version", message, "");
return true;
} else {
profileRequires(loc, EEsProfile, 300, nullptr, message);
profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, message);
}
return lineContinuationAllowed;
}
bool TParseContext::builtInName(const TString& identifier)
{
return identifier.compare(0, 3, "gl_") == 0;
}
//
// Make sure there is enough data and not too many arguments provided to the
// constructor to build something of the type of the constructor. Also returns
// the type of the constructor.
//
// Part of establishing type is establishing specialization-constness.
// We don't yet know "top down" whether type is a specialization constant,
// but a const constructor can becomes a specialization constant if any of
// its children are, subject to KHR_vulkan_glsl rules:
//
// - int(), uint(), and bool() constructors for type conversions
// from any of the following types to any of the following types:
// * int
// * uint
// * bool
// - vector versions of the above conversion constructors
//
// Returns true if there was an error in construction.
//
bool TParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, TOperator op, TType& type)
{
type.shallowCopy(function.getType());
bool constructingMatrix = false;
switch(op) {
case EOpConstructTextureSampler:
return constructorTextureSamplerError(loc, function);
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
case EOpConstructF16Mat2x2:
case EOpConstructF16Mat2x3:
case EOpConstructF16Mat2x4:
case EOpConstructF16Mat3x2:
case EOpConstructF16Mat3x3:
case EOpConstructF16Mat3x4:
case EOpConstructF16Mat4x2:
case EOpConstructF16Mat4x3:
case EOpConstructF16Mat4x4:
constructingMatrix = true;
break;
default:
break;
}
//
// Walk the arguments for first-pass checks and collection of information.
//
int size = 0;
bool constType = true;
bool specConstType = false; // value is only valid if constType is true
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
bool floatArgument = false;
for (int arg = 0; arg < function.getParamCount(); ++arg) {
if (function[arg].type->isArray()) {
if (function[arg].type->isUnsizedArray()) {
// Can't construct from an unsized array.
error(loc, "array argument must be sized", "constructor", "");
return true;
}
arrayArg = true;
}
if (constructingMatrix && function[arg].type->isMatrix())
matrixInMatrix = true;
// 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument.
if (full) {
// For vectors and matrices, it's okay to have too many components
// available, but not okay to have unused arguments.
overFull = true;
}
size += function[arg].type->computeNumComponents();
if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
full = true;
if (! function[arg].type->getQualifier().isConstant())
constType = false;
if (function[arg].type->getQualifier().isSpecConstant())
specConstType = true;
if (function[arg].type->isFloatingDomain())
floatArgument = true;
if (type.isStruct()) {
if (function[arg].type->containsBasicType(EbtFloat16)) {
requireFloat16Arithmetic(loc, "constructor", "can't construct structure containing 16-bit type");
}
if (function[arg].type->containsBasicType(EbtUint16) ||
function[arg].type->containsBasicType(EbtInt16)) {
requireInt16Arithmetic(loc, "constructor", "can't construct structure containing 16-bit type");
}
if (function[arg].type->containsBasicType(EbtUint8) ||
function[arg].type->containsBasicType(EbtInt8)) {
requireInt8Arithmetic(loc, "constructor", "can't construct structure containing 8-bit type");
}
}
}
switch (op) {
case EOpConstructFloat16:
case EOpConstructF16Vec2:
case EOpConstructF16Vec3:
case EOpConstructF16Vec4:
if (type.isArray())
requireFloat16Arithmetic(loc, "constructor", "16-bit arrays not supported");
if (type.isVector() && function.getParamCount() != 1)
requireFloat16Arithmetic(loc, "constructor", "16-bit vectors only take vector types");
break;
case EOpConstructUint16:
case EOpConstructU16Vec2:
case EOpConstructU16Vec3:
case EOpConstructU16Vec4:
case EOpConstructInt16:
case EOpConstructI16Vec2:
case EOpConstructI16Vec3:
case EOpConstructI16Vec4:
if (type.isArray())
requireInt16Arithmetic(loc, "constructor", "16-bit arrays not supported");
if (type.isVector() && function.getParamCount() != 1)
requireInt16Arithmetic(loc, "constructor", "16-bit vectors only take vector types");
break;
case EOpConstructUint8:
case EOpConstructU8Vec2:
case EOpConstructU8Vec3:
case EOpConstructU8Vec4:
case EOpConstructInt8:
case EOpConstructI8Vec2:
case EOpConstructI8Vec3:
case EOpConstructI8Vec4:
if (type.isArray())
requireInt8Arithmetic(loc, "constructor", "8-bit arrays not supported");
if (type.isVector() && function.getParamCount() != 1)
requireInt8Arithmetic(loc, "constructor", "8-bit vectors only take vector types");
break;
default:
break;
}
// inherit constness from children
if (constType) {
bool makeSpecConst;
// Finish pinning down spec-const semantics
if (specConstType) {
switch (op) {
case EOpConstructInt8:
case EOpConstructUint8:
case EOpConstructInt16:
case EOpConstructUint16:
case EOpConstructInt:
case EOpConstructUint:
case EOpConstructInt64:
case EOpConstructUint64:
case EOpConstructBool:
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructI8Vec2:
case EOpConstructI8Vec3:
case EOpConstructI8Vec4:
case EOpConstructU8Vec2:
case EOpConstructU8Vec3:
case EOpConstructU8Vec4:
case EOpConstructI16Vec2:
case EOpConstructI16Vec3:
case EOpConstructI16Vec4:
case EOpConstructU16Vec2:
case EOpConstructU16Vec3:
case EOpConstructU16Vec4:
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructUVec2:
case EOpConstructUVec3:
case EOpConstructUVec4:
case EOpConstructI64Vec2:
case EOpConstructI64Vec3:
case EOpConstructI64Vec4:
case EOpConstructU64Vec2:
case EOpConstructU64Vec3:
case EOpConstructU64Vec4:
// This was the list of valid ones, if they aren't converting from float
// and aren't making an array.
makeSpecConst = ! floatArgument && ! type.isArray();
break;
default:
// anything else wasn't white-listed in the spec as a conversion
makeSpecConst = false;
break;
}
} else
makeSpecConst = false;
if (makeSpecConst)
type.getQualifier().makeSpecConstant();
else if (specConstType)
type.getQualifier().makeTemporary();
else
type.getQualifier().storage = EvqConst;
}
if (type.isArray()) {
if (function.getParamCount() == 0) {
error(loc, "array constructor must have at least one argument", "constructor", "");
return true;
}
if (type.isUnsizedArray()) {
// auto adapt the constructor type to the number of arguments
type.changeOuterArraySize(function.getParamCount());
} else if (type.getOuterArraySize() != function.getParamCount()) {
error(loc, "array constructor needs one argument per array element", "constructor", "");
return true;
}
if (type.isArrayOfArrays()) {
// Types have to match, but we're still making the type.
// Finish making the type, and the comparison is done later
// when checking for conversion.
TArraySizes& arraySizes = *type.getArraySizes();
// At least the dimensionalities have to match.
if (! function[0].type->isArray() ||
arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
return true;
}
if (arraySizes.isInnerUnsized()) {
// "Arrays of arrays ..., and the size for any dimension is optional"
// That means we need to adopt (from the first argument) the other array sizes into the type.
for (int d = 1; d < arraySizes.getNumDims(); ++d) {
if (arraySizes.getDimSize(d) == UnsizedArraySize) {
arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
}
}
}
}
}
if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
error(loc, "constructing non-array constituent from array argument", "constructor", "");
return true;
}
if (matrixInMatrix && ! type.isArray()) {
profileRequires(loc, ENoProfile, 120, nullptr, "constructing matrix from matrix");
// "If a matrix argument is given to a matrix constructor,
// it is a compile-time error to have any other arguments."
if (function.getParamCount() != 1)
error(loc, "matrix constructed from matrix can only have one argument", "constructor", "");
return false;
}
if (overFull) {
error(loc, "too many arguments", "constructor", "");
return true;
}
if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) {
error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
return true;
}
if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
(op == EOpConstructStruct && size < type.computeNumComponents())) {
error(loc, "not enough data provided for construction", "constructor", "");
return true;
}
TIntermTyped* typed = node->getAsTyped();
if (typed == nullptr) {
error(loc, "constructor argument does not have a type", "constructor", "");
return true;
}
if (op != EOpConstructStruct && typed->getBasicType() == EbtSampler) {
error(loc, "cannot convert a sampler", "constructor", "");
return true;
}
if (op != EOpConstructStruct && typed->getBasicType() == EbtAtomicUint) {
error(loc, "cannot convert an atomic_uint", "constructor", "");
return true;
}
if (typed->getBasicType() == EbtVoid) {
error(loc, "cannot convert a void", "constructor", "");
return true;
}
return false;
}
// Verify all the correct semantics for constructing a combined texture/sampler.
// Return true if the semantics are incorrect.
bool TParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function)
{
TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change
const char* token = constructorName.c_str();
// exactly two arguments needed
if (function.getParamCount() != 2) {
error(loc, "sampler-constructor requires two arguments", token, "");
return true;
}
// For now, not allowing arrayed constructors, the rest of this function
// is set up to allow them, if this test is removed:
if (function.getType().isArray()) {
error(loc, "sampler-constructor cannot make an array of samplers", token, "");
return true;
}
// first argument
// * the constructor's first argument must be a texture type
// * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array)
// of the texture type must match that of the constructed sampler type
// (that is, the suffixes of the type of the first argument and the
// type of the constructor will be spelled the same way)
if (function[0].type->getBasicType() != EbtSampler ||
! function[0].type->getSampler().isTexture() ||
function[0].type->isArray()) {
error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, "");
return true;
}
// simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=()
TSampler texture = function.getType().getSampler();
texture.combined = false;
texture.shadow = false;
if (texture != function[0].type->getSampler()) {
error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, "");
return true;
}
// second argument
// * the constructor's second argument must be a scalar of type
// *sampler* or *samplerShadow*
if ( function[1].type->getBasicType() != EbtSampler ||
! function[1].type->getSampler().isPureSampler() ||
function[1].type->isArray()) {
error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, "");
return true;
}
return false;
}
// Checks to see if a void variable has been declared and raise an error message for such a case
//
// returns true in case of an error
//
bool TParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
{
if (basicType == EbtVoid) {
error(loc, "illegal use of type 'void'", identifier.c_str(), "");
return true;
}
return false;
}
// Checks to see if the node (for the expression) contains a scalar boolean expression or not
void TParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
error(loc, "boolean expression expected", "", "");
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
void TParseContext::boolCheck(const TSourceLoc& loc, const TPublicType& pType)
{
if (pType.basicType != EbtBool || pType.arraySizes || pType.matrixCols > 1 || (pType.vectorSize > 1))
error(loc, "boolean expression expected", "", "");
}
void TParseContext::samplerCheck(const TSourceLoc& loc, const TType& type, const TString& identifier, TIntermTyped* /*initializer*/)
{
// Check that the appropriate extension is enabled if external sampler is used.
// There are two extensions. The correct one must be used based on GLSL version.
if (type.getBasicType() == EbtSampler && type.getSampler().external) {
if (version < 300) {
requireExtensions(loc, 1, &E_GL_OES_EGL_image_external, "samplerExternalOES");
} else {
requireExtensions(loc, 1, &E_GL_OES_EGL_image_external_essl3, "samplerExternalOES");
}
}
if (type.getQualifier().storage == EvqUniform)
return;
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtSampler))
error(loc, "non-uniform struct contains a sampler or image:", type.getBasicTypeString().c_str(), identifier.c_str());
else if (type.getBasicType() == EbtSampler && type.getQualifier().storage != EvqUniform) {
// non-uniform sampler
// not yet: okay if it has an initializer
// if (! initializer)
error(loc, "sampler/image types can only be used in uniform variables or function parameters:", type.getBasicTypeString().c_str(), identifier.c_str());
}
}
void TParseContext::atomicUintCheck(const TSourceLoc& loc, const TType& type, const TString& identifier)
{
if (type.getQualifier().storage == EvqUniform)
return;
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtAtomicUint))
error(loc, "non-uniform struct contains an atomic_uint:", type.getBasicTypeString().c_str(), identifier.c_str());
else if (type.getBasicType() == EbtAtomicUint && type.getQualifier().storage != EvqUniform)
error(loc, "atomic_uints can only be used in uniform variables or function parameters:", type.getBasicTypeString().c_str(), identifier.c_str());
}
#ifdef NV_EXTENSIONS
void TParseContext::accStructNVCheck(const TSourceLoc& loc, const TType& type, const TString& identifier)
{
if (type.getQualifier().storage == EvqUniform)
return;
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtAccStructNV))
error(loc, "non-uniform struct contains an accelerationStructureNV:", type.getBasicTypeString().c_str(), identifier.c_str());
else if (type.getBasicType() == EbtAccStructNV && type.getQualifier().storage != EvqUniform)
error(loc, "accelerationStructureNV can only be used in uniform variables or function parameters:",
type.getBasicTypeString().c_str(), identifier.c_str());
}
#endif
void TParseContext::transparentOpaqueCheck(const TSourceLoc& loc, const TType& type, const TString& identifier)
{
if (parsingBuiltins)
return;
if (type.getQualifier().storage != EvqUniform)
return;
if (type.containsNonOpaque()) {
// Vulkan doesn't allow transparent uniforms outside of blocks
if (spvVersion.vulkan > 0)
vulkanRemoved(loc, "non-opaque uniforms outside a block");
// OpenGL wants locations on these (unless they are getting automapped)
if (spvVersion.openGl > 0 && !type.getQualifier().hasLocation() && !intermediate.getAutoMapLocations())
error(loc, "non-opaque uniform variables need a layout(location=L)", identifier.c_str(), "");
}
}
//
// Qualifier checks knowing the qualifier and that it is a member of a struct/block.
//
void TParseContext::memberQualifierCheck(glslang::TPublicType& publicType)
{
globalQualifierFixCheck(publicType.loc, publicType.qualifier);
checkNoShaderLayouts(publicType.loc, publicType.shaderQualifiers);
if (publicType.qualifier.isNonUniform()) {
error(publicType.loc, "not allowed on block or structure members", "nonuniformEXT", "");
publicType.qualifier.nonUniform = false;
}
}
//
// Check/fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
//
void TParseContext::globalQualifierFixCheck(const TSourceLoc& loc, TQualifier& qualifier)
{
bool nonuniformOkay = false;
// move from parameter/unknown qualifiers to pipeline in/out qualifiers
switch (qualifier.storage) {
case EvqIn:
profileRequires(loc, ENoProfile, 130, nullptr, "in for stage inputs");
profileRequires(loc, EEsProfile, 300, nullptr, "in for stage inputs");
qualifier.storage = EvqVaryingIn;
nonuniformOkay = true;
break;
case EvqOut:
profileRequires(loc, ENoProfile, 130, nullptr, "out for stage outputs");
profileRequires(loc, EEsProfile, 300, nullptr, "out for stage outputs");
qualifier.storage = EvqVaryingOut;
break;
case EvqInOut:
qualifier.storage = EvqVaryingIn;
error(loc, "cannot use 'inout' at global scope", "", "");
break;
case EvqGlobal:
case EvqTemporary:
nonuniformOkay = true;
break;
default:
break;
}
if (!nonuniformOkay && qualifier.nonUniform)
error(loc, "for non-parameter, can only apply to 'in' or no storage qualifier", "nonuniformEXT", "");
invariantCheck(loc, qualifier);
}
//
// Check a full qualifier and type (no variable yet) at global level.
//
void TParseContext::globalQualifierTypeCheck(const TSourceLoc& loc, const TQualifier& qualifier, const TPublicType& publicType)
{
if (! symbolTable.atGlobalLevel())
return;
if (!(publicType.userDef && publicType.userDef->getBasicType() == EbtReference)) {
if (qualifier.isMemoryQualifierImageAndSSBOOnly() && ! publicType.isImage() && publicType.qualifier.storage != EvqBuffer) {
error(loc, "memory qualifiers cannot be used on this type", "", "");
} else if (qualifier.isMemory() && (publicType.basicType != EbtSampler) && !publicType.qualifier.isUniformOrBuffer()) {
error(loc, "memory qualifiers cannot be used on this type", "", "");
}
}
if (qualifier.storage == EvqBuffer &&
publicType.basicType != EbtBlock &&
!qualifier.layoutBufferReference)
error(loc, "buffers can be declared only as blocks", "buffer", "");
if (qualifier.storage != EvqVaryingIn && qualifier.storage != EvqVaryingOut)
return;
if (publicType.shaderQualifiers.blendEquation)
error(loc, "can only be applied to a standalone 'out'", "blend equation", "");
// now, knowing it is a shader in/out, do all the in/out semantic checks
if (publicType.basicType == EbtBool && !parsingBuiltins) {
error(loc, "cannot be bool", GetStorageQualifierString(qualifier.storage), "");
return;
}
if (isTypeInt(publicType.basicType) || publicType.basicType == EbtDouble)
profileRequires(loc, EEsProfile, 300, nullptr, "shader input/output");
if (!qualifier.flat
#ifdef AMD_EXTENSIONS
&& !qualifier.explicitInterp
#endif
#ifdef NV_EXTENSIONS
&& !qualifier.pervertexNV
#endif
) {
if (isTypeInt(publicType.basicType) ||
publicType.basicType == EbtDouble ||
(publicType.userDef && (publicType.userDef->containsBasicType(EbtInt8) ||
publicType.userDef->containsBasicType(EbtUint8) ||
publicType.userDef->containsBasicType(EbtInt16) ||
publicType.userDef->containsBasicType(EbtUint16) ||
publicType.userDef->containsBasicType(EbtInt) ||
publicType.userDef->containsBasicType(EbtUint) ||
publicType.userDef->containsBasicType(EbtInt64) ||
publicType.userDef->containsBasicType(EbtUint64) ||
publicType.userDef->containsBasicType(EbtDouble)))) {
if (qualifier.storage == EvqVaryingIn && language == EShLangFragment)
error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage));
else if (qualifier.storage == EvqVaryingOut && language == EShLangVertex && version == 300)
error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage));
}
}
if (qualifier.patch && qualifier.isInterpolation())
error(loc, "cannot use interpolation qualifiers with patch", "patch", "");
#ifdef NV_EXTENSIONS
if (qualifier.perTaskNV && publicType.basicType != EbtBlock)
error(loc, "taskNV variables can be declared only as blocks", "taskNV", "");
#endif
if (qualifier.storage == EvqVaryingIn) {
switch (language) {
case EShLangVertex:
if (publicType.basicType == EbtStruct) {
error(loc, "cannot be a structure or array", GetStorageQualifierString(qualifier.storage), "");
return;
}
if (publicType.arraySizes) {
requireProfile(loc, ~EEsProfile, "vertex input arrays");
profileRequires(loc, ENoProfile, 150, nullptr, "vertex input arrays");
}
if (publicType.basicType == EbtDouble)
profileRequires(loc, ~EEsProfile, 410, nullptr, "vertex-shader `double` type input");
if (qualifier.isAuxiliary() || qualifier.isInterpolation() || qualifier.isMemory() || qualifier.invariant)
error(loc, "vertex input cannot be further qualified", "", "");
break;
case EShLangTessControl:
if (qualifier.patch)
error(loc, "can only use on output in tessellation-control shader", "patch", "");
break;
case EShLangTessEvaluation:
break;
case EShLangGeometry:
break;
case EShLangFragment:
if (publicType.userDef) {
profileRequires(loc, EEsProfile, 300, nullptr, "fragment-shader struct input");
profileRequires(loc, ~EEsProfile, 150, nullptr, "fragment-shader struct input");
if (publicType.userDef->containsStructure())
requireProfile(loc, ~EEsProfile, "fragment-shader struct input containing structure");
if (publicType.userDef->containsArray())
requireProfile(loc, ~EEsProfile, "fragment-shader struct input containing an array");
}
break;
case EShLangCompute:
if (! symbolTable.atBuiltInLevel())
error(loc, "global storage input qualifier cannot be used in a compute shader", "in", "");
break;
default:
break;
}
} else {
// qualifier.storage == EvqVaryingOut
switch (language) {
case EShLangVertex:
if (publicType.userDef) {
profileRequires(loc, EEsProfile, 300, nullptr, "vertex-shader struct output");
profileRequires(loc, ~EEsProfile, 150, nullptr, "vertex-shader struct output");
if (publicType.userDef->containsStructure())
requireProfile(loc, ~EEsProfile, "vertex-shader struct output containing structure");
if (publicType.userDef->containsArray())
requireProfile(loc, ~EEsProfile, "vertex-shader struct output containing an array");
}
break;
case EShLangTessControl:
break;
case EShLangTessEvaluation:
if (qualifier.patch)
error(loc, "can only use on input in tessellation-evaluation shader", "patch", "");
break;
case EShLangGeometry:
break;
case EShLangFragment:
profileRequires(loc, EEsProfile, 300, nullptr, "fragment shader output");
if (publicType.basicType == EbtStruct) {
error(loc, "cannot be a structure", GetStorageQualifierString(qualifier.storage), "");
return;
}
if (publicType.matrixRows > 0) {
error(loc, "cannot be a matrix", GetStorageQualifierString(qualifier.storage), "");
return;
}
if (qualifier.isAuxiliary())
error(loc, "can't use auxiliary qualifier on a fragment output", "centroid/sample/patch", "");
if (qualifier.isInterpolation())
error(loc, "can't use interpolation qualifier on a fragment output", "flat/smooth/noperspective", "");
if (publicType.basicType == EbtDouble || publicType.basicType == EbtInt64 || publicType.basicType == EbtUint64)
error(loc, "cannot contain a double, int64, or uint64", GetStorageQualifierString(qualifier.storage), "");
break;
case EShLangCompute:
error(loc, "global storage output qualifier cannot be used in a compute shader", "out", "");
break;
default:
break;
}
}
}
//
// Merge characteristics of the 'src' qualifier into the 'dst'.
// If there is duplication, issue error messages, unless 'force'
// is specified, which means to just override default settings.
//
// Also, when force is false, it will be assumed that 'src' follows
// 'dst', for the purpose of error checking order for versions
// that require specific orderings of qualifiers.
