| /* GLIB sliced memory - fast concurrent memory chunk allocator |
| * Copyright (C) 2005 Tim Janik |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| /* MT safe */ |
| |
| #include "config.h" |
| #include "glibconfig.h" |
| |
| #if defined(HAVE_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE) |
| #define _XOPEN_SOURCE 600 /* posix_memalign() */ |
| #endif |
| #include <stdlib.h> /* posix_memalign() */ |
| #include <string.h> |
| #include <errno.h> |
| |
| #ifdef G_OS_UNIX |
| #include <unistd.h> /* sysconf() */ |
| #endif |
| #ifdef G_OS_WIN32 |
| #include <windows.h> |
| #include <process.h> |
| #endif |
| |
| #include <stdio.h> /* fputs */ |
| |
| #include "gslice.h" |
| |
| #include "gmain.h" |
| #include "gmem.h" /* gslice.h */ |
| #include "gstrfuncs.h" |
| #include "gutils.h" |
| #include "gtrashstack.h" |
| #include "gtestutils.h" |
| #include "gthread.h" |
| #include "glib_trace.h" |
| #include "gprintf.h" |
| |
| #include "gvalgrind.h" |
| |
| /** |
| * SECTION:memory_slices |
| * @title: Memory Slices |
| * @short_description: efficient way to allocate groups of equal-sized |
| * chunks of memory |
| * |
| * Memory slices provide a space-efficient and multi-processing scalable |
| * way to allocate equal-sized pieces of memory, just like the original |
| * #GMemChunks (from GLib 2.8), while avoiding their excessive |
| * memory-waste, scalability and performance problems. |
| * |
| * To achieve these goals, the slice allocator uses a sophisticated, |
| * layered design that has been inspired by Bonwick's slab allocator |
| * ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html) |
| * Jeff Bonwick, The slab allocator: An object-caching kernel |
| * memory allocator. USENIX 1994, and |
| * [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html) |
| * Bonwick and Jonathan Adams, Magazines and vmem: Extending the |
| * slab allocator to many cpu's and arbitrary resources. USENIX 2001) |
| * |
| * It uses posix_memalign() to optimize allocations of many equally-sized |
| * chunks, and has per-thread free lists (the so-called magazine layer) |
| * to quickly satisfy allocation requests of already known structure sizes. |
| * This is accompanied by extra caching logic to keep freed memory around |
| * for some time before returning it to the system. Memory that is unused |
| * due to alignment constraints is used for cache colorization (random |
| * distribution of chunk addresses) to improve CPU cache utilization. The |
| * caching layer of the slice allocator adapts itself to high lock contention |
| * to improve scalability. |
| * |
| * The slice allocator can allocate blocks as small as two pointers, and |
| * unlike malloc(), it does not reserve extra space per block. For large block |
| * sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the |
| * system malloc() implementation. For newly written code it is recommended |
| * to use the new `g_slice` API instead of g_malloc() and |
| * friends, as long as objects are not resized during their lifetime and the |
| * object size used at allocation time is still available when freeing. |
| * |
| * Here is an example for using the slice allocator: |
| * |[<!-- language="C" --> |
| * gchar *mem[10000]; |
| * gint i; |
| * |
| * // Allocate 10000 blocks. |
| * for (i = 0; i < 10000; i++) |
| * { |
| * mem[i] = g_slice_alloc (50); |
| * |
| * // Fill in the memory with some junk. |
| * for (j = 0; j < 50; j++) |
| * mem[i][j] = i * j; |
| * } |
| * |
| * // Now free all of the blocks. |
| * for (i = 0; i < 10000; i++) |
| * g_slice_free1 (50, mem[i]); |
| * ]| |
| * |
| * And here is an example for using the using the slice allocator |
| * with data structures: |
| * |[<!-- language="C" --> |
| * GRealArray *array; |
| * |
| * // Allocate one block, using the g_slice_new() macro. |
| * array = g_slice_new (GRealArray); |
| * |
| * // We can now use array just like a normal pointer to a structure. |
| * array->data = NULL; |
| * array->len = 0; |
| * array->alloc = 0; |
| * array->zero_terminated = (zero_terminated ? 1 : 0); |
| * array->clear = (clear ? 1 : 0); |
| * array->elt_size = elt_size; |
| * |
| * // We can free the block, so it can be reused. |
| * g_slice_free (GRealArray, array); |
| * ]| |
| */ |
| |
| /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab |
| * allocator and magazine extensions as outlined in: |
| * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel |
| * memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html |
| * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the |
| * slab allocator to many cpu's and arbitrary resources. |
| * USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html |
| * the layers are: |
| * - the thread magazines. for each (aligned) chunk size, a magazine (a list) |
| * of recently freed and soon to be allocated chunks is maintained per thread. |
| * this way, most alloc/free requests can be quickly satisfied from per-thread |
| * free lists which only require one g_private_get() call to retrive the |
| * thread handle. |
| * - the magazine cache. allocating and freeing chunks to/from threads only |
| * occours at magazine sizes from a global depot of magazines. the depot |
| * maintaines a 15 second working set of allocated magazines, so full |
| * magazines are not allocated and released too often. |
| * the chunk size dependent magazine sizes automatically adapt (within limits, |
| * see [3]) to lock contention to properly scale performance across a variety |
| * of SMP systems. |
| * - the slab allocator. this allocator allocates slabs (blocks of memory) close |
| * to the system page size or multiples thereof which have to be page aligned. |
| * the blocks are divided into smaller chunks which are used to satisfy |
| * allocations from the upper layers. the space provided by the reminder of |
| * the chunk size division is used for cache colorization (random distribution |
| * of chunk addresses) to improve processor cache utilization. multiple slabs |
| * with the same chunk size are kept in a partially sorted ring to allow O(1) |
| * freeing and allocation of chunks (as long as the allocation of an entirely |
| * new slab can be avoided). |
| * - the page allocator. on most modern systems, posix_memalign(3) or |
| * memalign(3) should be available, so this is used to allocate blocks with |
| * system page size based alignments and sizes or multiples thereof. |
| * if no memalign variant is provided, valloc() is used instead and |
| * block sizes are limited to the system page size (no multiples thereof). |
| * as a fallback, on system without even valloc(), a malloc(3)-based page |
| * allocator with alloc-only behaviour is used. |
| * |
| * NOTES: |
| * [1] some systems memalign(3) implementations may rely on boundary tagging for |
| * the handed out memory chunks. to avoid excessive page-wise fragmentation, |
| * we reserve 2 * sizeof (void*) per block size for the systems memalign(3), |
| * specified in NATIVE_MALLOC_PADDING. |
| * [2] using the slab allocator alone already provides for a fast and efficient |
| * allocator, it doesn't properly scale beyond single-threaded uses though. |
| * also, the slab allocator implements eager free(3)-ing, i.e. does not |
| * provide any form of caching or working set maintenance. so if used alone, |
| * it's vulnerable to trashing for sequences of balanced (alloc, free) pairs |
| * at certain thresholds. |
| * [3] magazine sizes are bound by an implementation specific minimum size and |
| * a chunk size specific maximum to limit magazine storage sizes to roughly |
| * 16KB. |
| * [4] allocating ca. 8 chunks per block/page keeps a good balance between |
| * external and internal fragmentation (<= 12.5%). [Bonwick94] |
| */ |
| |
| /* --- macros and constants --- */ |
| #define LARGEALIGNMENT (256) |
| #define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */ |
| #define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base))) |
| #define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */ |
| #define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING) |
| #define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */ |
| #define MIN_MAGAZINE_SIZE (4) |
| #define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */ |
| #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */ |
| #define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1) |
| #define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */ |
| #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT) |
| #define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE) |
| |
| /* optimized version of ALIGN (size, P2ALIGNMENT) */ |
| #if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */ |
| #define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7) |
| #elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */ |
| #define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf) |
| #else |
| #define P2