//
void TParseContext::mergeQualifiers(const TSourceLoc& loc, TQualifier& dst, const TQualifier& src, bool force)
{
// Multiple auxiliary qualifiers (mostly done later by 'individual qualifiers')
if (src.isAuxiliary() && dst.isAuxiliary())
error(loc, "can only have one auxiliary qualifier (centroid, patch, and sample)", "", "");
// Multiple interpolation qualifiers (mostly done later by 'individual qualifiers')
if (src.isInterpolation() && dst.isInterpolation())
#ifdef AMD_EXTENSIONS
error(loc, "can only have one interpolation qualifier (flat, smooth, noperspective, __explicitInterpAMD)", "", "");
#else
error(loc, "can only have one interpolation qualifier (flat, smooth, noperspective)", "", "");
#endif
// Ordering
if (! force && ((profile != EEsProfile && version < 420) ||
(profile == EEsProfile && version < 310))
&& ! extensionTurnedOn(E_GL_ARB_shading_language_420pack)) {
// non-function parameters
if (src.noContraction && (dst.invariant || dst.isInterpolation() || dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone))
error(loc, "precise qualifier must appear first", "", "");
if (src.invariant && (dst.isInterpolation() || dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone))
error(loc, "invariant qualifier must appear before interpolation, storage, and precision qualifiers ", "", "");
else if (src.isInterpolation() && (dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone))
error(loc, "interpolation qualifiers must appear before storage and precision qualifiers", "", "");
else if (src.isAuxiliary() && (dst.storage != EvqTemporary || dst.precision != EpqNone))
error(loc, "Auxiliary qualifiers (centroid, patch, and sample) must appear before storage and precision qualifiers", "", "");
else if (src.storage != EvqTemporary && (dst.precision != EpqNone))
error(loc, "precision qualifier must appear as last qualifier", "", "");
// function parameters
if (src.noContraction && (dst.storage == EvqConst || dst.storage == EvqIn || dst.storage == EvqOut))
error(loc, "precise qualifier must appear first", "", "");
if (src.storage == EvqConst && (dst.storage == EvqIn || dst.storage == EvqOut))
error(loc, "in/out must appear before const", "", "");
}
// Storage qualification
if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
dst.storage = src.storage;
else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
(dst.storage == EvqOut && src.storage == EvqIn))
dst.storage = EvqInOut;
else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
(dst.storage == EvqConst && src.storage == EvqIn))
dst.storage = EvqConstReadOnly;
else if (src.storage != EvqTemporary &&
src.storage != EvqGlobal)
error(loc, "too many storage qualifiers", GetStorageQualifierString(src.storage), "");
// Precision qualifiers
if (! force && src.precision != EpqNone && dst.precision != EpqNone)
error(loc, "only one precision qualifier allowed", GetPrecisionQualifierString(src.precision), "");
if (dst.precision == EpqNone || (force && src.precision != EpqNone))
dst.precision = src.precision;
if (!force && ((src.coherent && (dst.devicecoherent || dst.queuefamilycoherent || dst.workgroupcoherent || dst.subgroupcoherent)) ||
(src.devicecoherent && (dst.coherent || dst.queuefamilycoherent || dst.workgroupcoherent || dst.subgroupcoherent)) ||
(src.queuefamilycoherent && (dst.coherent || dst.devicecoherent || dst.workgroupcoherent || dst.subgroupcoherent)) ||
(src.workgroupcoherent && (dst.coherent || dst.devicecoherent || dst.queuefamilycoherent || dst.subgroupcoherent)) ||
(src.subgroupcoherent && (dst.coherent || dst.devicecoherent || dst.queuefamilycoherent || dst.workgroupcoherent)))) {
error(loc, "only one coherent/devicecoherent/queuefamilycoherent/workgroupcoherent/subgroupcoherent qualifier allowed", GetPrecisionQualifierString(src.precision), "");
}
// Layout qualifiers
mergeObjectLayoutQualifiers(dst, src, false);
// individual qualifiers
bool repeated = false;
#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
MERGE_SINGLETON(invariant);
MERGE_SINGLETON(noContraction);
MERGE_SINGLETON(centroid);
MERGE_SINGLETON(smooth);
MERGE_SINGLETON(flat);
MERGE_SINGLETON(nopersp);
#ifdef AMD_EXTENSIONS
MERGE_SINGLETON(explicitInterp);
#endif
#ifdef NV_EXTENSIONS
MERGE_SINGLETON(perPrimitiveNV);
MERGE_SINGLETON(perViewNV);
MERGE_SINGLETON(perTaskNV);
#endif
MERGE_SINGLETON(patch);
MERGE_SINGLETON(sample);
MERGE_SINGLETON(coherent);
MERGE_SINGLETON(devicecoherent);
MERGE_SINGLETON(queuefamilycoherent);
MERGE_SINGLETON(workgroupcoherent);
MERGE_SINGLETON(subgroupcoherent);
MERGE_SINGLETON(nonprivate);
MERGE_SINGLETON(volatil);
MERGE_SINGLETON(restrict);
MERGE_SINGLETON(readonly);
MERGE_SINGLETON(writeonly);
MERGE_SINGLETON(specConstant);
MERGE_SINGLETON(nonUniform);
if (repeated)
error(loc, "replicated qualifiers", "", "");
}
void TParseContext::setDefaultPrecision(const TSourceLoc& loc, TPublicType& publicType, TPrecisionQualifier qualifier)
{
TBasicType basicType = publicType.basicType;
if (basicType == EbtSampler) {
defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)] = qualifier;
return; // all is well
}
if (basicType == EbtInt || basicType == EbtFloat) {
if (publicType.isScalar()) {
defaultPrecision[basicType] = qualifier;
if (basicType == EbtInt) {
defaultPrecision[EbtUint] = qualifier;
precisionManager.explicitIntDefaultSeen();
} else
precisionManager.explicitFloatDefaultSeen();
return; // all is well
}
}
if (basicType == EbtAtomicUint) {
if (qualifier != EpqHigh)
error(loc, "can only apply highp to atomic_uint", "precision", "");
return;
}
error(loc, "cannot apply precision statement to this type; use 'float', 'int' or a sampler type", TType::getBasicString(basicType), "");
}
// used to flatten the sampler type space into a single dimension
// correlates with the declaration of defaultSamplerPrecision[]
int TParseContext::computeSamplerTypeIndex(TSampler& sampler)
{
int arrayIndex = sampler.arrayed ? 1 : 0;
int shadowIndex = sampler.shadow ? 1 : 0;
int externalIndex = sampler.external? 1 : 0;
int imageIndex = sampler.image ? 1 : 0;
int msIndex = sampler.ms ? 1 : 0;
int flattened = EsdNumDims * (EbtNumTypes * (2 * (2 * (2 * (2 * arrayIndex + msIndex) + imageIndex) + shadowIndex) +
externalIndex) + sampler.type) + sampler.dim;
assert(flattened < maxSamplerIndex);
return flattened;
}
TPrecisionQualifier TParseContext::getDefaultPrecision(TPublicType& publicType)
{
if (publicType.basicType == EbtSampler)
return defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)];
else
return defaultPrecision[publicType.basicType];
}
void TParseContext::precisionQualifierCheck(const TSourceLoc& loc, TBasicType baseType, TQualifier& qualifier)
{
// Built-in symbols are allowed some ambiguous precisions, to be pinned down
// later by context.
if (! obeyPrecisionQualifiers() || parsingBuiltins)
return;
if (baseType == EbtAtomicUint && qualifier.precision != EpqNone && qualifier.precision != EpqHigh)
error(loc, "atomic counters can only be highp", "atomic_uint", "");
if (baseType == EbtFloat || baseType == EbtUint || baseType == EbtInt || baseType == EbtSampler || baseType == EbtAtomicUint) {
if (qualifier.precision == EpqNone) {
if (relaxedErrors())
warn(loc, "type requires declaration of default precision qualifier", TType::getBasicString(baseType), "substituting 'mediump'");
else
error(loc, "type requires declaration of default precision qualifier", TType::getBasicString(baseType), "");
qualifier.precision = EpqMedium;
defaultPrecision[baseType] = EpqMedium;
}
} else if (qualifier.precision != EpqNone)
error(loc, "type cannot have precision qualifier", TType::getBasicString(baseType), "");
}
void TParseContext::parameterTypeCheck(const TSourceLoc& loc, TStorageQualifier qualifier, const TType& type)
{
if ((qualifier == EvqOut || qualifier == EvqInOut) && type.isOpaque())
error(loc, "samplers and atomic_uints cannot be output parameters", type.getBasicTypeString().c_str(), "");
if (!parsingBuiltins && type.containsBasicType(EbtFloat16))
requireFloat16Arithmetic(loc, type.getBasicTypeString().c_str(), "float16 types can only be in uniform block or buffer storage");
if (!parsingBuiltins && type.contains16BitInt())
requireInt16Arithmetic(loc, type.getBasicTypeString().c_str(), "(u)int16 types can only be in uniform block or buffer storage");
if (!parsingBuiltins && type.contains8BitInt())
requireInt8Arithmetic(loc, type.getBasicTypeString().c_str(), "(u)int8 types can only be in uniform block or buffer storage");
}
bool TParseContext::containsFieldWithBasicType(const TType& type, TBasicType basicType)
{
if (type.getBasicType() == basicType)
return true;
if (type.getBasicType() == EbtStruct) {
const TTypeList& structure = *type.getStruct();
for (unsigned int i = 0; i < structure.size(); ++i) {
if (containsFieldWithBasicType(*structure[i].type, basicType))
return true;
}
}
return false;
}
//
// Do size checking for an array type's size.
//
void TParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
{
bool isConst = false;
sizePair.node = nullptr;
int size = 1;
TIntermConstantUnion* constant = expr->getAsConstantUnion();
if (constant) {
// handle true (non-specialization) constant
size = constant->getConstArray()[0].getIConst();
isConst = true;
} else {
// see if it's a specialization constant instead
if (expr->getQualifier().isSpecConstant()) {
isConst = true;
sizePair.node = expr;
TIntermSymbol* symbol = expr->getAsSymbolNode();
if (symbol && symbol->getConstArray().size() > 0)
size = symbol->getConstArray()[0].getIConst();
}
}
sizePair.size = size;
if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
error(loc, "array size must be a constant integer expression", "", "");
return;
}
if (size <= 0) {
error(loc, "array size must be a positive integer", "", "");
return;
}
}
//
// See if this qualifier can be an array.
//
// Returns true if there is an error.
//
bool TParseContext::arrayQualifierError(const TSourceLoc& loc, const TQualifier& qualifier)
{
if (qualifier.storage == EvqConst) {
profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "const array");
profileRequires(loc, EEsProfile, 300, nullptr, "const array");
}
if (qualifier.storage == EvqVaryingIn && language == EShLangVertex) {
requireProfile(loc, ~EEsProfile, "vertex input arrays");
profileRequires(loc, ENoProfile, 150, nullptr, "vertex input arrays");
}
return false;
}
//
// See if this qualifier and type combination can be an array.
// Assumes arrayQualifierError() was also called to catch the type-invariant tests.
//
// Returns true if there is an error.
//
bool TParseContext::arrayError(const TSourceLoc& loc, const TType& type)
{
if (type.getQualifier().storage == EvqVaryingOut && language == EShLangVertex) {
if (type.isArrayOfArrays())
requireProfile(loc, ~EEsProfile, "vertex-shader array-of-array output");
else if (type.isStruct())
requireProfile(loc, ~EEsProfile, "vertex-shader array-of-struct output");
}
if (type.getQualifier().storage == EvqVaryingIn && language == EShLangFragment) {
if (type.isArrayOfArrays())
requireProfile(loc, ~EEsProfile, "fragment-shader array-of-array input");
else if (type.isStruct())
requireProfile(loc, ~EEsProfile, "fragment-shader array-of-struct input");
}
if (type.getQualifier().storage == EvqVaryingOut && language == EShLangFragment) {
if (type.isArrayOfArrays())
requireProfile(loc, ~EEsProfile, "fragment-shader array-of-array output");
}
return false;
}
//
// Require array to be completely sized
//
void TParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
{
if (arraySizes.hasUnsized())
error(loc, "array size required", "", "");
}
void TParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
{
const TTypeList& structure = *type.getStruct();
for (int m = 0; m < (int)structure.size(); ++m) {
const TType& member = *structure[m].type;
if (member.isArray())
arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
}
}
void TParseContext::arraySizesCheck(const TSourceLoc& loc, const TQualifier& qualifier, TArraySizes* arraySizes,
const TIntermTyped* initializer, bool lastMember)
{
assert(arraySizes);
// always allow special built-in ins/outs sized to topologies
if (parsingBuiltins)
return;
// initializer must be a sized array, in which case
// allow the initializer to set any unknown array sizes
if (initializer != nullptr) {
if (initializer->getType().isUnsizedArray())
error(loc, "array initializer must be sized", "[]", "");
return;
}
// No environment allows any non-outer-dimension to be implicitly sized
if (arraySizes->isInnerUnsized()) {
error(loc, "only outermost dimension of an array of arrays can be implicitly sized", "[]", "");
arraySizes->clearInnerUnsized();
}
if (arraySizes->isInnerSpecialization())
error(loc, "only outermost dimension of an array of arrays can be a specialization constant", "[]", "");
// desktop always allows outer-dimension-unsized variable arrays,
if (profile != EEsProfile)
return;
// for ES, if size isn't coming from an initializer, it has to be explicitly declared now,
// with very few exceptions
// last member of ssbo block exception:
if (qualifier.storage == EvqBuffer && lastMember)
return;
// implicitly-sized io exceptions:
switch (language) {
case EShLangGeometry:
if (qualifier.storage == EvqVaryingIn)
if ((profile == EEsProfile && version >= 320) ||
extensionsTurnedOn(Num_AEP_geometry_shader, AEP_geometry_shader))
return;
break;
case EShLangTessControl:
if ( qualifier.storage == EvqVaryingIn ||
(qualifier.storage == EvqVaryingOut && ! qualifier.patch))
if ((profile == EEsProfile && version >= 320) ||
extensionsTurnedOn(Num_AEP_tessellation_shader, AEP_tessellation_shader))
return;
break;
case EShLangTessEvaluation:
if ((qualifier.storage == EvqVaryingIn && ! qualifier.patch) ||
qualifier.storage == EvqVaryingOut)
if ((profile == EEsProfile && version >= 320) ||
extensionsTurnedOn(Num_AEP_tessellation_shader, AEP_tessellation_shader))
return;
break;
#ifdef NV_EXTENSIONS
case EShLangMeshNV:
if (qualifier.storage == EvqVaryingOut)
if ((profile == EEsProfile && version >= 320) ||
extensionTurnedOn(E_GL_NV_mesh_shader))
return;
break;
#endif
default:
break;
}
arraySizeRequiredCheck(loc, *arraySizes);
}
void TParseContext::arrayOfArrayVersionCheck(const TSourceLoc& loc, const TArraySizes* sizes)
{
if (sizes == nullptr || sizes->getNumDims() == 1)
return;
const char* feature = "arrays of arrays";
requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature);
profileRequires(loc, EEsProfile, 310, nullptr, feature);
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, feature);
}
//
// Do all the semantic checking for declaring or redeclaring an array, with and
// without a size, and make the right changes to the symbol table.
//
void TParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type, TSymbol*& symbol)
{
if (symbol == nullptr) {
bool currentScope;
symbol = symbolTable.find(identifier, nullptr, &currentScope);
if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
// bad shader (errors already reported) trying to redeclare a built-in name as an array
symbol = nullptr;
return;
}
if (symbol == nullptr || ! currentScope) {
//
// Successfully process a new definition.
// (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
//
symbol = new TVariable(&identifier, type);
symbolTable.insert(*symbol);
if (symbolTable.atGlobalLevel())
trackLinkage(*symbol);
if (! symbolTable.atBuiltInLevel()) {
if (isIoResizeArray(type)) {
ioArraySymbolResizeList.push_back(symbol);
checkIoArraysConsistency(loc, true, type.getQualifier().isPerPrimitive());
} else
fixIoArraySize(loc, symbol->getWritableType());
}
return;
}
if (symbol->getAsAnonMember()) {
error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
symbol = nullptr;
return;
}
}
//
// Process a redeclaration.
//
if (symbol == nullptr) {
error(loc, "array variable name expected", identifier.c_str(), "");
return;
}
// redeclareBuiltinVariable() should have already done the copyUp()
TType& existingType = symbol->getWritableType();
if (! existingType.isArray()) {
error(loc, "redeclaring non-array as array", identifier.c_str(), "");
return;
}
if (! existingType.sameElementType(type)) {
error(loc, "redeclaration of array with a different element type", identifier.c_str(), "");
return;
}
if (! existingType.sameInnerArrayness(type)) {
error(loc, "redeclaration of array with a different array dimensions or sizes", identifier.c_str(), "");
return;
}
if (existingType.isSizedArray()) {
// be more leniant for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size
if (! (isIoResizeArray(type) && existingType.getOuterArraySize() == type.getOuterArraySize()))
error(loc, "redeclaration of array with size", identifier.c_str(), "");
return;
}
arrayLimitCheck(loc, identifier, type.getOuterArraySize());
existingType.updateArraySizes(type);
if (isIoResizeArray(type))
checkIoArraysConsistency(loc, false, type.getQualifier().isPerPrimitive());
}
// Policy and error check for needing a runtime sized array.
void TParseContext::checkRuntimeSizable(const TSourceLoc& loc, const TIntermTyped& base)
{
// runtime length implies runtime sizeable, so no problem
if (isRuntimeLength(base))
return;
// Check for last member of a bufferreference type, which is runtime sizeable
// but doesn't support runtime length
if (base.getType().getQualifier().storage == EvqBuffer) {
const TIntermBinary* binary = base.getAsBinaryNode();
if (binary != nullptr &&
binary->getOp() == EOpIndexDirectStruct &&
binary->getLeft()->getBasicType() == EbtReference) {
const int index = binary->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
const int memberCount = (int)binary->getLeft()->getType().getReferentType()->getStruct()->size();
if (index == memberCount - 1)
return;
}
}
// check for additional things allowed by GL_EXT_nonuniform_qualifier
if (base.getBasicType() == EbtSampler ||
(base.getBasicType() == EbtBlock && base.getType().getQualifier().isUniformOrBuffer()))
requireExtensions(loc, 1, &E_GL_EXT_nonuniform_qualifier, "variable index");
else
error(loc, "", "[", "array must be redeclared with a size before being indexed with a variable");
}
// Policy decision for whether a run-time .length() is allowed.
bool TParseContext::isRuntimeLength(const TIntermTyped& base) const
{
if (base.getType().getQualifier().storage == EvqBuffer) {
// in a buffer block
const TIntermBinary* binary = base.getAsBinaryNode();
if (binary != nullptr && binary->getOp() == EOpIndexDirectStruct) {
// is it the last member?
const int index = binary->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
if (binary->getLeft()->getBasicType() == EbtReference)
return false;
const int memberCount = (int)binary->getLeft()->getType().getStruct()->size();
if (index == memberCount - 1)
return true;
}
}
return false;
}
#ifdef NV_EXTENSIONS
// Fix mesh view output array dimension
void TParseContext::resizeMeshViewDimension(const TSourceLoc& loc, TType& type)
{
// see if member is a per-view attribute
if (type.getQualifier().isPerView()) {
// since we don't have the maxMeshViewCountNV set during parsing builtins, we hardcode the value
int maxViewCount = parsingBuiltins ? 4 : resources.maxMeshViewCountNV;
if (! type.isArray()) {
error(loc, "requires an view array dimension", "perviewNV", "");
}
else if (!type.isUnsizedArray() && type.getOuterArraySize() != maxViewCount) {
error(loc, "mesh view output array size must be gl_MaxMeshViewCountNV or implicitly sized", "[]", "");
}
else if (type.isUnsizedArray()) {
type.changeOuterArraySize(maxViewCount);
}
}
}
#endif
// Returns true if the first argument to the #line directive is the line number for the next line.
//
// Desktop, pre-version 3.30: "After processing this directive
// (including its new-line), the implementation will behave as if it is compiling at line number line+1 and
// source string number source-string-number."
//
// Desktop, version 3.30 and later, and ES: "After processing this directive
// (including its new-line), the implementation will behave as if it is compiling at line number line and
// source string number source-string-number.
bool TParseContext::lineDirectiveShouldSetNextLine() const
{
return profile == EEsProfile || version >= 330;
}
//
// Enforce non-initializer type/qualifier rules.
//
void TParseContext::nonInitConstCheck(const TSourceLoc& loc, TString& identifier, TType& type)
{
//
// Make the qualifier make sense, given that there is not an initializer.
//
if (type.getQualifier().storage == EvqConst ||
type.getQualifier().storage == EvqConstReadOnly) {
type.getQualifier().makeTemporary();
error(loc, "variables with qualifier 'const' must be initialized", identifier.c_str(), "");
}
}
//
// See if the identifier is a built-in symbol that can be redeclared, and if so,
// copy the symbol table's read-only built-in variable to the current
// global level, where it can be modified based on the passed in type.
//
// Returns nullptr if no redeclaration took place; meaning a normal declaration still
// needs to occur for it, not necessarily an error.
//
// Returns a redeclared and type-modified variable if a redeclarated occurred.
//
TSymbol* TParseContext::redeclareBuiltinVariable(const TSourceLoc& loc, const TString& identifier,
const TQualifier& qualifier, const TShaderQualifiers& publicType)
{
if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
return nullptr;
bool nonEsRedecls = (profile != EEsProfile && (version >= 130 || identifier == "gl_TexCoord"));
bool esRedecls = (profile == EEsProfile &&
(version >= 320 || extensionsTurnedOn(Num_AEP_shader_io_blocks, AEP_shader_io_blocks)));
if (! esRedecls && ! nonEsRedecls)
return nullptr;
// Special case when using GL_ARB_separate_shader_objects
bool ssoPre150 = false; // means the only reason this variable is redeclared is due to this combination
if (profile != EEsProfile && version <= 140 && extensionTurnedOn(E_GL_ARB_separate_shader_objects)) {
if (identifier == "gl_Position" ||
identifier == "gl_PointSize" ||
identifier == "gl_ClipVertex" ||
identifier == "gl_FogFragCoord")
ssoPre150 = true;
}
// Potentially redeclaring a built-in variable...
if (ssoPre150 ||
(identifier == "gl_FragDepth" && ((nonEsRedecls && version >= 420) || esRedecls)) ||
(identifier == "gl_FragCoord" && ((nonEsRedecls && version >= 150) || esRedecls)) ||
identifier == "gl_ClipDistance" ||
identifier == "gl_CullDistance" ||
identifier == "gl_FrontColor" ||
identifier == "gl_BackColor" ||
identifier == "gl_FrontSecondaryColor" ||
identifier == "gl_BackSecondaryColor" ||
identifier == "gl_SecondaryColor" ||
(identifier == "gl_Color" && language == EShLangFragment) ||
(identifier == "gl_FragStencilRefARB" && (nonEsRedecls && version >= 140)
&& language == EShLangFragment) ||
#ifdef NV_EXTENSIONS
identifier == "gl_SampleMask" ||
identifier == "gl_Layer" ||
#endif
identifier == "gl_TexCoord") {
// Find the existing symbol, if any.
bool builtIn;
TSymbol* symbol = symbolTable.find(identifier, &builtIn);
// If the symbol was not found, this must be a version/profile/stage
// that doesn't have it.
if (! symbol)
return nullptr;
// If it wasn't at a built-in level, then it's already been redeclared;
// that is, this is a redeclaration of a redeclaration; reuse that initial
// redeclaration. Otherwise, make the new one.
if (builtIn)
makeEditable(symbol);
// Now, modify the type of the copy, as per the type of the current redeclaration.
TQualifier& symbolQualifier = symbol->getWritableType().getQualifier();
if (ssoPre150) {
if (intermediate.inIoAccessed(identifier))
error(loc, "cannot redeclare after use", identifier.c_str(), "");
if (qualifier.hasLayout())
error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str());
if (qualifier.isMemory() || qualifier.isAuxiliary() || (language == EShLangVertex && qualifier.storage != EvqVaryingOut) ||
(language == EShLangFragment && qualifier.storage != EvqVaryingIn))
error(loc, "cannot change storage, memory, or auxiliary qualification of", "redeclaration", symbol->getName().c_str());
if (! qualifier.smooth)
error(loc, "cannot change interpolation qualification of", "redeclaration", symbol->getName().c_str());
} else if (identifier == "gl_FrontColor" ||
identifier == "gl_BackColor" ||
identifier == "gl_FrontSecondaryColor" ||
identifier == "gl_BackSecondaryColor" ||
identifier == "gl_SecondaryColor" ||
identifier == "gl_Color") {
symbolQualifier.flat = qualifier.flat;
symbolQualifier.smooth = qualifier.smooth;
symbolQualifier.nopersp = qualifier.nopersp;
if (qualifier.hasLayout())
error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str());
if (qualifier.isMemory() || qualifier.isAuxiliary() || symbol->getType().getQualifier().storage != qualifier.storage)
error(loc, "cannot change storage, memory, or auxiliary qualification of", "redeclaration", symbol->getName().c_str());
} else if (identifier == "gl_TexCoord" ||
identifier == "gl_ClipDistance" ||
identifier == "gl_CullDistance") {
if (qualifier.hasLayout() || qualifier.isMemory() || qualifier.isAuxiliary() ||
qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat ||
symbolQualifier.storage != qualifier.storage)
error(loc, "cannot change qualification of", "redeclaration", symbol->getName().c_str());
} else if (identifier == "gl_FragCoord") {
if (intermediate.inIoAccessed("gl_FragCoord"))
error(loc, "cannot redeclare after use", "gl_FragCoord", "");
if (qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat ||
qualifier.isMemory() || qualifier.isAuxiliary())
error(loc, "can only change layout qualification of", "redeclaration", symbol->getName().c_str());
if (qualifier.storage != EvqVaryingIn)
error(loc, "cannot change input storage qualification of", "redeclaration", symbol->getName().c_str());
if (! builtIn && (publicType.pixelCenterInteger != intermediate.getPixelCenterInteger() ||
publicType.originUpperLeft != intermediate.getOriginUpperLeft()))
error(loc, "cannot redeclare with different qualification:", "redeclaration", symbol->getName().c_str());
if (publicType.pixelCenterInteger)
intermediate.setPixelCenterInteger();
if (publicType.originUpperLeft)
intermediate.setOriginUpperLeft();
} else if (identifier == "gl_FragDepth") {
if (qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat ||
qualifier.isMemory() || qualifier.isAuxiliary())
error(loc, "can only change layout qualification of", "redeclaration", symbol->getName().c_str());
if (qualifier.storage != EvqVaryingOut)
error(loc, "cannot change output storage qualification of", "redeclaration", symbol->getName().c_str());
if (publicType.layoutDepth != EldNone) {
if (intermediate.inIoAccessed("gl_FragDepth"))
error(loc, "cannot redeclare after use", "gl_FragDepth", "");
if (! intermediate.setDepth(publicType.layoutDepth))
error(loc, "all redeclarations must use the same depth layout on", "redeclaration", symbol->getName().c_str());
}
}
else if (identifier == "gl_FragStencilRefARB") {
if (qualifier.hasLayout())
error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str());
if (qualifier.storage != EvqVaryingOut)
error(loc, "cannot change output storage qualification of", "redeclaration", symbol->getName().c_str());
}
#ifdef NV_EXTENSIONS
else if (identifier == "gl_SampleMask") {
if (!publicType.layoutOverrideCoverage) {
error(loc, "redeclaration only allowed for override_coverage layout", "redeclaration", symbol->getName().c_str());
}
intermediate.setLayoutOverrideCoverage();
}
else if (identifier == "gl_Layer") {
if (!qualifier.layoutViewportRelative && qualifier.layoutSecondaryViewportRelativeOffset == -2048)
error(loc, "redeclaration only allowed for viewport_relative or secondary_view_offset layout", "redeclaration", symbol->getName().c_str());
symbolQualifier.layoutViewportRelative = qualifier.layoutViewportRelative;
symbolQualifier.layoutSecondaryViewportRelativeOffset = qualifier.layoutSecondaryViewportRelativeOffset;
}
#endif
// TODO: semantics quality: separate smooth from nothing declared, then use IsInterpolation for several tests above
return symbol;
}
return nullptr;
}
//
// Either redeclare the requested block, or give an error message why it can't be done.
//
// TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size
void TParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName,
const TString* instanceName, TArraySizes* arraySizes)
{
const char* feature = "built-in block redeclaration";
profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, feature);
profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature);
if (blockName != "gl_PerVertex" && blockName != "gl_PerFragment"
#ifdef NV_EXTENSIONS
&& blockName != "gl_MeshPerVertexNV" && blockName != "gl_MeshPerPrimitiveNV"
#endif
)
{
error(loc, "cannot redeclare block: ", "block declaration", blockName.c_str());
return;
}
// Redeclaring a built-in block...
if (instanceName && ! builtInName(*instanceName)) {
error(loc, "cannot redeclare a built-in block with a user name", instanceName->c_str(), "");
return;
}
// Blocks with instance names are easy to find, lookup the instance name,
// Anonymous blocks need to be found via a member.
bool builtIn;
TSymbol* block;
if (instanceName)
block = symbolTable.find(*instanceName, &builtIn);
else
block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn);
// If the block was not found, this must be a version/profile/stage
// that doesn't have it, or the instance name is wrong.
const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str();
if (! block) {
error(loc, "no declaration found for redeclaration", errorName, "");
return;
}
// Built-in blocks cannot be redeclared more than once, which if happened,
// we'd be finding the already redeclared one here, rather than the built in.
if (! builtIn) {
error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), "");
return;
}
// Copy the block to make a writable version, to insert into the block table after editing.
block = symbolTable.copyUpDeferredInsert(block);
if (block->getType().getBasicType() != EbtBlock) {
error(loc, "cannot redeclare a non block as a block", errorName, "");
return;
}
// Fix XFB stuff up, it applies to the order of the redeclaration, not
// the order of the original members.
if (currentBlockQualifier.storage == EvqVaryingOut && globalOutputDefaults.hasXfbBuffer()) {
if (!currentBlockQualifier.hasXfbBuffer())
currentBlockQualifier.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
if (!currentBlockQualifier.hasStream())
currentBlockQualifier.layoutStream = globalOutputDefaults.layoutStream;
fixXfbOffsets(currentBlockQualifier, newTypeList);
}
// Edit and error check the container against the redeclaration
// - remove unused members
// - ensure remaining qualifiers/types match
TType& type = block->getWritableType();
#ifdef NV_EXTENSIONS
// if gl_PerVertex is redeclared for the purpose of passing through "gl_Position"
// for passthrough purpose, the redeclared block should have the same qualifers as
// the current one
if (currentBlockQualifier.layoutPassthrough) {
type.getQualifier().layoutPassthrough = currentBlockQualifier.layoutPassthrough;
type.getQualifier().storage = currentBlockQualifier.storage;
type.getQualifier().layoutStream = currentBlockQualifier.layoutStream;
type.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer;
}
#endif
TTypeList::iterator member = type.getWritableStruct()->begin();
size_t numOriginalMembersFound = 0;
while (member != type.getStruct()->end()) {
// look for match
bool found = false;
TTypeList::const_iterator newMember;
TSourceLoc memberLoc;
memberLoc.init();
for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) {
if (member->type->getFieldName() == newMember->type->getFieldName()) {
found = true;
memberLoc = newMember->loc;
break;
}
}
if (found) {
++numOriginalMembersFound;
// - ensure match between redeclared members' types
// - check for things that can't be changed
// - update things that can be changed
TType& oldType = *member->type;
const TType& newType = *newMember->type;
if (! newType.sameElementType(oldType))
error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), "");
if (oldType.isArray() != newType.isArray())
error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), "");
else if (! oldType.getQualifier().isPerView() && ! oldType.sameArrayness(newType) && oldType.isSizedArray())
error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), "");
else if (! oldType.getQualifier().isPerView() && newType.isArray())
arrayLimitCheck(loc, member->type->getFieldName(), newType.getOuterArraySize());
#ifdef NV_EXTENSIONS
if (oldType.getQualifier().isPerView() && ! newType.getQualifier().isPerView())
error(memberLoc, "missing perviewNV qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
else if (! oldType.getQualifier().isPerView() && newType.getQualifier().isPerView())
error(memberLoc, "cannot add perviewNV qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
else if (newType.getQualifier().isPerView()) {
if (oldType.getArraySizes()->getNumDims() != newType.getArraySizes()->getNumDims())
error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), "");
else if (! newType.isUnsizedArray() && newType.getOuterArraySize() != resources.maxMeshViewCountNV)
error(loc, "mesh view output array size must be gl_MaxMeshViewCountNV or implicitly sized", "[]", "");
else if (newType.getArraySizes()->getNumDims() == 2) {
int innerDimSize = newType.getArraySizes()->getDimSize(1);
arrayLimitCheck(memberLoc, member->type->getFieldName(), innerDimSize);
oldType.getArraySizes()->setDimSize(1, innerDimSize);
}
}
if (oldType.getQualifier().isPerPrimitive() && ! newType.getQualifier().isPerPrimitive())
error(memberLoc, "missing perprimitiveNV qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
else if (! oldType.getQualifier().isPerPrimitive() && newType.getQualifier().isPerPrimitive())
error(memberLoc, "cannot add perprimitiveNV qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
#endif
if (newType.getQualifier().isMemory())
error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), "");
if (newType.getQualifier().hasNonXfbLayout())
error(memberLoc, "cannot add non-XFB layout to redeclared block member", member->type->getFieldName().c_str(), "");
if (newType.getQualifier().patch)
error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), "");
if (newType.getQualifier().hasXfbBuffer() &&
newType.getQualifier().layoutXfbBuffer != currentBlockQualifier.layoutXfbBuffer)
error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
if (newType.getQualifier().hasStream() &&
newType.getQualifier().layoutStream != currentBlockQualifier.layoutStream)
error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_stream", "");
oldType.getQualifier().centroid = newType.getQualifier().centroid;
oldType.getQualifier().sample = newType.getQualifier().sample;
oldType.getQualifier().invariant = newType.getQualifier().invariant;
oldType.getQualifier().noContraction = newType.getQualifier().noContraction;
oldType.getQualifier().smooth = newType.getQualifier().smooth;
oldType.getQualifier().flat = newType.getQualifier().flat;
oldType.getQualifier().nopersp = newType.getQualifier().nopersp;
oldType.getQualifier().layoutXfbOffset = newType.getQualifier().layoutXfbOffset;
oldType.getQualifier().layoutXfbBuffer = newType.getQualifier().layoutXfbBuffer;
oldType.getQualifier().layoutXfbStride = newType.getQualifier().layoutXfbStride;
if (oldType.getQualifier().layoutXfbOffset != TQualifier::layoutXfbBufferEnd) {
// If any member has an xfb_offset, then the block's xfb_buffer inherents current xfb_buffer,
// and for xfb processing, the member needs it as well, along with xfb_stride.
type.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer;
oldType.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer;
}
if (oldType.isUnsizedArray() && newType.isSizedArray())
oldType.changeOuterArraySize(newType.getOuterArraySize());
// check and process the member's type, which will include managing xfb information
layoutTypeCheck(loc, oldType);
// go to next member
++member;
} else {
// For missing members of anonymous blocks that have been redeclared,
// hide the original (shared) declaration.
// Instance-named blocks can just have the member removed.
if (instanceName)
member = type.getWritableStruct()->erase(member);
else {
member->type->hideMember();
++member;
}
}
}
if (spvVersion.vulkan > 0) {
// ...then streams apply to built-in blocks, instead of them being only on stream 0
type.getQualifier().layoutStream = currentBlockQualifier.layoutStream;
}
if (numOriginalMembersFound < newTypeList.size())
error(loc, "block redeclaration has extra members", blockName.c_str(), "");
if (type.isArray() != (arraySizes != nullptr) ||
(type.isArray() && arraySizes != nullptr && type.getArraySizes()->getNumDims() != arraySizes->getNumDims()))
error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), "");
else if (type.isArray()) {
// At this point, we know both are arrays and both have the same number of dimensions.
// It is okay for a built-in block redeclaration to be unsized, and keep the size of the
// original block declaration.
if (!arraySizes->isSized() && type.isSizedArray())
arraySizes->changeOuterSize(type.getOuterArraySize());
// And, okay to be giving a size to the array, by the redeclaration
if (!type.isSizedArray() && arraySizes->isSized())
type.changeOuterArraySize(arraySizes->getOuterSize());
// Now, they must match in all dimensions.
if (type.isSizedArray() && *type.getArraySizes() != *arraySizes)
error(loc, "cannot change array size of redeclared block", blockName.c_str(), "");
}
symbolTable.insert(*block);
// Check for general layout qualifier errors
layoutObjectCheck(loc, *block);
// Tracking for implicit sizing of array
if (isIoResizeArray(block->getType())) {
ioArraySymbolResizeList.push_back(block);
checkIoArraysConsistency(loc, true, block->getType().getQualifier().isPerPrimitive());
} else if (block->getType().isArray())
fixIoArraySize(loc, block->getWritableType());
// Save it in the AST for linker use.
trackLinkage(*block);
}
void TParseContext::paramCheckFixStorage(const TSourceLoc& loc, const TStorageQualifier& qualifier, TType& type)
{
switch (qualifier) {
case EvqConst:
case EvqConstReadOnly:
type.getQualifier().storage = EvqConstReadOnly;
break;
case EvqIn:
case EvqOut:
case EvqInOut:
type.getQualifier().storage = qualifier;
break;
case EvqGlobal:
case EvqTemporary:
type.getQualifier().storage = EvqIn;
break;
default:
type.getQualifier().storage = EvqIn;
error(loc, "storage qualifier not allowed on function parameter", GetStorageQualifierString(qualifier), "");
break;
}
}
void TParseContext::paramCheckFix(const TSourceLoc& loc, const TQualifier& qualifier, TType& type)
{
if (qualifier.isMemory()) {
type.getQualifier().volatil = qualifier.volatil;
type.getQualifier().coherent = qualifier.coherent;
type.getQualifier().devicecoherent = qualifier.devicecoherent ;
type.getQualifier().queuefamilycoherent = qualifier.queuefamilycoherent;
type.getQualifier().workgroupcoherent = qualifier.workgroupcoherent;
type.getQualifier().subgroupcoherent = qualifier.subgroupcoherent;
type.getQualifier().nonprivate = qualifier.nonprivate;
type.getQualifier().readonly = qualifier.readonly;
type.getQualifier().writeonly = qualifier.writeonly;
type.getQualifier().restrict = qualifier.restrict;
}
if (qualifier.isAuxiliary() ||
qualifier.isInterpolation())
error(loc, "cannot use auxiliary or interpolation qualifiers on a function parameter", "", "");
if (qualifier.hasLayout())
error(loc, "cannot use layout qualifiers on a function parameter", "", "");
if (qualifier.invariant)
error(loc, "cannot use invariant qualifier on a function parameter", "", "");
if (qualifier.noContraction) {
if (qualifier.isParamOutput())
type.getQualifier().noContraction = true;
else
warn(loc, "qualifier has no effect on non-output parameters", "precise", "");
}
if (qualifier.isNonUniform())
type.getQualifier().nonUniform = qualifier.nonUniform;
paramCheckFixStorage(loc, qualifier.storage, type);
}
void TParseContext::nestedBlockCheck(const TSourceLoc& loc)
{
if (structNestingLevel > 0)
error(loc, "cannot nest a block definition inside a structure or block", "", "");
++structNestingLevel;
}
void TParseContext::nestedStructCheck(const TSourceLoc& loc)
{
if (structNestingLevel > 0)
error(loc, "cannot nest a structure definition inside a structure or block", "", "");
++structNestingLevel;
}
void TParseContext::arrayObjectCheck(const TSourceLoc& loc, const TType& type, const char* op)
{
// Some versions don't allow comparing arrays or structures containing arrays
if (type.containsArray()) {
profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, op);
profileRequires(loc, EEsProfile, 300, nullptr, op);
}
}
void TParseContext::opaqueCheck(const TSourceLoc& loc, const TType& type, const char* op)
{
if (containsFieldWithBasicType(type, EbtSampler))
error(loc, "can't use with samplers or structs containing samplers", op, "");
}
void TParseContext::storage16BitAssignmentCheck(const TSourceLoc& loc, const TType& type, const char* op)
{
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtFloat16))
requireFloat16Arithmetic(loc, op, "can't use with structs containing float16");
if (type.isArray() && type.getBasicType() == EbtFloat16)
requireFloat16Arithmetic(loc, op, "can't use with arrays containing float16");
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtInt16))
requireInt16Arithmetic(loc, op, "can't use with structs containing int16");
if (type.isArray() && type.getBasicType() == EbtInt16)
requireInt16Arithmetic(loc, op, "can't use with arrays containing int16");
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtUint16))
requireInt16Arithmetic(loc, op, "can't use with structs containing uint16");
if (type.isArray() && type.getBasicType() == EbtUint16)
requireInt16Arithmetic(loc, op, "can't use with arrays containing uint16");
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtInt8))
requireInt8Arithmetic(loc, op, "can't use with structs containing int8");
if (type.isArray() && type.getBasicType() == EbtInt8)
requireInt8Arithmetic(loc, op, "can't use with arrays containing int8");
if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtUint8))
requireInt8Arithmetic(loc, op, "can't use with structs containing uint8");
if (type.isArray() && type.getBasicType() == EbtUint8)
requireInt8Arithmetic(loc, op, "can't use with arrays containing uint8");
}
void TParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
{
if (type.containsSpecializationSize())
error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
}
void TParseContext::structTypeCheck(const TSourceLoc& /*loc*/, TPublicType& publicType)
{
const TTypeList& typeList = *publicType.userDef->getStruct();
// fix and check for member storage qualifiers and types that don't belong within a structure
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
if (memberQualifier.isAuxiliary() ||
memberQualifier.isInterpolation() ||
(memberQualifier.storage != EvqTemporary && memberQualifier.storage != EvqGlobal))
error(memberLoc, "cannot use storage or interpolation qualifiers on structure members", typeList[member].type->getFieldName().c_str(), "");
if (memberQualifier.isMemory())
error(memberLoc, "cannot use memory qualifiers on structure members", typeList[member].type->getFieldName().c_str(), "");
if (memberQualifier.hasLayout()) {
error(memberLoc, "cannot use layout qualifiers on structure members", typeList[member].type->getFieldName().c_str(), "");
memberQualifier.clearLayout();
}
if (memberQualifier.invariant)
error(memberLoc, "cannot use invariant qualifier on structure members", typeList[member].type->getFieldName().c_str(), "");
}
}
//
// See if this loop satisfies the limitations for ES 2.0 (version 100) for loops in Appendex A:
//
// "The loop index has type int or float.
//
// "The for statement has the form:
// for ( init-declaration ; condition ; expression )
// init-declaration has the form: type-specifier identifier = constant-expression
// condition has the form: loop-index relational_operator constant-expression
// where relational_operator is one of: > >= < <= == or !=
// expression [sic] has one of the following forms:
// loop-index++
// loop-index--
// loop-index += constant-expression
// loop-index -= constant-expression
//
// The body is handled in an AST traversal.
//
void TParseContext::inductiveLoopCheck(const TSourceLoc& loc, TIntermNode* init, TIntermLoop* loop)
{
// loop index init must exist and be a declaration, which shows up in the AST as an aggregate of size 1 of the declaration
bool badInit = false;
if (! init || ! init->getAsAggregate() || init->getAsAggregate()->getSequence().size() != 1)
badInit = true;
TIntermBinary* binaryInit = 0;
if (! badInit) {
// get the declaration assignment
binaryInit = init->getAsAggregate()->getSequence()[0]->getAsBinaryNode();
if (! binaryInit)
badInit = true;
}
if (badInit) {
error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", "");
return;
}
// loop index must be type int or float
if (! binaryInit->getType().isScalar() || (binaryInit->getBasicType() != EbtInt && binaryInit->getBasicType() != EbtFloat)) {
error(loc, "inductive loop requires a scalar 'int' or 'float' loop index", "limitations", "");
return;
}
// init is the form "loop-index = constant"
if (binaryInit->getOp() != EOpAssign || ! binaryInit->getLeft()->getAsSymbolNode() || ! binaryInit->getRight()->getAsConstantUnion()) {
error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", "");
return;
}
// get the unique id of the loop index
int loopIndex = binaryInit->getLeft()->getAsSymbolNode()->getId();
inductiveLoopIds.insert(loopIndex);
// condition's form must be "loop-index relational-operator constant-expression"
bool badCond = ! loop->getTest();
if (! badCond) {
TIntermBinary* binaryCond = loop->getTest()->getAsBinaryNode();
badCond = ! binaryCond;
if (! badCond) {
switch (binaryCond->getOp()) {
case EOpGreaterThan:
case EOpGreaterThanEqual:
case EOpLessThan:
case EOpLessThanEqual:
case EOpEqual:
case EOpNotEqual:
break;
default:
badCond = true;
}
}
if (binaryCond && (! binaryCond->getLeft()->getAsSymbolNode() ||
binaryCond->getLeft()->getAsSymbolNode()->getId() != loopIndex ||
! binaryCond->getRight()->getAsConstantUnion()))
badCond = true;
}
if (badCond) {
error(loc, "inductive-loop condition requires the form \"loop-index <comparison-op> constant-expression\"", "limitations", "");
return;
}
// loop-index++
// loop-index--
// loop-index += constant-expression
// loop-index -= constant-expression
bool badTerminal = ! loop->getTerminal();
if (! badTerminal) {
TIntermUnary* unaryTerminal = loop->getTerminal()->getAsUnaryNode();
TIntermBinary* binaryTerminal = loop->getTerminal()->getAsBinaryNode();
if (unaryTerminal || binaryTerminal) {
switch(loop->getTerminal()->getAsOperator()->getOp()) {
case EOpPostDecrement:
case EOpPostIncrement:
case EOpAddAssign:
case EOpSubAssign:
break;
default:
badTerminal = true;
}
} else
badTerminal = true;
if (binaryTerminal && (! binaryTerminal->getLeft()->getAsSymbolNode() ||
binaryTerminal->getLeft()->getAsSymbolNode()->getId() != loopIndex ||
! binaryTerminal->getRight()->getAsConstantUnion()))
badTerminal = true;
if (unaryTerminal && (! unaryTerminal->getOperand()->getAsSymbolNode() ||
unaryTerminal->getOperand()->getAsSymbolNode()->getId() != loopIndex))
badTerminal = true;
}
if (badTerminal) {
error(loc, "inductive-loop termination requires the form \"loop-index++, loop-index--, loop-index += constant-expression, or loop-index -= constant-expression\"", "limitations", "");
return;
}
// the body
inductiveLoopBodyCheck(loop->getBody(), loopIndex, symbolTable);
}
// Do limit checks for built-in arrays.
void TParseContext::arrayLimitCheck(const TSourceLoc& loc, const TString& identifier, int size)
{
if (identifier.compare("gl_TexCoord") == 0)
limitCheck(loc, size, "gl_MaxTextureCoords", "gl_TexCoord array size");
else if (identifier.compare("gl_ClipDistance") == 0)
limitCheck(loc, size, "gl_MaxClipDistances", "gl_ClipDistance array size");
else if (identifier.compare("gl_CullDistance") == 0)
limitCheck(loc, size, "gl_MaxCullDistances", "gl_CullDistance array size");
#ifdef NV_EXTENSIONS
else if (identifier.compare("gl_ClipDistancePerViewNV") == 0)
limitCheck(loc, size, "gl_MaxClipDistances", "gl_ClipDistancePerViewNV array size");
else if (identifier.compare("gl_CullDistancePerViewNV") == 0)
limitCheck(loc, size, "gl_MaxCullDistances", "gl_CullDistancePerViewNV array size");
#endif
}
// See if the provided value is less than or equal to the symbol indicated by limit,
// which should be a constant in the symbol table.
void TParseContext::limitCheck(const TSourceLoc& loc, int value, const char* limit, const char* feature)
{
TSymbol* symbol = symbolTable.find(limit);
assert(symbol->getAsVariable());
const TConstUnionArray& constArray = symbol->getAsVariable()->getConstArray();
assert(! constArray.empty());
if (value > constArray[0].getIConst())
error(loc, "must be less than or equal to", feature, "%s (%d)", limit, constArray[0].getIConst());
}
//
// Do any additional error checking, etc., once we know the parsing is done.
//
void TParseContext::finish()
{
TParseContextBase::finish();
if (parsingBuiltins)
return;
// Check on array indexes for ES 2.0 (version 100) limitations.
for (size_t i = 0; i < needsIndexLimitationChecking.size(); ++i)
constantIndexExpressionCheck(needsIndexLimitationChecking[i]);
// Check for stages that are enabled by extension.
// Can't do this at the beginning, it is chicken and egg to add a stage by
// extension.
// Stage-specific features were correctly tested for already, this is just
// about the stage itself.
switch (language) {
case EShLangGeometry:
if (profile == EEsProfile && version == 310)
requireExtensions(getCurrentLoc(), Num_AEP_geometry_shader, AEP_geometry_shader, "geometry shaders");
break;
case EShLangTessControl:
case EShLangTessEvaluation:
if (profile == EEsProfile && version == 310)
requireExtensions(getCurrentLoc(), Num_AEP_tessellation_shader, AEP_tessellation_shader, "tessellation shaders");
else if (profile != EEsProfile && version < 400)
requireExtensions(getCurrentLoc(), 1, &E_GL_ARB_tessellation_shader, "tessellation shaders");
break;
case EShLangCompute:
if (profile != EEsProfile && version < 430)
requireExtensions(getCurrentLoc(), 1, &E_GL_ARB_compute_shader, "compute shaders");
break;
#ifdef NV_EXTENSIONS
case EShLangTaskNV:
requireExtensions(getCurrentLoc(), 1, &E_GL_NV_mesh_shader, "task shaders");
break;
case EShLangMeshNV:
requireExtensions(getCurrentLoc(), 1, &E_GL_NV_mesh_shader, "mesh shaders");
break;
#endif
default:
break;
}
#ifdef NV_EXTENSIONS
// Set default outputs for GL_NV_geometry_shader_passthrough
if (language == EShLangGeometry && extensionTurnedOn(E_SPV_NV_geometry_shader_passthrough)) {
if (intermediate.getOutputPrimitive() == ElgNone) {
switch (intermediate.getInputPrimitive()) {
case ElgPoints: intermediate.setOutputPrimitive(ElgPoints); break;
case ElgLines: intermediate.setOutputPrimitive(ElgLineStrip); break;
case ElgTriangles: intermediate.setOutputPrimitive(ElgTriangleStrip); break;
default: break;
}
}
if (intermediate.getVertices() == TQualifier::layoutNotSet) {
switch (intermediate.getInputPrimitive()) {
case ElgPoints: intermediate.setVertices(1); break;
case ElgLines: intermediate.setVertices(2); break;
case ElgTriangles: intermediate.setVertices(3); break;
default: break;
}
}
}
#endif
}
//
// Layout qualifier stuff.
//
// Put the id's layout qualification into the public type, for qualifiers not having a number set.
// This is before we know any type information for error checking.
void TParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id)
{
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
publicType.qualifier.layoutMatrix = ElmColumnMajor;
return;
}
if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
publicType.qualifier.layoutMatrix = ElmRowMajor;
return;
}
if (id == TQualifier::getLayoutPackingString(ElpPacked)) {
if (spvVersion.spv != 0)
spvRemoved(loc, "packed");
publicType.qualifier.layoutPacking = ElpPacked;
return;
}
if (id == TQualifier::getLayoutPackingString(ElpShared)) {
if (spvVersion.spv != 0)
spvRemoved(loc, "shared");
publicType.qualifier.layoutPacking = ElpShared;
return;
}
if (id == TQualifier::getLayoutPackingString(ElpStd140)) {
publicType.qualifier.layoutPacking = ElpStd140;
return;
}
if (id == TQualifier::getLayoutPackingString(ElpStd430)) {
requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, "std430");
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, "std430");
profileRequires(loc, EEsProfile, 310, nullptr, "std430");
publicType.qualifier.layoutPacking = ElpStd430;
return;
}
if (id == TQualifier::getLayoutPackingString(ElpScalar)) {
requireVulkan(loc, "scalar");
requireExtensions(loc, 1, &E_GL_EXT_scalar_block_layout, "scalar block layout");
publicType.qualifier.layoutPacking = ElpScalar;
return;
}
// TODO: compile-time performance: may need to stop doing linear searches
for (TLayoutFormat format = (TLayoutFormat)(ElfNone + 1); format < ElfCount; format = (TLayoutFormat)(format + 1)) {
if (id == TQualifier::getLayoutFormatString(format)) {
if ((format > ElfEsFloatGuard && format < ElfFloatGuard) ||
(format > ElfEsIntGuard && format < ElfIntGuard) ||
(format > ElfEsUintGuard && format < ElfCount))
requireProfile(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, "image load-store format");
profileRequires(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, 420, E_GL_ARB_shader_image_load_store, "image load store");
profileRequires(loc, EEsProfile, 310, E_GL_ARB_shader_image_load_store, "image load store");
publicType.qualifier.layoutFormat = format;
return;
}
}
if (id == "push_constant") {
requireVulkan(loc, "push_constant");
publicType.qualifier.layoutPushConstant = true;
return;
}
if (id == "buffer_reference") {
requireVulkan(loc, "buffer_reference");
requireExtensions(loc, 1, &E_GL_EXT_buffer_reference, "buffer_reference");
publicType.qualifier.layoutBufferReference = true;
intermediate.setUseStorageBuffer();
intermediate.setUsePhysicalStorageBuffer();
return;
}
if (language == EShLangGeometry || language == EShLangTessEvaluation
#ifdef NV_EXTENSIONS
|| language == EShLangMeshNV
#endif
) {
if (id == TQualifier::getGeometryString(ElgTriangles)) {
publicType.shaderQualifiers.geometry = ElgTriangles;
return;
}
if (language == EShLangGeometry
#ifdef NV_EXTENSIONS
|| language == EShLangMeshNV
#endif
) {
if (id == TQualifier::getGeometryString(ElgPoints)) {
publicType.shaderQualifiers.geometry = ElgPoints;
return;
}
if (id == TQualifier::getGeometryString(ElgLines)) {
publicType.shaderQualifiers.geometry = ElgLines;
return;
}
#ifdef NV_EXTENSIONS
if (language == EShLangGeometry)
#endif
{
if (id == TQualifier::getGeometryString(ElgLineStrip)) {
publicType.shaderQualifiers.geometry = ElgLineStrip;
return;
}
if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
return;
}
if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
return;
}
if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
publicType.shaderQualifiers.geometry = ElgTriangleStrip;
return;
}
#ifdef NV_EXTENSIONS
if (id == "passthrough") {
requireExtensions(loc, 1, &E_SPV_NV_geometry_shader_passthrough, "geometry shader passthrough");
publicType.qualifier.layoutPassthrough = true;
intermediate.setGeoPassthroughEXT();
return;
}
#endif
}
} else {
assert(language == EShLangTessEvaluation);
// input primitive
if (id == TQualifier::getGeometryString(ElgTriangles)) {
publicType.shaderQualifiers.geometry = ElgTriangles;
return;
}
if (id == TQualifier::getGeometryString(ElgQuads)) {
publicType.shaderQualifiers.geometry = ElgQuads;
return;
}
if (id == TQualifier::getGeometryString(ElgIsolines)) {
publicType.shaderQualifiers.geometry = ElgIsolines;
return;
}
// vertex spacing
if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
publicType.shaderQualifiers.spacing = EvsEqual;
return;
}
if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
publicType.shaderQualifiers.spacing = EvsFractionalEven;
return;
}
if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
publicType.shaderQualifiers.spacing = EvsFractionalOdd;
return;
}
// triangle order
if (id == TQualifier::getVertexOrderString(EvoCw)) {
publicType.shaderQualifiers.order = EvoCw;
return;
}
if (id == TQualifier::getVertexOrderString(EvoCcw)) {
publicType.shaderQualifiers.order = EvoCcw;
return;
}
// point mode
if (id == "point_mode") {
publicType.shaderQualifiers.pointMode = true;
return;
}
}
}
if (language == EShLangFragment) {
if (id == "origin_upper_left") {
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "origin_upper_left");
publicType.shaderQualifiers.originUpperLeft = true;
return;
}
if (id == "pixel_center_integer") {
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "pixel_center_integer");
publicType.shaderQualifiers.pixelCenterInteger = true;
return;
}
if (id == "early_fragment_tests") {
profileRequires(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, 420, E_GL_ARB_shader_image_load_store, "early_fragment_tests");
profileRequires(loc, EEsProfile, 310, nullptr, "early_fragment_tests");
publicType.shaderQualifiers.earlyFragmentTests = true;
return;
}
if (id == "post_depth_coverage") {
requireExtensions(loc, Num_post_depth_coverageEXTs, post_depth_coverageEXTs, "post depth coverage");
if (extensionTurnedOn(E_GL_ARB_post_depth_coverage)) {
publicType.shaderQualifiers.earlyFragmentTests = true;
}
publicType.shaderQualifiers.postDepthCoverage = true;
return;
}
for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth+1)) {
if (id == TQualifier::getLayoutDepthString(depth)) {
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "depth layout qualifier");
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 420, nullptr, "depth layout qualifier");
publicType.shaderQualifiers.layoutDepth = depth;
return;
}
}
if (id.compare(0, 13, "blend_support") == 0) {
bool found = false;
for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
if (id == TQualifier::getBlendEquationString(be)) {
profileRequires(loc, EEsProfile, 320, E_GL_KHR_blend_equation_advanced, "blend equation");
profileRequires(loc, ~EEsProfile, 0, E_GL_KHR_blend_equation_advanced, "blend equation");
intermediate.addBlendEquation(be);
publicType.shaderQualifiers.blendEquation = true;
found = true;
break;
}
}
if (! found)
error(loc, "unknown blend equation", "blend_support", "");
return;
}
#ifdef NV_EXTENSIONS
if (id == "override_coverage") {
requireExtensions(loc, 1, &E_GL_NV_sample_mask_override_coverage, "sample mask override coverage");
publicType.shaderQualifiers.layoutOverrideCoverage = true;
return;
}
}
if (language == EShLangVertex ||
language == EShLangTessControl ||
language == EShLangTessEvaluation ||
language == EShLangGeometry ) {
if (id == "viewport_relative") {
requireExtensions(loc, 1, &E_GL_NV_viewport_array2, "view port array2");
publicType.qualifier.layoutViewportRelative = true;
return;
}
} else {
if (language == EShLangRayGenNV || language == EShLangIntersectNV ||
language == EShLangAnyHitNV || language == EShLangClosestHitNV ||
language == EShLangMissNV || language == EShLangCallableNV) {
if (id == "shaderrecordnv") {
publicType.qualifier.layoutShaderRecordNV = true;
return;
}
}
}
if (language == EShLangCompute) {
if (id.compare(0, 17, "derivative_group_") == 0) {
requireExtensions(loc, 1, &E_GL_NV_compute_shader_derivatives, "compute shader derivatives");
if (id == "derivative_group_quadsnv") {
publicType.shaderQualifiers.layoutDerivativeGroupQuads = true;
return;
} else if (id == "derivative_group_linearnv") {
publicType.shaderQualifiers.layoutDerivativeGroupLinear = true;
return;
}
}
}
#else
}
#endif
error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
}
// Put the id's layout qualifier value into the public type, for qualifiers having a number set.
// This is before we know any type information for error checking.
void TParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id, const TIntermTyped* node)
{
const char* feature = "layout-id value";
const char* nonLiteralFeature = "non-literal layout-id value";
integerCheck(node, feature);
const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
int value;
if (constUnion) {
value = constUnion->getConstArray()[0].getIConst();
if (! constUnion->isLiteral()) {
requireProfile(loc, ECoreProfile | ECompatibilityProfile, nonLiteralFeature);
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, nonLiteralFeature);
}
} else {
// grammar should have give out the error message
value = 0;
}
if (value < 0) {
error(loc, "cannot be negative", feature, "");
return;
}
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
if (id == "offset") {
// "offset" can be for either
// - uniform offsets
// - atomic_uint offsets
const char* feature = "offset";
if (spvVersion.spv == 0) {
requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature);
const char* exts[2] = { E_GL_ARB_enhanced_layouts, E_GL_ARB_shader_atomic_counters };
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 420, 2, exts, feature);
profileRequires(loc, EEsProfile, 310, nullptr, feature);
}
publicType.qualifier.layoutOffset = value;
return;
} else if (id == "align") {
const char* feature = "uniform buffer-member align";
if (spvVersion.spv == 0) {
requireProfile(loc, ECoreProfile | ECompatibilityProfile, feature);
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature);
}
// "The specified alignment must be a power of 2, or a compile-time error results."
if (! IsPow2(value))
error(loc, "must be a power of 2", "align", "");
else
publicType.qualifier.layoutAlign = value;
return;
} else if (id == "location") {
profileRequires(loc, EEsProfile, 300, nullptr, "location");
const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location };
profileRequires(loc, ~EEsProfile, 330, 2, exts, "location");
if ((unsigned int)value >= TQualifier::layoutLocationEnd)
error(loc, "location is too large", id.c_str(), "");
else
publicType.qualifier.layoutLocation = value;
return;
} else if (id == "set") {
if ((unsigned int)value >= TQualifier::layoutSetEnd)
error(loc, "set is too large", id.c_str(), "");
else
publicType.qualifier.layoutSet = value;
if (value != 0)
requireVulkan(loc, "descriptor set");
return;
} else if (id == "binding") {
profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, "binding");
profileRequires(loc, EEsProfile, 310, nullptr, "binding");
if ((unsigned int)value >= TQualifier::layoutBindingEnd)
error(loc, "binding is too large", id.c_str(), "");
else
publicType.qualifier.layoutBinding = value;
return;
} else if (id == "component") {
requireProfile(loc, ECoreProfile | ECompatibilityProfile, "component");
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, "component");
if ((unsigned)value >= TQualifier::layoutComponentEnd)
error(loc, "component is too large", id.c_str(), "");
else
publicType.qualifier.layoutComponent = value;
return;
} else if (id.compare(0, 4, "xfb_") == 0) {
// "Any shader making any static use (after preprocessing) of any of these
// *xfb_* qualifiers will cause the shader to be in a transform feedback
// capturing mode and hence responsible for describing the transform feedback
// setup."
intermediate.setXfbMode();
const char* feature = "transform feedback qualifier";
requireStage(loc, (EShLanguageMask)(EShLangVertexMask | EShLangGeometryMask | EShLangTessControlMask | EShLangTessEvaluationMask), feature);
requireProfile(loc, ECoreProfile | ECompatibilityProfile, feature);
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature);
if (id == "xfb_buffer") {
// "It is a compile-time error to specify an *xfb_buffer* that is greater than
// the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
if (value >= resources.maxTransformFeedbackBuffers)
error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers);
if (value >= (int)TQualifier::layoutXfbBufferEnd)
error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd-1);
else
publicType.qualifier.layoutXfbBuffer = value;
return;
} else if (id == "xfb_offset") {
if (value >= (int)TQualifier::layoutXfbOffsetEnd)
error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd-1);
else
publicType.qualifier.layoutXfbOffset = value;
return;
} else if (id == "xfb_stride") {
// "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
// implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) {
error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
resources.maxTransformFeedbackInterleavedComponents);
}
if (value >= (int)TQualifier::layoutXfbStrideEnd)
error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd-1);
else
publicType.qualifier.layoutXfbStride = value;
return;
}
}
if (id == "input_attachment_index") {
requireVulkan(loc, "input_attachment_index");
if (value >= (int)TQualifier::layoutAttachmentEnd)
error(loc, "attachment index is too large", id.c_str(), "");
else
publicType.qualifier.layoutAttachment = value;
return;
}
if (id == "constant_id") {
requireSpv(loc, "constant_id");
if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
error(loc, "specialization-constant id is too large", id.c_str(), "");
} else {
publicType.qualifier.layoutSpecConstantId = value;
publicType.qualifier.specConstant = true;
if (! intermediate.addUsedConstantId(value))
error(loc, "specialization-constant id already used", id.c_str(), "");
}
return;
}
if (id == "num_views") {
requireExtensions(loc, Num_OVR_multiview_EXTs, OVR_multiview_EXTs, "num_views");
publicType.shaderQualifiers.numViews = value;
return;
}
#if NV_EXTENSIONS
if (language == EShLangVertex ||
language == EShLangTessControl ||
language == EShLangTessEvaluation ||
language == EShLangGeometry) {
if (id == "secondary_view_offset") {
requireExtensions(loc, 1, &E_GL_NV_stereo_view_rendering, "stereo view rendering");
publicType.qualifier.layoutSecondaryViewportRelativeOffset = value;
return;
}
}
#endif
if (id == "buffer_reference_align") {
requireExtensions(loc, 1, &E_GL_EXT_buffer_reference, "buffer_reference_align");
if (! IsPow2(value))
error(loc, "must be a power of 2", "buffer_reference_align", "");
else
publicType.qualifier.layoutBufferReferenceAlign = std::log2(value);
return;
}
switch (language) {
case EShLangVertex:
break;
case EShLangTessControl:
if (id == "vertices") {
if (value == 0)
error(loc, "must be greater than 0", "vertices", "");
else
publicType.shaderQualifiers.vertices = value;
return;
}
break;
case EShLangTessEvaluation:
break;
case EShLangGeometry:
if (id == "invocations") {
profileRequires(loc, ECompatibilityProfile | ECoreProfile, 400, nullptr, "invocations");
if (value == 0)
error(loc, "must be at least 1", "invocations", "");
else
publicType.shaderQualifiers.invocations = value;
return;
}
if (id == "max_vertices") {
publicType.shaderQualifiers.vertices = value;
if (value > resources.maxGeometryOutputVertices)
error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
return;
}
if (id == "stream") {
requireProfile(loc, ~EEsProfile, "selecting output stream");
publicType.qualifier.layoutStream = value;
if (value > 0)
intermediate.setMultiStream();
return;
}
break;
case EShLangFragment:
if (id == "index") {
requireProfile(loc, ECompatibilityProfile | ECoreProfile, "index layout qualifier on fragment output");
const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location };
profileRequires(loc, ECompatibilityProfile | ECoreProfile, 330, 2, exts, "index layout qualifier on fragment output");
// "It is also a compile-time error if a fragment shader sets a layout index to less than 0 or greater than 1."
if (value < 0 || value > 1) {
value = 0;
error(loc, "value must be 0 or 1", "index", "");
}
publicType.qualifier.layoutIndex = value;
return;
}
break;
#ifdef NV_EXTENSIONS
case EShLangMeshNV:
if (id == "max_vertices") {
requireExtensions(loc, 1, &E_GL_NV_mesh_shader, "max_vertices");
publicType.shaderQualifiers.vertices = value;
if (value > resources.maxMeshOutputVerticesNV)
error(loc, "too large, must be less than gl_MaxMeshOutputVerticesNV", "max_vertices", "");
return;
}
if (id == "max_primitives") {
requireExtensions(loc, 1, &E_GL_NV_mesh_shader, "max_primitives");
publicType.shaderQualifiers.primitives = value;
if (value > resources.maxMeshOutputPrimitivesNV)
error(loc, "too large, must be less than gl_MaxMeshOutputPrimitivesNV", "max_primitives", "");
return;
}
// Fall through
case EShLangTaskNV:
// Fall through
#endif
case EShLangCompute:
if (id.compare(0, 11, "local_size_") == 0) {
#ifdef NV_EXTENSIONS
if (language == EShLangMeshNV || language == EShLangTaskNV) {
requireExtensions(loc, 1, &E_GL_NV_mesh_shader, "gl_WorkGroupSize");
}
else
#endif
{
profileRequires(loc, EEsProfile, 310, 0, "gl_WorkGroupSize");
profileRequires(loc, ~EEsProfile, 430, E_GL_ARB_compute_shader, "gl_WorkGroupSize");
}
if (id.size() == 12 && value == 0) {
error(loc, "must be at least 1", id.c_str(), "");
return;
}
if (id == "local_size_x") {
publicType.shaderQualifiers.localSize[0] = value;
return;
}
if (id == "local_size_y") {
publicType.shaderQualifiers.localSize[1] = value;
return;
}
if (id == "local_size_z") {
publicType.shaderQualifiers.localSize[2] = value;
return;
}
if (spvVersion.spv != 0) {
if (id == "local_size_x_id") {
publicType.shaderQualifiers.localSizeSpecId[0] = value;
return;
}
if (id == "local_size_y_id") {
publicType.shaderQualifiers.localSizeSpecId[1] = value;
return;
}
if (id == "local_size_z_id") {
publicType.shaderQualifiers.localSizeSpecId[2] = value;
return;
}
}
}
break;
default:
break;
}
error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
}
// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
//
// "More than one layout qualifier may appear in a single declaration.
// Additionally, the same layout-qualifier-name can occur multiple times
// within a layout qualifier or across multiple layout qualifiers in the
// same declaration. When the same layout-qualifier-name occurs
// multiple times, in a single declaration, the last occurrence overrides
// the former occurrence(s). Further, if such a layout-qualifier-name
// will effect subsequent declarations or other observable behavior, it
// is only the last occurrence that will have any effect, behaving as if
// the earlier occurrence(s) within the declaration are not present.
// This is also true for overriding layout-qualifier-names, where one
// overrides the other (e.g., row_major vs. column_major); only the last
// occurrence has any effect."
void TParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
{
if (src.hasMatrix())
dst.layoutMatrix = src.layoutMatrix;
if (src.hasPacking())
dst.layoutPacking = src.layoutPacking;
if (src.hasStream())
dst.layoutStream = src.layoutStream;
if (src.hasFormat())
dst.layoutFormat = src.layoutFormat;
if (src.hasXfbBuffer())
dst.layoutXfbBuffer = src.layoutXfbBuffer;
if (src.hasAlign())
dst.layoutAlign = src.layoutAlign;
if (src.hasBufferReferenceAlign())
dst.layoutBufferReferenceAlign = src.layoutBufferReferenceAlign;
if (! inheritOnly) {
if (src.hasLocation())
dst.layoutLocation = src.layoutLocation;
if (src.hasComponent())
dst.layoutComponent = src.layoutComponent;
if (src.hasIndex())
dst.layoutIndex = src.layoutIndex;
if (src.hasOffset())
dst.layoutOffset = src.layoutOffset;
if (src.hasSet())
dst.layoutSet = src.layoutSet;
if (src.layoutBinding != TQualifier::layoutBindingEnd)
dst.layoutBinding = src.layoutBinding;
if (src.hasXfbStride())
dst.layoutXfbStride = src.layoutXfbStride;
if (src.hasXfbOffset())
dst.layoutXfbOffset = src.layoutXfbOffset;
if (src.hasAttachment())
dst.layoutAttachment = src.layoutAttachment;
if (src.hasSpecConstantId())
dst.layoutSpecConstantId = src.layoutSpecConstantId;
if (src.layoutPushConstant)
dst.layoutPushConstant = true;
if (src.layoutBufferReference)
dst.layoutBufferReference = true;
#ifdef NV_EXTENSIONS
if (src.layoutPassthrough)
dst.layoutPassthrough = true;
if (src.layoutViewportRelative)
dst.layoutViewportRelative = true;
if (src.layoutSecondaryViewportRelativeOffset != -2048)
dst.layoutSecondaryViewportRelativeOffset = src.layoutSecondaryViewportRelativeOffset;
if (src.layoutShaderRecordNV)
dst.layoutShaderRecordNV = true;
if (src.pervertexNV)
dst.pervertexNV = true;
#endif
}
}
// Do error layout error checking given a full variable/block declaration.
void TParseContext::layoutObjectCheck(const TSourceLoc& loc, const TSymbol& symbol)
{
const TType& type = symbol.getType();
const TQualifier& qualifier = type.getQualifier();
// first, cross check WRT to just the type
layoutTypeCheck(loc, type);
// now, any remaining error checking based on the object itself
if (qualifier.hasAnyLocation()) {
switch (qualifier.storage) {
case EvqUniform:
case EvqBuffer:
if (symbol.getAsVariable() == nullptr)
error(loc, "can only be used on variable declaration", "location", "");
break;
default:
break;
}
}
// user-variable location check, which are required for SPIR-V in/out:
// - variables have it directly,
// - blocks have it on each member (already enforced), so check first one
if (spvVersion.spv > 0 && !parsingBuiltins && qualifier.builtIn == EbvNone &&
!qualifier.hasLocation() && !intermediate.getAutoMapLocations()) {
switch (qualifier.storage) {
case EvqVaryingIn:
case EvqVaryingOut:
if (!type.getQualifier().isTaskMemory() &&
(type.getBasicType() != EbtBlock ||
(!(*type.getStruct())[0].type->getQualifier().hasLocation() &&
(*type.getStruct())[0].type->getQualifier().builtIn == EbvNone)))
error(loc, "SPIR-V requires location for user input/output", "location", "");
break;
default:
break;
}
}
// Check packing and matrix
if (qualifier.hasUniformLayout()) {
switch (qualifier.storage) {
case EvqUniform:
case EvqBuffer:
if (type.getBasicType() != EbtBlock) {
if (qualifier.hasMatrix())
error(loc, "cannot specify matrix layout on a variable declaration", "layout", "");
if (qualifier.hasPacking())
error(loc, "cannot specify packing on a variable declaration", "layout", "");
// "The offset qualifier can only be used on block members of blocks..."
if (qualifier.hasOffset() && type.getBasicType() != EbtAtomicUint)
error(loc, "cannot specify on a variable declaration", "offset", "");
// "The align qualifier can only be used on blocks or block members..."
if (qualifier.hasAlign())
error(loc, "cannot specify on a variable declaration", "align", "");
if (qualifier.layoutPushConstant)
error(loc, "can only specify on a uniform block", "push_constant", "");
#ifdef NV_EXTENSIONS
if (qualifier.layoutShaderRecordNV)
error(loc, "can only specify on a buffer block", "shaderRecordNV", "");
#endif
}
break;
default:
// these were already filtered by layoutTypeCheck() (or its callees)
break;
}
}
}
// "For some blocks declared as arrays, the location can only be applied at the block level:
// When a block is declared as an array where additional locations are needed for each member
// for each block array element, it is a compile-time error to specify locations on the block
// members. That is, when locations would be under specified by applying them on block members,
// they are not allowed on block members. For arrayed interfaces (those generally having an
// extra level of arrayness due to interface expansion), the outer array is stripped before
// applying this rule."
void TParseContext::layoutMemberLocationArrayCheck(const TSourceLoc& loc, bool memberWithLocation,
TArraySizes* arraySizes)
{
if (memberWithLocation && arraySizes != nullptr) {
if (arraySizes->getNumDims() > (currentBlockQualifier.isArrayedIo(language) ? 1 : 0))
error(loc, "cannot use in a block array where new locations are needed for each block element",
"location", "");
}
}
// Do layout error checking with respect to a type.
void TParseContext::layoutTypeCheck(const TSourceLoc& loc, const TType& type)
{
const TQualifier& qualifier = type.getQualifier();
// first, intra-layout qualifier-only error checking
layoutQualifierCheck(loc, qualifier);
// now, error checking combining type and qualifier
if (qualifier.hasAnyLocation()) {
if (qualifier.hasLocation()) {
if (qualifier.storage == EvqVaryingOut && language == EShLangFragment) {
if (qualifier.layoutLocation >= (unsigned int)resources.maxDrawBuffers)
error(loc, "too large for fragment output", "location", "");
}
}
if (qualifier.hasComponent()) {
// "It is a compile-time error if this sequence of components gets larger than 3."
if (qualifier.layoutComponent + type.getVectorSize() * (type.getBasicType() == EbtDouble ? 2 : 1) > 4)
error(loc, "type overflows the available 4 components", "component", "");
// "It is a compile-time error to apply the component qualifier to a matrix, a structure, a block, or an array containing any of these."
if (type.isMatrix() || type.getBasicType() == EbtBlock || type.getBasicType() == EbtStruct)
error(loc, "cannot apply to a matrix, structure, or block", "component", "");
// " It is a compile-time error to use component 1 or 3 as the beginning of a double or dvec2."
if (type.getBasicType() == EbtDouble)
if (qualifier.layoutComponent & 1)
error(loc, "doubles cannot start on an odd-numbered component", "component", "");
}
switch (qualifier.storage) {
case EvqVaryingIn:
case EvqVaryingOut:
if (type.getBasicType() == EbtBlock)
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, "location qualifier on in/out block");
#ifdef NV_EXTENSIONS
if (type.getQualifier().isTaskMemory())
error(loc, "cannot apply to taskNV in/out blocks", "location", "");
#endif
break;
case EvqUniform:
case EvqBuffer:
if (type.getBasicType() == EbtBlock)
error(loc, "cannot apply to uniform or buffer block", "location", "");
break;
#ifdef NV_EXTENSIONS
case EvqPayloadNV:
case EvqPayloadInNV:
case EvqHitAttrNV:
case EvqCallableDataNV:
case EvqCallableDataInNV:
break;
#endif
default:
error(loc, "can only apply to uniform, buffer, in, or out storage qualifiers", "location", "");
break;
}
bool typeCollision;
int repeated = intermediate.addUsedLocation(qualifier, type, typeCollision);
if (repeated >= 0 && ! typeCollision)
error(loc, "overlapping use of location", "location", "%d", repeated);
// "fragment-shader outputs ... if two variables are placed within the same
// location, they must have the same underlying type (floating-point or integer)"
if (typeCollision && language == EShLangFragment && qualifier.isPipeOutput())
error(loc, "fragment outputs sharing the same location must be the same basic type", "location", "%d", repeated);
}
if (qualifier.hasXfbOffset() && qualifier.hasXfbBuffer()) {
int repeated = intermediate.addXfbBufferOffset(type);
if (repeated >= 0)
error(loc, "overlapping offsets at", "xfb_offset", "offset %d in buffer %d", repeated, qualifier.layoutXfbBuffer);
// "The offset must be a multiple of the size of the first component of the first
// qualified variable or block member, or a compile-time error results. Further, if applied to an aggregate
// containing a double, the offset must also be a multiple of 8..."
if (type.containsBasicType(EbtDouble) && ! IsMultipleOfPow2(qualifier.layoutXfbOffset, 8))
error(loc, "type contains double; xfb_offset must be a multiple of 8", "xfb_offset", "");
// ..., if applied to an aggregate containing a float16_t, the offset must also be a multiple of 2..."
else if (type.containsBasicType(EbtFloat16) && !IsMultipleOfPow2(qualifier.layoutXfbOffset, 2))
error(loc, "type contains half float; xfb_offset must be a multiple of 2", "xfb_offset", "");
else if (! IsMultipleOfPow2(qualifier.layoutXfbOffset, 4))
error(loc, "must be a multiple of size of first component", "xfb_offset", "");
}
if (qualifier.hasXfbStride() && qualifier.hasXfbBuffer()) {
if (! intermediate.setXfbBufferStride(qualifier.layoutXfbBuffer, qualifier.layoutXfbStride))
error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer);
}
if (qualifier.hasBinding()) {
// Binding checking, from the spec:
//
// "If the binding point for any uniform or shader storage block instance is less than zero, or greater than or
// equal to the implementation-dependent maximum number of uniform buffer bindings, a compile-time
// error will occur. When the binding identifier is used with a uniform or shader storage block instanced as
// an array of size N, all elements of the array from binding through binding + N - 1 must be within this
// range."
//
if (! type.isOpaque() && type.getBasicType() != EbtBlock)
error(loc, "requires block, or sampler/image, or atomic-counter type", "binding", "");
if (type.getBasicType() == EbtSampler) {
int lastBinding = qualifier.layoutBinding;
if (type.isArray()) {
if (spvVersion.vulkan > 0)
lastBinding += 1;
else {
if (type.isSizedArray())
lastBinding += type.getCumulativeArraySize();
else {
lastBinding += 1;
if (spvVersion.vulkan == 0)
warn(loc, "assuming binding count of one for compile-time checking of binding numbers for unsized array", "[]", "");
}
}
}
if (spvVersion.vulkan == 0 && lastBinding >= resources.maxCombinedTextureImageUnits)
error(loc, "sampler binding not less than gl_MaxCombinedTextureImageUnits", "binding", type.isArray() ? "(using array)" : "");
}
if (type.getBasicType() == EbtAtomicUint) {
if (qualifier.layoutBinding >= (unsigned int)resources.maxAtomicCounterBindings) {
error(loc, "atomic_uint binding is too large; see gl_MaxAtomicCounterBindings", "binding", "");
return;
}
}
} else if (!intermediate.getAutoMapBindings()) {
// some types require bindings
// atomic_uint
if (type.getBasicType() == EbtAtomicUint)
error(loc, "layout(binding=X) is required", "atomic_uint", "");
// SPIR-V
if (spvVersion.spv > 0) {
if (qualifier.isUniformOrBuffer()) {
if (type.getBasicType() == EbtBlock && !qualifier.layoutPushConstant &&
#ifdef NV_EXTENSIONS
!qualifier.layoutShaderRecordNV &&
#endif
!qualifier.layoutAttachment &&
!qualifier.layoutBufferReference)
error(loc, "uniform/buffer blocks require layout(binding=X)", "binding", "");
else if (spvVersion.vulkan > 0 && type.getBasicType() == EbtSampler)
error(loc, "sampler/texture/image requires layout(binding=X)", "binding", "");
}
}
}
// some things can't have arrays of arrays
if (type.isArrayOfArrays()) {
if (spvVersion.vulkan > 0) {
if (type.isOpaque() || (type.getQualifier().isUniformOrBuffer() && type.getBasicType() == EbtBlock))
warn(loc, "Generating SPIR-V array-of-arrays, but Vulkan only supports single array level for this resource", "[][]", "");
}
}
// "The offset qualifier can only be used on block members of blocks..."
if (qualifier.hasOffset()) {
if (type.getBasicType() == EbtBlock)
error(loc, "only applies to block members, not blocks", "offset", "");
}
// Image format
if (qualifier.hasFormat()) {
if (! type.isImage())
error(loc, "only apply to images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), "");
else {
if (type.getSampler().type == EbtFloat && qualifier.layoutFormat > ElfFloatGuard)
error(loc, "does not apply to floating point images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), "");
if (type.getSampler().type == EbtInt && (qualifier.layoutFormat < ElfFloatGuard || qualifier.layoutFormat > ElfIntGuard))
error(loc, "does not apply to signed integer images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), "");
if (type.getSampler().type == EbtUint && qualifier.layoutFormat < ElfIntGuard)
error(loc, "does not apply to unsigned integer images", TQualifier::getLayoutFormatString(qualifier.layoutFormat), "");
if (profile == EEsProfile) {
// "Except for image variables qualified with the format qualifiers r32f, r32i, and r32ui, image variables must
// specify either memory qualifier readonly or the memory qualifier writeonly."
if (! (qualifier.layoutFormat == ElfR32f || qualifier.layoutFormat == ElfR32i || qualifier.layoutFormat == ElfR32ui)) {
if (! qualifier.readonly && ! qualifier.writeonly)
error(loc, "format requires readonly or writeonly memory qualifier", TQualifier::getLayoutFormatString(qualifier.layoutFormat), "");
}
}
}
} else if (type.isImage() && ! qualifier.writeonly) {
const char *explanation = "image variables not declared 'writeonly' and without a format layout qualifier";
requireProfile(loc, ECoreProfile | ECompatibilityProfile, explanation);
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 0, E_GL_EXT_shader_image_load_formatted, explanation);
}
if (qualifier.layoutPushConstant && type.getBasicType() != EbtBlock)
error(loc, "can only be used with a block", "push_constant", "");
if (qualifier.layoutBufferReference && type.getBasicType() != EbtBlock)
error(loc, "can only be used with a block", "buffer_reference", "");
#ifdef NV_EXTENSIONS
if (qualifier.layoutShaderRecordNV && type.getBasicType() != EbtBlock)
error(loc, "can only be used with a block", "shaderRecordNV", "");
#endif
// input attachment
if (type.isSubpass()) {
if (! qualifier.hasAttachment())
error(loc, "requires an input_attachment_index layout qualifier", "subpass", "");
} else {
if (qualifier.hasAttachment())
error(loc, "can only be used with a subpass", "input_attachment_index", "");
}
// specialization-constant id
if (qualifier.hasSpecConstantId()) {
if (type.getQualifier().storage != EvqConst)
error(loc, "can only be applied to 'const'-qualified scalar", "constant_id", "");
if (! type.isScalar())
error(loc, "can only be applied to a scalar", "constant_id", "");
switch (type.getBasicType())
{
case EbtInt8:
case EbtUint8:
case EbtInt16:
case EbtUint16:
case EbtInt:
case EbtUint:
case EbtInt64:
case EbtUint64:
case EbtBool:
case EbtFloat:
case EbtDouble:
case EbtFloat16:
break;
default:
error(loc, "cannot be applied to this type", "constant_id", "");
break;
}
}
}
// Do layout error checking that can be done within a layout qualifier proper, not needing to know
// if there are blocks, atomic counters, variables, etc.
void TParseContext::layoutQualifierCheck(const TSourceLoc& loc, const TQualifier& qualifier)
{
if (qualifier.storage == EvqShared && qualifier.hasLayout())
error(loc, "cannot apply layout qualifiers to a shared variable", "shared", "");
// "It is a compile-time error to use *component* without also specifying the location qualifier (order does not matter)."
if (qualifier.hasComponent() && ! qualifier.hasLocation())
error(loc, "must specify 'location' to use 'component'", "component", "");
if (qualifier.hasAnyLocation()) {
// "As with input layout qualifiers, all shaders except compute shaders
// allow *location* layout qualifiers on output variable declarations,
// output block declarations, and output block member declarations."
switch (qualifier.storage) {
case EvqVaryingIn:
{
const char* feature = "location qualifier on input";
if (profile == EEsProfile && version < 310)
requireStage(loc, EShLangVertex, feature);
else
requireStage(loc, (EShLanguageMask)~EShLangComputeMask, feature);
if (language == EShLangVertex) {
const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location };
profileRequires(loc, ~EEsProfile, 330, 2, exts, feature);
profileRequires(loc, EEsProfile, 300, nullptr, feature);
} else {
profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature);
profileRequires(loc, EEsProfile, 310, nullptr, feature);
}
break;
}
case EvqVaryingOut:
{
const char* feature = "location qualifier on output";
if (profile == EEsProfile && version < 310)
requireStage(loc, EShLangFragment, feature);
else
requireStage(loc, (EShLanguageMask)~EShLangComputeMask, feature);
if (language == EShLangFragment) {
const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location };
profileRequires(loc, ~EEsProfile, 330, 2, exts, feature);
profileRequires(loc, EEsProfile, 300, nullptr, feature);
} else {
profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature);
profileRequires(loc, EEsProfile, 310, nullptr, feature);
}
break;
}
case EvqUniform:
case EvqBuffer:
{
const char* feature = "location qualifier on uniform or buffer";
requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature);
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, feature);
profileRequires(loc, EEsProfile, 310, nullptr, feature);
break;
}
default:
break;
}
if (qualifier.hasIndex()) {
if (qualifier.storage != EvqVaryingOut)
error(loc, "can only be used on an output", "index", "");
if (! qualifier.hasLocation())
error(loc, "can only be used with an explicit location", "index", "");
}
}
if (qualifier.hasBinding()) {
if (! qualifier.isUniformOrBuffer() && !qualifier.isTaskMemory())
error(loc, "requires uniform or buffer storage qualifier", "binding", "");
}
if (qualifier.hasStream()) {
if (!qualifier.isPipeOutput())
error(loc, "can only be used on an output", "stream", "");
}
if (qualifier.hasXfb()) {
if (!qualifier.isPipeOutput())
error(loc, "can only be used on an output", "xfb layout qualifier", "");
}
if (qualifier.hasUniformLayout()) {
if (! qualifier.isUniformOrBuffer() && !qualifier.isTaskMemory()) {
if (qualifier.hasMatrix() || qualifier.hasPacking())
error(loc, "matrix or packing qualifiers can only be used on a uniform or buffer", "layout", "");
if (qualifier.hasOffset() || qualifier.hasAlign())
error(loc, "offset/align can only be used on a uniform or buffer", "layout", "");
}
}
if (qualifier.layoutPushConstant) {
if (qualifier.storage != EvqUniform)
error(loc, "can only be used with a uniform", "push_constant", "");
if (qualifier.hasSet())
error(loc, "cannot be used with push_constant", "set", "");
}
if (qualifier.layoutBufferReference) {
if (qualifier.storage != EvqBuffer)
error(loc, "can only be used with buffer", "buffer_reference", "");
}
#ifdef NV_EXTENSIONS
if (qualifier.layoutShaderRecordNV) {
if (qualifier.storage != EvqBuffer)
error(loc, "can only be used with a buffer", "shaderRecordNV", "");
if (qualifier.hasBinding())
error(loc, "cannot be used with shaderRecordNV", "binding", "");
if (qualifier.hasSet())
error(loc, "cannot be used with shaderRecordNV", "set", "");
}
if (qualifier.storage == EvqHitAttrNV && qualifier.hasLayout()) {
error(loc, "cannot apply layout qualifiers to hitAttributeNV variable", "hitAttributeNV", "");
}
#endif
}
// For places that can't have shader-level layout qualifiers
void TParseContext::checkNoShaderLayouts(const TSourceLoc& loc, const TShaderQualifiers& shaderQualifiers)
{
const char* message = "can only apply to a standalone qualifier";
if (shaderQualifiers.geometry != ElgNone)
error(loc, message, TQualifier::getGeometryString(shaderQualifiers.geometry), "");
if (shaderQualifiers.spacing != EvsNone)
error(loc, message, TQualifier::getVertexSpacingString(shaderQualifiers.spacing), "");
if (shaderQualifiers.order != EvoNone)
error(loc, message, TQualifier::getVertexOrderString(shaderQualifiers.order), "");
if (shaderQualifiers.pointMode)
error(loc, message, "point_mode", "");
if (shaderQualifiers.invocations != TQualifier::layoutNotSet)
error(loc, message, "invocations", "");
if (shaderQualifiers.earlyFragmentTests)
error(loc, message, "early_fragment_tests", "");
if (shaderQualifiers.postDepthCoverage)
error(loc, message, "post_depth_coverage", "");
for (int i = 0; i < 3; ++i) {
if (shaderQualifiers.localSize[i] > 1)
error(loc, message, "local_size", "");
if (shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet)
error(loc, message, "local_size id", "");
}
if (shaderQualifiers.vertices != TQualifier::layoutNotSet) {
if (language == EShLangGeometry
#ifdef NV_EXTENSIONS
|| language == EShLangMeshNV
#endif
)
error(loc, message, "max_vertices", "");
else if (language == EShLangTessControl)
error(loc, message, "vertices", "");
else
assert(0);
}
#ifdef NV_EXTENSIONS
if (shaderQualifiers.primitives != TQualifier::layoutNotSet) {
if (language == EShLangMeshNV)
error(loc, message, "max_primitives", "");
else
assert(0);
}
#endif
if (shaderQualifiers.blendEquation)
error(loc, message, "blend equation", "");
if (shaderQualifiers.numViews != TQualifier::layoutNotSet)
error(loc, message, "num_views", "");
}
// Correct and/or advance an object's offset layout qualifier.
void TParseContext::fixOffset(const TSourceLoc& loc, TSymbol& symbol)
{
const TQualifier& qualifier = symbol.getType().getQualifier();
if (symbol.getType().getBasicType() == EbtAtomicUint) {
if (qualifier.hasBinding() && (int)qualifier.layoutBinding < resources.maxAtomicCounterBindings) {
// Set the offset
int offset;
if (qualifier.hasOffset())
offset = qualifier.layoutOffset;
else
offset = atomicUintOffsets[qualifier.layoutBinding];
symbol.getWritableType().getQualifier().layoutOffset = offset;
// Check for overlap
int numOffsets = 4;
if (symbol.getType().isArray()) {
if (symbol.getType().isSizedArray() && !symbol.getType().getArraySizes()->isInnerUnsized())
numOffsets *= symbol.getType().getCumulativeArraySize();
else {
// "It is a compile-time error to declare an unsized array of atomic_uint."
error(loc, "array must be explicitly sized", "atomic_uint", "");
}
}
int repeated = intermediate.addUsedOffsets(qualifier.layoutBinding, offset, numOffsets);
if (repeated >= 0)
error(loc, "atomic counters sharing the same offset:", "offset", "%d", repeated);
// Bump the default offset
atomicUintOffsets[qualifier.layoutBinding] = offset + numOffsets;
}
}
}
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// Return the function symbol if found, otherwise nullptr.
//
const TFunction* TParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
{
const TFunction* function = nullptr;
if (symbolTable.isFunctionNameVariable(call.getName())) {
error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
return nullptr;
}
bool explicitTypesEnabled = extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types) ||
extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int8) ||
extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int16) ||
extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int32) ||
extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int64) ||
extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_float16) ||
extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_float32) ||
extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_float64);
if (profile == EEsProfile || version < 120)
function = findFunctionExact(loc, call, builtIn);
else if (version < 400)
function = findFunction120(loc, call, builtIn);
else if (explicitTypesEnabled)
function = findFunctionExplicitTypes(loc, call, builtIn);
else
function = findFunction400(loc, call, builtIn);
return function;
}
// Function finding algorithm for ES and desktop 110.
const TFunction* TParseContext::findFunctionExact(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
{
TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
if (symbol == nullptr) {
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
return nullptr;
}
return symbol->getAsFunction();
}
// Function finding algorithm for desktop versions 120 through 330.
const TFunction* TParseContext::findFunction120(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
{
// first, look for an exact match
TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
if (symbol)
return symbol->getAsFunction();
// exact match not found, look through a list of overloaded functions of the same name
// "If no exact match is found, then [implicit conversions] will be applied to find a match. Mismatched types
// on input parameters (in or inout or default) must have a conversion from the calling argument type to the
// formal parameter type. Mismatched types on output parameters (out or inout) must have a conversion
// from the formal parameter type to the calling argument type. When argument conversions are used to find
// a match, it is a semantic error if there are multiple ways to apply these conversions to make the call match
// more than one function."
const TFunction* candidate = nullptr;
TVector<const TFunction*> candidateList;
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
for (auto it = candidateList.begin(); it != candidateList.end(); ++it) {
const TFunction& function = *(*it);
// to even be a potential match, number of arguments has to match
if (call.getParamCount() != function.getParamCount())
continue;
bool possibleMatch = true;
for (int i = 0; i < function.getParamCount(); ++i) {
// same types is easy
if (*function[i].type == *call[i].type)
continue;
// We have a mismatch in type, see if it is implicitly convertible
if (function[i].type->isArray() || call[i].type->isArray() ||
! function[i].type->sameElementShape(*call[i].type))
possibleMatch = false;
else {
// do direction-specific checks for conversion of basic type
if (function[i].type->getQualifier().isParamInput()) {
if (! intermediate.canImplicitlyPromote(call[i].type->getBasicType(), function[i].type->getBasicType()))
possibleMatch = false;
}
if (function[i].type->getQualifier().isParamOutput()) {
if (! intermediate.canImplicitlyPromote(function[i].type->getBasicType(), call[i].type->getBasicType()))
possibleMatch = false;
}
}
if (! possibleMatch)
break;
}
if (possibleMatch) {
if (candidate) {
// our second match, meaning ambiguity
error(loc, "ambiguous function signature match: multiple signatures match under implicit type conversion", call.getName().c_str(), "");
} else
candidate = &function;
}
}
if (candidate == nullptr)
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
return candidate;
}
// Function finding algorithm for desktop version 400 and above.
//
// "When function calls are resolved, an exact type match for all the arguments
// is sought. If an exact match is found, all other functions are ignored, and
// the exact match is used. If no exact match is found, then the implicit
// conversions in section 4.1.10 Implicit Conversions will be applied to find
// a match. Mismatched types on input parameters (in or inout or default) must
// have a conversion from the calling argument type to the formal parameter type.
// Mismatched types on output parameters (out or inout) must have a conversion
// from the formal parameter type to the calling argument type.
//
// "If implicit conversions can be used to find more than one matching function,
// a single best-matching function is sought. To determine a best match, the
// conversions between calling argument and formal parameter types are compared
// for each function argument and pair of matching functions. After these
// comparisons are performed, each pair of matching functions are compared.
// A function declaration A is considered a better match than function
// declaration B if
//
// * for at least one function argument, the conversion for that argument in A
// is better than the corresponding conversion in B; and
// * there is no function argument for which the conversion in B is better than
// the corresponding conversion in A.
//
// "If a single function declaration is considered a better match than every
// other matching function declaration, it will be used. Otherwise, a
// compile-time semantic error for an ambiguous overloaded function call occurs.
//
// "To determine whether the conversion for a single argument in one match is
// better than that for another match, the following rules are applied, in order:
//
// 1. An exact match is better than a match involving any implicit conversion.
// 2. A match involving an implicit conversion from float to double is better
// than a match involving any other implicit conversion.
// 3. A match involving an implicit conversion from either int or uint to float
// is better than a match involving an implicit conversion from either int
// or uint to double.
//
// "If none of the rules above apply to a particular pair of conversions, neither
// conversion is considered better than the other."
//
const TFunction* TParseContext::findFunction400(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
{
// first, look for an exact match
TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
if (symbol)
return symbol->getAsFunction();
// no exact match, use the generic selector, parameterized by the GLSL rules
// create list of candidates to send
TVector<const TFunction*> candidateList;
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// can 'from' convert to 'to'?
const auto convertible = [this](const TType& from, const TType& to, TOperator, int) -> bool {
if (from == to)
return true;
if (from.isArray() || to.isArray() || ! from.sameElementShape(to))
return false;
return intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType());
};
// Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better.
// Assumes 'convertible' already said true.
const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
// 1. exact match
if (from == to2)
return from != to1;
if (from == to1)
return false;
// 2. float -> double is better
if (from.getBasicType() == EbtFloat) {
if (to2.getBasicType() == EbtDouble && to1.getBasicType() != EbtDouble)
return true;
}
// 3. -> float is better than -> double
return to2.getBasicType() == EbtFloat && to1.getBasicType() == EbtDouble;
};
// for ambiguity reporting
bool tie = false;
// send to the generic selector
const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
if (bestMatch == nullptr)
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
else if (tie)
error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
return bestMatch;
}
// "To determine whether the conversion for a single argument in one match
// is better than that for another match, the conversion is assigned of the
// three ranks ordered from best to worst:
// 1. Exact match: no conversion.
// 2. Promotion: integral or floating-point promotion.
// 3. Conversion: integral conversion, floating-point conversion,
// floating-integral conversion.
// A conversion C1 is better than a conversion C2 if the rank of C1 is
// better than the rank of C2."
const TFunction* TParseContext::findFunctionExplicitTypes(const TSourceLoc& loc, const TFunction& call, bool& builtIn)
{
// first, look for an exact match
TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn);
if (symbol)
return symbol->getAsFunction();
// no exact match, use the generic selector, parameterized by the GLSL rules
// create list of candidates to send
TVector<const TFunction*> candidateList;
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
// can 'from' convert to 'to'?
const auto convertible = [this](const TType& from, const TType& to, TOperator, int) -> bool {
if (from == to)
return true;
if (from.isArray() || to.isArray() || ! from.sameElementShape(to))
return false;
return intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType());
};
// Is 'to2' a better conversion than 'to1'?
// Ties should not be considered as better.
// Assumes 'convertible' already said true.
const auto better = [this](const TType& from, const TType& to1, const TType& to2) -> bool {
// 1. exact match
if (from == to2)
return from != to1;
if (from == to1)
return false;
// 2. Promotion (integral, floating-point) is better
TBasicType from_type = from.getBasicType();
TBasicType to1_type = to1.getBasicType();
TBasicType to2_type = to2.getBasicType();
bool isPromotion1 = (intermediate.isIntegralPromotion(from_type, to1_type) ||
intermediate.isFPPromotion(from_type, to1_type));
bool isPromotion2 = (intermediate.isIntegralPromotion(from_type, to2_type) ||
intermediate.isFPPromotion(from_type, to2_type));
if (isPromotion2)
return !isPromotion1;
if(isPromotion1)
return false;
// 3. Conversion (integral, floating-point , floating-integral)
bool isConversion1 = (intermediate.isIntegralConversion(from_type, to1_type) ||
intermediate.isFPConversion(from_type, to1_type) ||
intermediate.isFPIntegralConversion(from_type, to1_type));
bool isConversion2 = (intermediate.isIntegralConversion(from_type, to2_type) ||
intermediate.isFPConversion(from_type, to2_type) ||
intermediate.isFPIntegralConversion(from_type, to2_type));
return isConversion2 && !isConversion1;
};
// for ambiguity reporting
bool tie = false;
// send to the generic selector
const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
if (bestMatch == nullptr)
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
else if (tie)
error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
return bestMatch;
}
// When a declaration includes a type, but not a variable name, it can be
// to establish defaults.
void TParseContext::declareTypeDefaults(const TSourceLoc& loc, const TPublicType& publicType)
{
if (publicType.basicType == EbtAtomicUint && publicType.qualifier.hasBinding() && publicType.qualifier.hasOffset()) {
if (publicType.qualifier.layoutBinding >= (unsigned int)resources.maxAtomicCounterBindings) {
error(loc, "atomic_uint binding is too large", "binding", "");
return;
}
atomicUintOffsets[publicType.qualifier.layoutBinding] = publicType.qualifier.layoutOffset;
return;
}
if (publicType.qualifier.hasLayout() && !publicType.qualifier.layoutBufferReference)
warn(loc, "useless application of layout qualifier", "layout", "");
}
//
// Do everything necessary to handle a variable (non-block) declaration.
// Either redeclaring a variable, or making a new one, updating the symbol
// table, and all error checking.
//
// Returns a subtree node that computes an initializer, if needed.
// Returns nullptr if there is no code to execute for initialization.
//
// 'publicType' is the type part of the declaration (to the left)
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
//
TIntermNode* TParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, const TPublicType& publicType,
TArraySizes* arraySizes, TIntermTyped* initializer)
{
// Make a fresh type that combines the characteristics from the individual
// identifier syntax and the declaration-type syntax.
TType type(publicType);
type.transferArraySizes(arraySizes);
type.copyArrayInnerSizes(publicType.arraySizes);
arrayOfArrayVersionCheck(loc, type.getArraySizes());
if (voidErrorCheck(loc, identifier, type.getBasicType()))
return nullptr;
if (initializer)
rValueErrorCheck(loc, "initializer", initializer);
else
nonInitConstCheck(loc, identifier, type);
samplerCheck(loc, type, identifier, initializer);
atomicUintCheck(loc, type, identifier);
transparentOpaqueCheck(loc, type, identifier);
#ifdef NV_EXTENSIONS
accStructNVCheck(loc, type, identifier);
#endif
if (type.getQualifier().storage != EvqUniform && type.getQualifier().storage != EvqBuffer) {
if (type.containsBasicType(EbtFloat16))
requireFloat16Arithmetic(loc, "qualifier", "float16 types can only be in uniform block or buffer storage");
if (type.contains16BitInt())
requireInt16Arithmetic(loc, "qualifier", "(u)int16 types can only be in uniform block or buffer storage");
if (type.contains8BitInt())
requireInt8Arithmetic(loc, "qualifier", "(u)int8 types can only be in uniform block or buffer storage");
}
if (identifier != "gl_FragCoord" && (publicType.shaderQualifiers.originUpperLeft || publicType.shaderQualifiers.pixelCenterInteger))
error(loc, "can only apply origin_upper_left and pixel_center_origin to gl_FragCoord", "layout qualifier", "");
if (identifier != "gl_FragDepth" && publicType.shaderQualifiers.layoutDepth != EldNone)
error(loc, "can only apply depth layout to gl_FragDepth", "layout qualifier", "");
// Check for redeclaration of built-ins and/or attempting to declare a reserved name
TSymbol* symbol = redeclareBuiltinVariable(loc, identifier, type.getQualifier(), publicType.shaderQualifiers);
if (symbol == nullptr)
reservedErrorCheck(loc, identifier);
inheritGlobalDefaults(type.getQualifier());
// Declare the variable
if (type.isArray()) {
// Check that implicit sizing is only where allowed.
arraySizesCheck(loc, type.getQualifier(), type.getArraySizes(), initializer, false);
if (! arrayQualifierError(loc, type.getQualifier()) && ! arrayError(loc, type))
declareArray(loc, identifier, type, symbol);
if (initializer) {
profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "initializer");
profileRequires(loc, EEsProfile, 300, nullptr, "initializer");
}
} else {
// non-array case
if (symbol == nullptr)
symbol = declareNonArray(loc, identifier, type);
else if (type != symbol->getType())
error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
}
if (symbol == nullptr)
return nullptr;
// Deal with initializer
TIntermNode* initNode = nullptr;
if (symbol != nullptr && initializer) {
TVariable* variable = symbol->getAsVariable();
if (! variable) {
error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
return nullptr;
}
initNode = executeInitializer(loc, initializer, variable);
}
// look for errors in layout qualifier use
layoutObjectCheck(loc, *symbol);
// fix up
fixOffset(loc, *symbol);
if (symbol->getType().getBasicType() == EbtStruct) {
fixXfbOffsets(symbol->getWritableType().getQualifier(),
*(symbol->getWritableType().getWritableStruct()));
}
return initNode;
}
// Pick up global defaults from the provide global defaults into dst.
void TParseContext::inheritGlobalDefaults(TQualifier& dst) const
{
if (dst.storage == EvqVaryingOut) {
if (! dst.hasStream() && language == EShLangGeometry)
dst.layoutStream = globalOutputDefaults.layoutStream;
if (! dst.hasXfbBuffer())
dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
}
}
//
// Make an internal-only variable whose name is for debug purposes only
// and won't be searched for. Callers will only use the return value to use
// the variable, not the name to look it up. It is okay if the name
// is the same as other names; there won't be any conflict.
//
TVariable* TParseContext::makeInternalVariable(const char* name, const TType& type) const
{
TString* nameString = NewPoolTString(name);
TVariable* variable = new TVariable(nameString, type);
symbolTable.makeInternalVariable(*variable);
return variable;
}
//
// Declare a non-array variable, the main point being there is no redeclaration
// for resizing allowed.
//
// Return the successfully declared variable.
//
TVariable* TParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type)
{
// make a new variable
TVariable* variable = new TVariable(&identifier, type);
ioArrayCheck(loc, type, identifier);
// add variable to symbol table
if (symbolTable.insert(*variable)) {
if (symbolTable.atGlobalLevel())
trackLinkage(*variable);
return variable;
}
error(loc, "redefinition", variable->getName().c_str(), "");
return nullptr;
}
//
// Handle all types of initializers from the grammar.
//
// Returning nullptr just means there is no code to execute to handle the
// initializer, which will, for example, be the case for constant initializers.
//
TIntermNode* TParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
{
//
// Identifier must be of type constant, a global, or a temporary, and
// starting at version 120, desktop allows uniforms to have initializers.
//
TStorageQualifier qualifier = variable->getType().getQualifier().storage;
if (! (qualifier == EvqTemporary || qualifier == EvqGlobal || qualifier == EvqConst ||
(qualifier == EvqUniform && profile != EEsProfile && version >= 120))) {
error(loc, " cannot initialize this type of qualifier ", variable->getType().getStorageQualifierString(), "");
return nullptr;
}
arrayObjectCheck(loc, variable->getType(), "array initializer");
//
// If the initializer was from braces { ... }, we convert the whole subtree to a
// constructor-style subtree, allowing the rest of the code to operate
// identically for both kinds of initializers.
//
// Type can't be deduced from the initializer list, so a skeletal type to
// follow has to be passed in. Constness and specialization-constness
// should be deduced bottom up, not dictated by the skeletal type.
//
TType skeletalType;
skeletalType.shallowCopy(variable->getType());
skeletalType.getQualifier().makeTemporary();
initializer = convertInitializerList(loc, skeletalType, initializer);
if (! initializer) {
// error recovery; don't leave const without constant values
if (qualifier == EvqConst)
variable->getWritableType().getQualifier().makeTemporary();
return nullptr;
}
// Fix outer arrayness if variable is unsized, getting size from the initializer
if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
// Inner arrayness can also get set by an initializer
if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
initializer->getType().getArraySizes()->getNumDims() ==
variable->getType().getArraySizes()->getNumDims()) {
// adopt unsized sizes from the initializer's sizes
for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
variable->getWritableType().getArraySizes()->setDimSize(d,
initializer->getType().getArraySizes()->getDimSize(d));
}
}
}
// Uniforms require a compile-time constant initializer
if (qualifier == EvqUniform && ! initializer->getType().getQualifier().isFrontEndConstant()) {
error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
variable->getWritableType().getQualifier().makeTemporary();
return nullptr;
}
// Global consts require a constant initializer (specialization constant is okay)
if (qualifier == EvqConst && symbolTable.atGlobalLevel() && ! initializer->getType().getQualifier().isConstant()) {
error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
variable->getWritableType().getQualifier().makeTemporary();
return nullptr;
}
// Const variables require a constant initializer, depending on version
if (qualifier == EvqConst) {
if (! initializer->getType().getQualifier().isConstant()) {
const char* initFeature = "non-constant initializer";
requireProfile(loc, ~EEsProfile, initFeature);
profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, initFeature);
variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
qualifier = EvqConstReadOnly;
}
} else {
// Non-const global variables in ES need a const initializer.
//
// "In declarations of global variables with no storage qualifier or with a const
// qualifier any initializer must be a constant expression."
if (symbolTable.atGlobalLevel() && ! initializer->getType().getQualifier().isConstant()) {
const char* initFeature = "non-constant global initializer (needs GL_EXT_shader_non_constant_global_initializers)";
if (profile == EEsProfile) {
if (relaxedErrors() && ! extensionTurnedOn(E_GL_EXT_shader_non_constant_global_initializers))
warn(loc, "not allowed in this version", initFeature, "");
else
profileRequires(loc, EEsProfile, 0, E_GL_EXT_shader_non_constant_global_initializers, initFeature);
}
}
}
if (qualifier == EvqConst || qualifier == EvqUniform) {
// Compile-time tagging of the variable with its constant value...
initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
if (! initializer || ! initializer->getType().getQualifier().isConstant() || variable->getType() != initializer->getType()) {
error(loc, "non-matching or non-convertible constant type for const initializer",
variable->getType().getStorageQualifierString(), "");
variable->getWritableType().getQualifier().makeTemporary();
return nullptr;
}
// We either have a folded constant in getAsConstantUnion, or we have to use
// the initializer's subtree in the AST to represent the computation of a
// specialization constant.
assert(initializer->getAsConstantUnion() || initializer->getType().getQualifier().isSpecConstant());
if (initializer->getAsConstantUnion())
variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
else {
// It's a specialization constant.
variable->getWritableType().getQualifier().makeSpecConstant();
// Keep the subtree that computes the specialization constant with the variable.
// Later, a symbol node will adopt the subtree from the variable.
variable->setConstSubtree(initializer);
}
} else {
// normal assigning of a value to a variable...
specializationCheck(loc, initializer->getType(), "initializer");
TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
TIntermTyped* initNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, loc);
if (! initNode)
assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return initNode;
}
return nullptr;
}
//
// Reprocess any initializer-list (the "{ ... }" syntax) parts of the
// initializer.
//
// Need to hierarchically assign correct types and implicit
// conversions. Will do this mimicking the same process used for
// creating a constructor-style initializer, ensuring we get the
// same form. However, it has to in parallel walk the 'type'
// passed in, as type cannot be deduced from an initializer list.
//
TIntermTyped* TParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer)
{
// Will operate recursively. Once a subtree is found that is constructor style,
// everything below it is already good: Only the "top part" of the initializer
// can be an initializer list, where "top part" can extend for several (or all) levels.
// see if we have bottomed out in the tree within the initializer-list part
TIntermAggregate* initList = initializer->getAsAggregate();
if (! initList || initList->getOp() != EOpNull)
return initializer;
// Of the initializer-list set of nodes, need to process bottom up,
// so recurse deep, then process on the way up.
// Go down the tree here...
if (type.isArray()) {
// The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
// Later on, initializer execution code will deal with array size logic.
TType arrayType;
arrayType.shallowCopy(type); // sharing struct stuff is fine
arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
// edit array sizes to fill in unsized dimensions
arrayType.changeOuterArraySize((int)initList->getSequence().size());
TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
if (arrayType.isArrayOfArrays() && firstInit->getType().isArray() &&
arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
}
}
TType elementType(arrayType, 0); // dereferenced type
for (size_t i = 0; i < initList->getSequence().size(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
return addConstructor(loc, initList, arrayType);
} else if (type.isStruct()) {
if (type.getStruct()->size() != initList->getSequence().size()) {
error(loc, "wrong number of structure members", "initializer list", "");
return nullptr;
}
for (size_t i = 0; i < type.getStruct()->size(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
} else if (type.isMatrix()) {
if (type.getMatrixCols() != (int)initList->getSequence().size()) {
error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
TType vectorType(type, 0); // dereferenced type
for (int i = 0; i < type.getMatrixCols(); ++i) {
initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped());
if (initList->getSequence()[i] == nullptr)
return nullptr;
}
} else if (type.isVector()) {
if (type.getVectorSize() != (int)initList->getSequence().size()) {
error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
} else {
error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
return nullptr;
}
// Now that the subtree is processed, process this node as if the
// initializer list is a set of arguments to a constructor.
TIntermNode* emulatedConstructorArguments;
if (initList->getSequence().size() == 1)
emulatedConstructorArguments = initList->getSequence()[0];
else
emulatedConstructorArguments = initList;
return addConstructor(loc, emulatedConstructorArguments, type);
}
//
// Test for the correctness of the parameters passed to various constructor functions
// and also convert them to the right data type, if allowed and required.
//
// 'node' is what to construct from.
// 'type' is what type to construct.
//
// Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
//
TIntermTyped* TParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type)
{
if (node == nullptr || node->getAsTyped() == nullptr)
return nullptr;
rValueErrorCheck(loc, "constructor", node->getAsTyped());
TIntermAggregate* aggrNode = node->getAsAggregate();
TOperator op = intermediate.mapTypeToConstructorOp(type);
// Combined texture-sampler constructors are completely semantic checked
// in constructorTextureSamplerError()
if (op == EOpConstructTextureSampler) {
if (aggrNode->getSequence()[1]->getAsTyped()->getType().getSampler().shadow) {
// Transfer depth into the texture (SPIR-V image) type, as a hint
// for tools to know this texture/image is a depth image.
aggrNode->getSequence()[0]->getAsTyped()->getWritableType().getSampler().shadow = true;
}
return intermediate.setAggregateOperator(aggrNode, op, type, loc);
}
TTypeList::const_iterator memberTypes;
if (op == EOpConstructStruct)
memberTypes = type.getStruct()->begin();
TType elementType;
if (type.isArray()) {
TType dereferenced(type, 0);
elementType.shallowCopy(dereferenced);
} else
elementType.shallowCopy(type);
bool singleArg;
if (aggrNode) {
if (aggrNode->getOp() != EOpNull)
singleArg = true;
else
singleArg = false;
} else
singleArg = true;
TIntermTyped *newNode;
if (singleArg) {
// If structure constructor or array constructor is being called
// for only one parameter inside the structure, we need to call constructAggregate function once.
if (type.isArray())
newNode = constructAggregate(node, elementType, 1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
else
newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false);
if (newNode && (type.isArray() || op == EOpConstructStruct))
newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
return newNode;
}
//
// Handle list of arguments.
//
TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
// if the structure constructor contains more than one parameter, then construct
// each parameter
int paramCount = 0; // keeps track of the constructor parameter number being checked
// for each parameter to the constructor call, check to see if the right type is passed or convert them
// to the right type if possible (and allowed).
// for structure constructors, just check if the right type is passed, no conversion is allowed.
for (TIntermSequence::iterator p = sequenceVector.begin();
p != sequenceVector.end(); p++, paramCount++) {
if (type.isArray())
newNode = constructAggregate(*p, elementType, paramCount+1, node->getLoc());
else if (op == EOpConstructStruct)
newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount+1, node->getLoc());
else
newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
if (newNode)
*p = newNode;
else
return nullptr;
}
return intermediate.setAggregateOperator(aggrNode, op, type, loc);
}
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
// for the parameter to the constructor (passed to this function). Essentially, it converts
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
// float, then float is converted to int.
//
// Returns nullptr for an error or the constructed node.
//
TIntermTyped* TParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc,
bool subset)
{
// If we are changing a matrix in both domain of basic type and to a non matrix,
// do the shape change first (by default, below, basic type is changed before shape).
// This avoids requesting a matrix of a new type that is going to be discarded anyway.
// TODO: This could be generalized to more type combinations, but that would require
// more extensive testing and full algorithm rework. For now, the need to do two changes makes
// the recursive call work, and avoids the most aggregious case of creating integer matrices.
if (node->getType().isMatrix() && (type.isScalar() || type.isVector()) &&
type.isFloatingDomain() != node->getType().isFloatingDomain()) {
TType transitionType(node->getBasicType(), glslang::EvqTemporary, type.getVectorSize(), 0, 0, node->isVector());
TOperator transitionOp = intermediate.mapTypeToConstructorOp(transitionType);
node = constructBuiltIn(transitionType, transitionOp, node, loc, false);
}
TIntermTyped* newNode;
TOperator basicOp;
//
// First, convert types as needed.
//
switch (op) {
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructMat2x2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3x3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4x4:
case EOpConstructFloat:
basicOp = EOpConstructFloat;
break;
case EOpConstructDVec2:
case EOpConstructDVec3:
case EOpConstructDVec4:
case EOpConstructDMat2x2:
case EOpConstructDMat2x3:
case EOpConstructDMat2x4:
case EOpConstructDMat3x2:
case EOpConstructDMat3x3:
case EOpConstructDMat3x4:
case EOpConstructDMat4x2:
case EOpConstructDMat4x3:
case EOpConstructDMat4x4:
case EOpConstructDouble:
basicOp = EOpConstructDouble;
break;
case EOpConstructF16Vec2:
case EOpConstructF16Vec3:
case EOpConstructF16Vec4:
case EOpConstructF16Mat2x2:
case EOpConstructF16Mat2x3:
case EOpConstructF16Mat2x4:
case EOpConstructF16Mat3x2:
case EOpConstructF16Mat3x3:
case EOpConstructF16Mat3x4:
case EOpConstructF16Mat4x2:
case EOpConstructF16Mat4x3:
case EOpConstructF16Mat4x4:
case EOpConstructFloat16:
basicOp = EOpConstructFloat16;
break;
case EOpConstructI8Vec2:
case EOpConstructI8Vec3:
case EOpConstructI8Vec4:
case EOpConstructInt8:
basicOp = EOpConstructInt8;
break;
case EOpConstructU8Vec2:
case EOpConstructU8Vec3:
case EOpConstructU8Vec4:
case EOpConstructUint8:
basicOp = EOpConstructUint8;
break;
case EOpConstructI16Vec2:
case EOpConstructI16Vec3:
case EOpConstructI16Vec4:
case EOpConstructInt16:
basicOp = EOpConstructInt16;
break;
case EOpConstructU16Vec2:
case EOpConstructU16Vec3:
case EOpConstructU16Vec4:
case EOpConstructUint16:
basicOp = EOpConstructUint16;
break;
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructInt:
basicOp = EOpConstructInt;
break;
case EOpConstructUVec2:
case EOpConstructUVec3:
case EOpConstructUVec4:
case EOpConstructUint:
basicOp = EOpConstructUint;
break;
case EOpConstructI64Vec2:
case EOpConstructI64Vec3:
case EOpConstructI64Vec4:
case EOpConstructInt64:
basicOp = EOpConstructInt64;
break;
case EOpConstructUint64:
if (type.isScalar() && node->getType().getBasicType() == EbtReference) {
TIntermUnary* newNode = intermediate.addUnaryNode(EOpConvPtrToUint64, node, node->getLoc(), type);
return newNode;
}
// fall through
case EOpConstructU64Vec2:
case EOpConstructU64Vec3:
case EOpConstructU64Vec4:
basicOp = EOpConstructUint64;
break;
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructBool:
basicOp = EOpConstructBool;
break;
case EOpConstructNonuniform:
node->getWritableType().getQualifier().nonUniform = true;
return node;
break;
case EOpConstructReference:
// construct reference from reference
if (node->getType().getBasicType() == EbtReference) {
newNode = intermediate.addUnaryNode(EOpConstructReference, node, node->getLoc(), type);
return newNode;
// construct reference from uint64
} else if (node->getType().isScalar() && node->getType().getBasicType() == EbtUint64) {
TIntermUnary* newNode = intermediate.addUnaryNode(EOpConvUint64ToPtr, node, node->getLoc(), type);
return newNode;
} else {
return nullptr;
}
default:
error(loc, "unsupported construction", "", "");
return nullptr;
}
newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
if (newNode == nullptr) {
error(loc, "can't convert", "constructor", "");
return nullptr;
}
//
// Now, if there still isn't an operation to do the construction, and we need one, add one.
//
// Otherwise, skip out early.
if (subset || (newNode != node && newNode->getType() == type))
return newNode;
// setAggregateOperator will insert a new node for the constructor, as needed.
return intermediate.setAggregateOperator(newNode, op, type, loc);
}
// This function tests for the type of the parameters to the structure or array constructor. Raises
// an error message if the expected type does not match the parameter passed to the constructor.
//
// Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
//
TIntermTyped* TParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc)
{
TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
if (! converted || converted->getType() != type) {
error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
return nullptr;
}
return converted;
}
//
// Do everything needed to add an interface block.
//
void TParseContext::declareBlock(const TSourceLoc& loc, TTypeList& typeList, const TString* instanceName,
TArraySizes* arraySizes)
{
blockStageIoCheck(loc, currentBlockQualifier);
blockQualifierCheck(loc, currentBlockQualifier, instanceName != nullptr);
if (arraySizes != nullptr) {
arraySizesCheck(loc, currentBlockQualifier, arraySizes, nullptr, false);
arrayOfArrayVersionCheck(loc, arraySizes);
if (arraySizes->getNumDims() > 1)
requireProfile(loc, ~EEsProfile, "array-of-array of block");
}
// fix and check for member storage qualifiers and types that don't belong within a block
for (unsigned int member = 0; member < typeList.size(); ++member) {
TType& memberType = *typeList[member].type;
TQualifier& memberQualifier = memberType.getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
globalQualifierFixCheck(memberLoc, memberQualifier);
if (memberQualifier.storage != EvqTemporary && memberQualifier.storage != EvqGlobal && memberQualifier.storage != currentBlockQualifier.storage)
error(memberLoc, "member storage qualifier cannot contradict block storage qualifier", memberType.getFieldName().c_str(), "");
memberQualifier.storage = currentBlockQualifier.storage;
#ifdef NV_EXTENSIONS
if (currentBlockQualifier.perPrimitiveNV)
memberQualifier.perPrimitiveNV = currentBlockQualifier.perPrimitiveNV;
if (currentBlockQualifier.perViewNV)
memberQualifier.perViewNV = currentBlockQualifier.perViewNV;
if (currentBlockQualifier.perTaskNV)
memberQualifier.perTaskNV = currentBlockQualifier.perTaskNV;
#endif
if ((currentBlockQualifier.storage == EvqUniform || currentBlockQualifier.storage == EvqBuffer) && (memberQualifier.isInterpolation() || memberQualifier.isAuxiliary()))
error(memberLoc, "member of uniform or buffer block cannot have an auxiliary or interpolation qualifier", memberType.getFieldName().c_str(), "");
if (memberType.isArray())
arraySizesCheck(memberLoc, currentBlockQualifier, memberType.getArraySizes(), nullptr, member == typeList.size() - 1);
if (memberQualifier.hasOffset()) {
if (spvVersion.spv == 0) {
requireProfile(memberLoc, ~EEsProfile, "offset on block member");
profileRequires(memberLoc, ~EEsProfile, 440, E_GL_ARB_enhanced_layouts, "offset on block member");
}
}
if (memberType.containsOpaque())
error(memberLoc, "member of block cannot be or contain a sampler, image, or atomic_uint type", typeList[member].type->getFieldName().c_str(), "");
}
// This might be a redeclaration of a built-in block. If so, redeclareBuiltinBlock() will
// do all the rest.
if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) {
redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes);
return;
}
// Not a redeclaration of a built-in; check that all names are user names.
reservedErrorCheck(loc, *blockName);
if (instanceName)
reservedErrorCheck(loc, *instanceName);
for (unsigned int member = 0; member < typeList.size(); ++member)
reservedErrorCheck(typeList[member].loc, typeList[member].type->getFieldName());
// Make default block qualification, and adjust the member qualifications
TQualifier defaultQualification;
switch (currentBlockQualifier.storage) {
case EvqUniform: defaultQualification = globalUniformDefaults; break;
case EvqBuffer: defaultQualification = globalBufferDefaults; break;
case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
default: defaultQualification.clear(); break;
}
// Special case for "push_constant uniform", which has a default of std430,
// contrary to normal uniform defaults, and can't have a default tracked for it.
if ((currentBlockQualifier.layoutPushConstant && !currentBlockQualifier.hasPacking())
#ifdef NV_EXTENSIONS
|| (currentBlockQualifier.layoutShaderRecordNV && !currentBlockQualifier.hasPacking())
#endif
)
currentBlockQualifier.layoutPacking = ElpStd430;
#ifdef NV_EXTENSIONS
// Special case for "taskNV in/out", which has a default of std430,
if (currentBlockQualifier.perTaskNV && !currentBlockQualifier.hasPacking())
currentBlockQualifier.layoutPacking = ElpStd430;
#endif
// fix and check for member layout qualifiers
mergeObjectLayoutQualifiers(defaultQualification, currentBlockQualifier, true);
// "The align qualifier can only be used on blocks or block members, and only for blocks declared with std140 or std430 layouts."
if (currentBlockQualifier.hasAlign()) {
if (defaultQualification.layoutPacking != ElpStd140 &&
defaultQualification.layoutPacking != ElpStd430 &&
defaultQualification.layoutPacking != ElpScalar) {
error(loc, "can only be used with std140, std430, or scalar layout packing", "align", "");
defaultQualification.layoutAlign = -1;
}
}
bool memberWithLocation = false;
bool memberWithoutLocation = false;
#ifdef NV_EXTENSIONS
bool memberWithPerViewQualifier = false;
#endif
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
if (memberQualifier.hasStream()) {
if (defaultQualification.layoutStream != memberQualifier.layoutStream)
error(memberLoc, "member cannot contradict block", "stream", "");
}
// "This includes a block's inheritance of the
// current global default buffer, a block member's inheritance of the block's
// buffer, and the requirement that any *xfb_buffer* declared on a block
// member must match the buffer inherited from the block."
if (memberQualifier.hasXfbBuffer()) {
if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
}
if (memberQualifier.hasPacking())
error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), "");
if (memberQualifier.hasLocation()) {
const char* feature = "location on block member";
switch (currentBlockQualifier.storage) {
case EvqVaryingIn:
case EvqVaryingOut:
requireProfile(memberLoc, ECoreProfile | ECompatibilityProfile | EEsProfile, feature);
profileRequires(memberLoc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature);
profileRequires(memberLoc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, feature);
memberWithLocation = true;
break;
default:
error(memberLoc, "can only use in an in/out block", feature, "");
break;
}
} else
memberWithoutLocation = true;
// "The offset qualifier can only be used on block members of blocks declared with std140 or std430 layouts."
// "The align qualifier can only be used on blocks or block members, and only for blocks declared with std140 or std430 layouts."
if (memberQualifier.hasAlign() || memberQualifier.hasOffset()) {
if (defaultQualification.layoutPacking != ElpStd140 &&
defaultQualification.layoutPacking != ElpStd430 &&
defaultQualification.layoutPacking != ElpScalar)
error(memberLoc, "can only be used with std140, std430, or scalar layout packing", "offset/align", "");
}
#ifdef NV_EXTENSIONS
if (memberQualifier.isPerView()) {
memberWithPerViewQualifier = true;
}
#endif
TQualifier newMemberQualification = defaultQualification;
mergeQualifiers(memberLoc, newMemberQualification, memberQualifier, false);
memberQualifier = newMemberQualification;
}
layoutMemberLocationArrayCheck(loc, memberWithLocation, arraySizes);
// Ensure that the block has an XfbBuffer assigned. This is needed
// because if the block has a XfbOffset assigned, then it is
// assumed that it has implicitly assigned the current global
// XfbBuffer, and because it's members need to be assigned a
// XfbOffset if they lack it.
if (currentBlockQualifier.storage == EvqVaryingOut && globalOutputDefaults.hasXfbBuffer()) {
if (!currentBlockQualifier.hasXfbBuffer() && currentBlockQualifier.hasXfbOffset())
currentBlockQualifier.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
}
// Process the members
fixBlockLocations(loc, currentBlockQualifier, typeList, memberWithLocation, memberWithoutLocation);
fixXfbOffsets(currentBlockQualifier, typeList);
fixBlockUniformOffsets(currentBlockQualifier, typeList);
for (unsigned int member = 0; member < typeList.size(); ++member)
layoutTypeCheck(typeList[member].loc, *typeList[member].type);
#ifdef NV_EXTENSIONS
if (memberWithPerViewQualifier) {
for (unsigned int member = 0; member < typeList.size(); ++member) {
resizeMeshViewDimension(typeList[member].loc, *typeList[member].type);
}
}
#endif
// reverse merge, so that currentBlockQualifier now has all layout information
// (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
mergeObjectLayoutQualifiers(currentBlockQualifier, defaultQualification, true);
//
// Build and add the interface block as a new type named 'blockName'
//
TType blockType(&typeList, *blockName, currentBlockQualifier);
if (arraySizes != nullptr)
blockType.transferArraySizes(arraySizes);
else
ioArrayCheck(loc, blockType, instanceName ? *instanceName : *blockName);
if (currentBlockQualifier.layoutBufferReference) {
if (currentBlockQualifier.storage != EvqBuffer)
error(loc, "can only be used with buffer", "buffer_reference", "");
// Create the block reference type. If it was forward-declared, detect that
// as a referent struct type with no members. Replace the referent type with
// blockType.
TType blockNameType(EbtReference, blockType, *blockName);
TVariable* blockNameVar = new TVariable(blockName, blockNameType, true);
if (! symbolTable.insert(*blockNameVar)) {
TSymbol* existingName = symbolTable.find(*blockName);
if (existingName->getType().getBasicType() == EbtReference &&
existingName->getType().getReferentType()->getStruct() &&
existingName->getType().getReferentType()->getStruct()->size() == 0 &&
existingName->getType().getQualifier().storage == blockType.getQualifier().storage) {
existingName->getType().getReferentType()->deepCopy(blockType);
} else {
error(loc, "block name cannot be redefined", blockName->c_str(), "");
}
}
if (!instanceName) {
return;
}
} else {
//
// Don't make a user-defined type out of block name; that will cause an error
// if the same block name gets reused in a different interface.
//
// "Block names have no other use within a shader
// beyond interface matching; it is a compile-time error to use a block name at global scope for anything
// other than as a block name (e.g., use of a block name for a global variable name or function name is
// currently reserved)."
//
// Use the symbol table to prevent normal reuse of the block's name, as a variable entry,
// whose type is EbtBlock, but without all the structure; that will come from the type
// the instances point to.
//
TType blockNameType(EbtBlock, blockType.getQualifier().storage);
TVariable* blockNameVar = new TVariable(blockName, blockNameType);
if (! symbolTable.insert(*blockNameVar)) {
TSymbol* existingName = symbolTable.find(*blockName);
if (existingName->getType().getBasicType() == EbtBlock) {
if (existingName->getType().getQualifier().storage == blockType.getQualifier().storage) {
error(loc, "Cannot reuse block name within the same interface:", blockName->c_str(), blockType.getStorageQualifierString());
return;
}
} else {
error(loc, "block name cannot redefine a non-block name", blockName->c_str(), "");
return;
}
}
}
// Add the variable, as anonymous or named instanceName.
// Make an anonymous variable if no name was provided.
if (! instanceName)
instanceName = NewPoolTString("");
TVariable& variable = *new TVariable(instanceName, blockType);
if (! symbolTable.insert(variable)) {
if (*instanceName == "")
error(loc, "nameless block contains a member that already has a name at global scope", blockName->c_str(), "");
else
error(loc, "block instance name redefinition", variable.getName().c_str(), "");
return;
}
// Check for general layout qualifier errors
layoutObjectCheck(loc, variable);
// fix up
if (isIoResizeArray(blockType)) {
ioArraySymbolResizeList.push_back(&variable);
checkIoArraysConsistency(loc, true, blockType.getQualifier().isPerPrimitive());
} else
fixIoArraySize(loc, variable.getWritableType());
// Save it in the AST for linker use.
trackLinkage(variable);
}
// Do all block-declaration checking regarding the combination of in/out/uniform/buffer
// with a particular stage.
void TParseContext::blockStageIoCheck(const TSourceLoc& loc, const TQualifier& qualifier)
{
switch (qualifier.storage) {
case EvqUniform:
profileRequires(loc, EEsProfile, 300, nullptr, "uniform block");
profileRequires(loc, ENoProfile, 140, nullptr, "uniform block");
if (currentBlockQualifier.layoutPacking == ElpStd430 && ! currentBlockQualifier.layoutPushConstant)
requireExtensions(loc, 1, &E_GL_EXT_scalar_block_layout, "std430 requires the buffer storage qualifier");
break;
case EvqBuffer:
requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, "buffer block");
profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, "buffer block");
profileRequires(loc, EEsProfile, 310, nullptr, "buffer block");
break;
case EvqVaryingIn:
profileRequires(loc, ~EEsProfile, 150, E_GL_ARB_separate_shader_objects, "input block");
// It is a compile-time error to have an input block in a vertex shader or an output block in a fragment shader
// "Compute shaders do not permit user-defined input variables..."
requireStage(loc, (EShLanguageMask)(EShLangTessControlMask|EShLangTessEvaluationMask|EShLangGeometryMask|EShLangFragmentMask
#ifdef NV_EXTENSIONS
|EShLangMeshNVMask
#endif
), "input block");
if (language == EShLangFragment) {
profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, "fragment input block");
}
#ifdef NV_EXTENSIONS
else if (language == EShLangMeshNV && ! qualifier.isTaskMemory()) {
error(loc, "input blocks cannot be used in a mesh shader", "out", "");
}
#endif
break;
case EvqVaryingOut:
profileRequires(loc, ~EEsProfile, 150, E_GL_ARB_separate_shader_objects, "output block");
requireStage(loc, (EShLanguageMask)(EShLangVertexMask|EShLangTessControlMask|EShLangTessEvaluationMask|EShLangGeometryMask
#ifdef NV_EXTENSIONS
|EShLangMeshNVMask|EShLangTaskNVMask
#endif
), "output block");
// ES 310 can have a block before shader_io is turned on, so skip this test for built-ins
if (language == EShLangVertex && ! parsingBuiltins) {
profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, "vertex output block");
}
#ifdef NV_EXTENSIONS
else if (language == EShLangMeshNV && qualifier.isTaskMemory()) {
error(loc, "can only use on input blocks in mesh shader", "taskNV", "");
}
else if (language == EShLangTaskNV && ! qualifier.isTaskMemory()) {
error(loc, "output blocks cannot be used in a task shader", "out", "");
}
#endif
break;
#ifdef NV_EXTENSIONS
case EvqPayloadNV:
profileRequires(loc, ~EEsProfile, 460, E_GL_NV_ray_tracing, "rayPayloadNV block");
requireStage(loc, (EShLanguageMask)(EShLangRayGenNVMask | EShLangAnyHitNVMask | EShLangClosestHitNVMask | EShLangMissNVMask),
"rayPayloadNV block");
break;
case EvqPayloadInNV:
profileRequires(loc, ~EEsProfile, 460, E_GL_NV_ray_tracing, "rayPayloadInNV block");
requireStage(loc, (EShLanguageMask)(EShLangAnyHitNVMask | EShLangClosestHitNVMask | EShLangMissNVMask),
"rayPayloadInNV block");
break;
case EvqHitAttrNV:
profileRequires(loc, ~EEsProfile, 460, E_GL_NV_ray_tracing, "hitAttributeNV block");
requireStage(loc, (EShLanguageMask)(EShLangIntersectNVMask | EShLangAnyHitNVMask | EShLangClosestHitNVMask), "hitAttributeNV block");
break;
case EvqCallableDataNV:
profileRequires(loc, ~EEsProfile, 460, E_GL_NV_ray_tracing, "callableDataNV block");
requireStage(loc, (EShLanguageMask)(EShLangRayGenNVMask | EShLangClosestHitNVMask | EShLangMissNVMask | EShLangCallableNVMask),
"callableDataNV block");
break;
case EvqCallableDataInNV:
profileRequires(loc, ~EEsProfile, 460, E_GL_NV_ray_tracing, "callableDataInNV block");
requireStage(loc, (EShLanguageMask)(EShLangCallableNVMask), "callableDataInNV block");
break;
#endif
default:
error(loc, "only uniform, buffer, in, or out blocks are supported", blockName->c_str(), "");
break;
}
}
// Do all block-declaration checking regarding its qualifiers.
void TParseContext::blockQualifierCheck(const TSourceLoc& loc, const TQualifier& qualifier, bool /*instanceName*/)
{
// The 4.5 specification says:
//
// interface-block :
// layout-qualifieropt interface-qualifier block-name { member-list } instance-nameopt ;
//
// interface-qualifier :
// in
// out
// patch in
// patch out
// uniform
// buffer
//
// Note however memory qualifiers aren't included, yet the specification also says
//
// "...memory qualifiers may also be used in the declaration of shader storage blocks..."
if (qualifier.isInterpolation())
error(loc, "cannot use interpolation qualifiers on an interface block", "flat/smooth/noperspective", "");
if (qualifier.centroid)
error(loc, "cannot use centroid qualifier on an interface block", "centroid", "");
if (qualifier.sample)
error(loc, "cannot use sample qualifier on an interface block", "sample", "");
if (qualifier.invariant)
error(loc, "cannot use invariant qualifier on an interface block", "invariant", "");
if (qualifier.layoutPushConstant)
intermediate.addPushConstantCount();
#ifdef NV_EXTENSIONS
if (qualifier.layoutShaderRecordNV)
intermediate.addShaderRecordNVCount();
if (qualifier.perTaskNV)
intermediate.addTaskNVCount();
#endif
}
//
// "For a block, this process applies to the entire block, or until the first member
// is reached that has a location layout qualifier. When a block member is declared with a location
// qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
// declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
// until the next member declared with a location qualifier. The values used for locations do not have to be
// declared in increasing order."
void TParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
{
// "If a block has no block-level location layout qualifier, it is required that either all or none of its members
// have a location layout qualifier, or a compile-time error results."
if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
else {
if (memberWithLocation) {
// remove any block-level location and make it per *every* member
int nextLocation = 0; // by the rule above, initial value is not relevant
if (qualifier.hasAnyLocation()) {
nextLocation = qualifier.layoutLocation;
qualifier.layoutLocation = TQualifier::layoutLocationEnd;
if (qualifier.hasComponent()) {
// "It is a compile-time error to apply the *component* qualifier to a ... block"
error(loc, "cannot apply to a block", "component", "");
}
if (qualifier.hasIndex()) {
error(loc, "cannot apply to a block", "index", "");
}
}
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
if (! memberQualifier.hasLocation()) {
if (nextLocation >= (int)TQualifier::layoutLocationEnd)
error(memberLoc, "location is too large", "location", "");
memberQualifier.layoutLocation = nextLocation;
memberQualifier.layoutComponent = TQualifier::layoutComponentEnd;
}
nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize(
*typeList[member].type, language);
}
}
}
}
void TParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
{
// "If a block is qualified with xfb_offset, all its
// members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
// members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
// offsets."
if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
return;
int nextOffset = qualifier.layoutXfbOffset;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
bool containsDouble = false;
int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble);
// see if we need to auto-assign an offset to this member
if (! memberQualifier.hasXfbOffset()) {
// "if applied to an aggregate containing a double, the offset must also be a multiple of 8"
if (containsDouble)
RoundToPow2(nextOffset, 8);
memberQualifier.layoutXfbOffset = nextOffset;
} else
nextOffset = memberQualifier.layoutXfbOffset;
nextOffset += memberSize;
}
// The above gave all block members an offset, so we can take it off the block now,
// which will avoid double counting the offset usage.
qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
}
// Calculate and save the offset of each block member, using the recursively
// defined block offset rules and the user-provided offset and align.
//
// Also, compute and save the total size of the block. For the block's size, arrayness
// is not taken into account, as each element is backed by a separate buffer.
//
void TParseContext::fixBlockUniformOffsets(TQualifier& qualifier, TTypeList& typeList)
{
if (!qualifier.isUniformOrBuffer() && !qualifier.isTaskMemory())
return;
if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
return;
int offset = 0;
int memberSize;
for (unsigned int member = 0; member < typeList.size(); ++member) {
TQualifier& memberQualifier = typeList[member].type->getQualifier();
const TSourceLoc& memberLoc = typeList[member].loc;
// "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
// modify just the children's view of matrix layout, if there is one for this member
TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
int dummyStride;
int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride, qualifier.layoutPacking,
subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : qualifier.layoutMatrix == ElmRowMajor);
if (memberQualifier.hasOffset()) {
// "The specified offset must be a multiple
// of the base alignment of the type of the block member it qualifies, or a compile-time error results."
if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
// GLSL: "It is a compile-time error to specify an offset that is smaller than the offset of the previous
// member in the block or that lies within the previous member of the block"
if (spvVersion.spv == 0) {
if (memberQualifier.layoutOffset < offset)
error(memberLoc, "cannot lie in previous members", "offset", "");
// "The offset qualifier forces the qualified member to start at or after the specified
// integral-constant expression, which will be its byte offset from the beginning of the buffer.
// "The actual offset of a member is computed as
// follows: If offset was declared, start with that offset, otherwise start with the next available offset."
offset = std::max(offset, memberQualifier.layoutOffset);
} else {
// TODO: Vulkan: "It is a compile-time error to have any offset, explicit or assigned,
// that lies within another member of the block."
offset = memberQualifier.layoutOffset;
}
}
// "The actual alignment of a member will be the greater of the specified align alignment and the standard
// (e.g., std140) base alignment for the member's type."
if (memberQualifier.hasAlign())
memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
// "If the resulting offset is not a multiple of the actual alignment,
// increase it to the first offset that is a multiple of
// the actual alignment."
RoundToPow2(offset, memberAlignment);
typeList[member].type->getQualifier().layoutOffset = offset;
offset += memberSize;
}
}
// For an identifier that is already declared, add more qualification to it.
void TParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
{
TSymbol* symbol = symbolTable.find(identifier);
// A forward declaration of a block reference looks to the grammar like adding
// a qualifier to an existing symbol. Detect this and create the block reference
// type with an empty type list, which will be filled in later in
// TParseContext::declareBlock.
if (!symbol && qualifier.layoutBufferReference) {
TTypeList typeList;
TType blockType(&typeList, identifier, qualifier);;
TType blockNameType(EbtReference, blockType, identifier);
TVariable* blockNameVar = new TVariable(&identifier, blockNameType, true);
if (! symbolTable.insert(*blockNameVar)) {
error(loc, "block name cannot redefine a non-block name", blockName->c_str(), "");
}
return;
}
if (! symbol) {
error(loc, "identifier not previously declared", identifier.c_str(), "");
return;
}
if (symbol->getAsFunction()) {
error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
return;
}
if (qualifier.isAuxiliary() ||
qualifier.isMemory() ||
qualifier.isInterpolation() ||
qualifier.hasLayout() ||
qualifier.storage != EvqTemporary ||
qualifier.precision != EpqNone) {
error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
return;
}
// For read-only built-ins, add a new symbol for holding the modified qualifier.
// This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
if (symbol->isReadOnly())
symbol = symbolTable.copyUp(symbol);
if (qualifier.invariant) {
if (intermediate.inIoAccessed(identifier))
error(loc, "cannot change qualification after use", "invariant", "");
symbol->getWritableType().getQualifier().invariant = true;
invariantCheck(loc, symbol->getType().getQualifier());
} else if (qualifier.noContraction) {
if (intermediate.inIoAccessed(identifier))
error(loc, "cannot change qualification after use", "precise", "");
symbol->getWritableType().getQualifier().noContraction = true;
} else if (qualifier.specConstant) {
symbol->getWritableType().getQualifier().makeSpecConstant();
if (qualifier.hasSpecConstantId())
symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
} else
warn(loc, "unknown requalification", "", "");
}
void TParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
{
for (unsigned int i = 0; i < identifiers.size(); ++i)
addQualifierToExisting(loc, qualifier, *identifiers[i]);
}
// Make sure 'invariant' isn't being applied to a non-allowed object.
void TParseContext::invariantCheck(const TSourceLoc& loc, const TQualifier& qualifier)
{
if (! qualifier.invariant)
return;
bool pipeOut = qualifier.isPipeOutput();
bool pipeIn = qualifier.isPipeInput();
if (version >= 300 || (profile != EEsProfile && version >= 420)) {
if (! pipeOut)
error(loc, "can only apply to an output", "invariant", "");
} else {
if ((language == EShLangVertex && pipeIn) || (! pipeOut && ! pipeIn))
error(loc, "can only apply to an output, or to an input in a non-vertex stage\n", "invariant", "");
}
}
//
// Updating default qualifier for the case of a declaration with just a qualifier,
// no type, block, or identifier.
//
void TParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
{
if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
#ifdef NV_EXTENSIONS
assert(language == EShLangTessControl || language == EShLangGeometry || language == EShLangMeshNV);
#else
assert(language == EShLangTessControl || language == EShLangGeometry);
#endif
const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
if (publicType.qualifier.storage != EvqVaryingOut)
error(loc, "can only apply to 'out'", id, "");
if (! intermediate.setVertices(publicType.shaderQualifiers.vertices))
error(loc, "cannot change previously set layout value", id, "");
if (language == EShLangTessControl)
checkIoArraysConsistency(loc);
}
#ifdef NV_EXTENSIONS
if (publicType.shaderQualifiers.primitives != TQualifier::layoutNotSet) {
assert(language == EShLangMeshNV);
const char* id = "max_primitives";
if (publicType.qualifier.storage != EvqVaryingOut)
error(loc, "can only apply to 'out'", id, "");
if (! intermediate.setPrimitives(publicType.shaderQualifiers.primitives))
error(loc, "cannot change previously set layout value", id, "");
}
#endif
if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
if (publicType.qualifier.storage != EvqVaryingIn)
error(loc, "can only apply to 'in'", "invocations", "");
if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
error(loc, "cannot change previously set layout value", "invocations", "");
}
if (publicType.shaderQualifiers.geometry != ElgNone) {
if (publicType.qualifier.storage == EvqVaryingIn) {
switch (publicType.shaderQualifiers.geometry) {
case ElgPoints:
case ElgLines:
case ElgLinesAdjacency:
case ElgTriangles:
case ElgTrianglesAdjacency:
case ElgQuads:
case ElgIsolines:
#ifdef NV_EXTENSIONS
if (language == EShLangMeshNV) {
error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
break;
}
#endif
if (intermediate.setInputPrimitive(publicType.shaderQualifiers.geometry)) {
if (language == EShLangGeometry)
checkIoArraysConsistency(loc);
} else
error(loc, "cannot change previously set input primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
break;
default:
error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
}
} else if (publicType.qualifier.storage == EvqVaryingOut) {
switch (publicType.shaderQualifiers.geometry) {
#ifdef NV_EXTENSIONS
case ElgLines:
case ElgTriangles:
if (language != EShLangMeshNV) {
error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
break;
}
#endif
// Fall through
case ElgPoints:
case ElgLineStrip:
case ElgTriangleStrip:
if (! intermediate.setOutputPrimitive(publicType.shaderQualifiers.geometry))
error(loc, "cannot change previously set output primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
break;
default:
error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), "");
}
} else
error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage));
}
if (publicType.shaderQualifiers.spacing != EvsNone) {
if (publicType.qualifier.storage == EvqVaryingIn) {
if (! intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing))
error(loc, "cannot change previously set vertex spacing", TQualifier::getVertexSpacingString(publicType.shaderQualifiers.spacing), "");
} else
error(loc, "can only apply to 'in'", TQualifier::getVertexSpacingString(publicType.shaderQualifiers.spacing), "");
}
if (publicType.shaderQualifiers.order != EvoNone) {
if (publicType.qualifier.storage == EvqVaryingIn) {
if (! intermediate.setVertexOrder(publicType.shaderQualifiers.order))
error(loc, "cannot change previously set vertex order", TQualifier::getVertexOrderString(publicType.shaderQualifiers.order), "");
} else
error(loc, "can only apply to 'in'", TQualifier::getVertexOrderString(publicType.shaderQualifiers.order), "");
}
if (publicType.shaderQualifiers.pointMode) {
if (publicType.qualifier.storage == EvqVaryingIn)
intermediate.setPointMode();
else
error(loc, "can only apply to 'in'", "point_mode", "");
}
for (int i = 0; i < 3; ++i) {
if (publicType.shaderQualifiers.localSize[i] > 1) {
if (publicType.qualifier.storage == EvqVaryingIn) {
if (! intermediate.setLocalSize(i, publicType.shaderQualifiers.localSize[i]))
error(loc, "cannot change previously set size", "local_size", "");
else {
int max = 0;
if (language == EShLangCompute) {
switch (i) {
case 0: max = resources.maxComputeWorkGroupSizeX; break;
case 1: max = resources.maxComputeWorkGroupSizeY; break;
case 2: max = resources.maxComputeWorkGroupSizeZ; break;
default: break;
}
if (intermediate.getLocalSize(i) > (unsigned int)max)
error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
}
#ifdef NV_EXTENSIONS
else if (language == EShLangMeshNV) {
switch (i) {
case 0: max = resources.maxMeshWorkGroupSizeX_NV; break;
case 1: max = resources.maxMeshWorkGroupSizeY_NV; break;
case 2: max = resources.maxMeshWorkGroupSizeZ_NV; break;
default: break;
}
if (intermediate.getLocalSize(i) > (unsigned int)max)
error(loc, "too large; see gl_MaxMeshWorkGroupSizeNV", "local_size", "");
}
else if (language == EShLangTaskNV) {
switch (i) {
case 0: max = resources.maxTaskWorkGroupSizeX_NV; break;
case 1: max = resources.maxTaskWorkGroupSizeY_NV; break;
case 2: max = resources.maxTaskWorkGroupSizeZ_NV; break;
default: break;
}
if (intermediate.getLocalSize(i) > (unsigned int)max)
error(loc, "too large; see gl_MaxTaskWorkGroupSizeNV", "local_size", "");
}
#endif
else {
assert(0);
}
// Fix the existing constant gl_WorkGroupSize with this new information.
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
if (workGroupSize != nullptr)
workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
}
} else
error(loc, "can only apply to 'in'", "local_size", "");
}
if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
if (publicType.qualifier.storage == EvqVaryingIn) {
if (! intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]))
error(loc, "cannot change previously set size", "local_size", "");
} else
error(loc, "can only apply to 'in'", "local_size id", "");
// Set the workgroup built-in variable as a specialization constant
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
if (workGroupSize != nullptr)
workGroupSize->getWritableType().getQualifier().specConstant = true;
}
}
if (publicType.shaderQualifiers.earlyFragmentTests) {
if (publicType.qualifier.storage == EvqVaryingIn)
intermediate.setEarlyFragmentTests();
else
error(loc, "can only apply to 'in'", "early_fragment_tests", "");
}
if (publicType.shaderQualifiers.postDepthCoverage) {
if (publicType.qualifier.storage == EvqVaryingIn)
intermediate.setPostDepthCoverage();
else
error(loc, "can only apply to 'in'", "post_coverage_coverage", "");
}
if (publicType.shaderQualifiers.blendEquation) {
if (publicType.qualifier.storage != EvqVaryingOut)
error(loc, "can only apply to 'out'", "blend equation", "");
}
#ifdef NV_EXTENSIONS
if (publicType.shaderQualifiers.layoutDerivativeGroupQuads &&
publicType.shaderQualifiers.layoutDerivativeGroupLinear) {
error(loc, "cannot be both specified", "derivative_group_quadsNV and derivative_group_linearNV", "");
}
if (publicType.shaderQualifiers.layoutDerivativeGroupQuads) {
if (publicType.qualifier.storage == EvqVaryingIn) {
if ((intermediate.getLocalSize(0) & 1) ||
(intermediate.getLocalSize(1) & 1))
error(loc, "requires local_size_x and local_size_y to be multiple of two", "derivative_group_quadsNV", "");
else
intermediate.setLayoutDerivativeMode(LayoutDerivativeGroupQuads);
}
else
error(loc, "can only apply to 'in'", "derivative_group_quadsNV", "");
}
if (publicType.shaderQualifiers.layoutDerivativeGroupLinear) {
if (publicType.qualifier.storage == EvqVaryingIn) {
if((intermediate.getLocalSize(0) *
intermediate.getLocalSize(1) *
intermediate.getLocalSize(2)) % 4 != 0)
error(loc, "requires total group size to be multiple of four", "derivative_group_linearNV", "");
else
intermediate.setLayoutDerivativeMode(LayoutDerivativeGroupLinear);
}
else
error(loc, "can only apply to 'in'", "derivative_group_linearNV", "");
}
#endif
const TQualifier& qualifier = publicType.qualifier;
if (qualifier.isAuxiliary() ||
qualifier.isMemory() ||
qualifier.isInterpolation() ||
qualifier.precision != EpqNone)
error(loc, "cannot use auxiliary, memory, interpolation, or precision qualifier in a default qualifier declaration (declaration with no type)", "qualifier", "");
// "The offset qualifier can only be used on block members of blocks..."
// "The align qualifier can only be used on blocks or block members..."
if (qualifier.hasOffset() ||
qualifier.hasAlign())
error(loc, "cannot use offset or align qualifiers in a default qualifier declaration (declaration with no type)", "layout qualifier", "");
layoutQualifierCheck(loc, qualifier);
switch (qualifier.storage) {
case EvqUniform:
if (qualifier.hasMatrix())
globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.hasPacking())
globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqBuffer:
if (qualifier.hasMatrix())
globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
if (qualifier.hasPacking())
globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
break;
case EvqVaryingIn:
break;
case EvqVaryingOut:
if (qualifier.hasStream())
globalOutputDefaults.layoutStream = qualifier.layoutStream;
if (qualifier.hasXfbBuffer())
globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer);
}
break;
default:
error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
return;
}
if (qualifier.hasBinding())
error(loc, "cannot declare a default, include a type or full declaration", "binding", "");
if (qualifier.hasAnyLocation())
error(loc, "cannot declare a default, use a full declaration", "location/component/index", "");
if (qualifier.hasXfbOffset())
error(loc, "cannot declare a default, use a full declaration", "xfb_offset", "");
if (qualifier.layoutPushConstant)
error(loc, "cannot declare a default, can only be used on a block", "push_constant", "");
if (qualifier.layoutBufferReference)
error(loc, "cannot declare a default, can only be used on a block", "buffer_reference", "");
if (qualifier.hasSpecConstantId())
error(loc, "cannot declare a default, can only be used on a scalar", "constant_id", "");
#ifdef NV_EXTENSIONS
if (qualifier.layoutShaderRecordNV)
error(loc, "cannot declare a default, can only be used on a block", "shaderRecordNV", "");
#endif
}
//
// Take the sequence of statements that has been built up since the last case/default,
// put it on the list of top-level nodes for the current (inner-most) switch statement,
// and follow that by the case/default we are on now. (See switch topology comment on
// TIntermSwitch.)
//
void TParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
{
TIntermSequence* switchSequence = switchSequenceStack.back();
if (statements) {
if (switchSequence->size() == 0)
error(statements->getLoc(), "cannot have statements before first case/default label", "switch", "");
statements->setOperator(EOpSequence);
switchSequence->push_back(statements);
}
if (branchNode) {
// check all previous cases for the same label (or both are 'default')
for (unsigned int s = 0; s < switchSequence->size(); ++s) {
TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
if (prevBranch) {
TIntermTyped* prevExpression = prevBranch->getExpression();
TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
if (prevExpression == nullptr && newExpression == nullptr)
error(branchNode->getLoc(), "duplicate label", "default", "");
else if (prevExpression != nullptr &&
newExpression != nullptr &&
prevExpression->getAsConstantUnion() &&
newExpression->getAsConstantUnion() &&
prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
error(branchNode->getLoc(), "duplicated value", "case", "");
}
}
switchSequence->push_back(branchNode);
}
}
//
// Turn the top-level node sequence built up of wrapupSwitchSubsequence9)
// into a switch node.
//
TIntermNode* TParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements)
{
profileRequires(loc, EEsProfile, 300, nullptr, "switch statements");
profileRequires(loc, ENoProfile, 130, nullptr, "switch statements");
wrapupSwitchSubsequence(lastStatements, nullptr);
if (expression == nullptr ||
(expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
error(loc, "condition must be a scalar integer expression", "switch", "");
// If there is nothing to do, drop the switch but still execute the expression
TIntermSequence* switchSequence = switchSequenceStack.back();
if (switchSequence->size() == 0)
return expression;
if (lastStatements == nullptr) {
// This was originally an ERRROR, because early versions of the specification said
// "it is an error to have no statement between a label and the end of the switch statement."
// The specifications were updated to remove this (being ill-defined what a "statement" was),
// so, this became a warning. However, 3.0 tests still check for the error.
if (profile == EEsProfile && version <= 300 && ! relaxedErrors())
error(loc, "last case/default label not followed by statements", "switch", "");
else
warn(loc, "last case/default label not followed by statements", "switch", "");
// emulate a break for error recovery
lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
lastStatements->setOperator(EOpSequence);
switchSequence->push_back(lastStatements);
}
TIntermAggregate* body = new TIntermAggregate(EOpSequence);
body->getSequence() = *switchSequenceStack.back();
body->setLoc(loc);
TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
switchNode->setLoc(loc);
return switchNode;
}
} // end namespace glslang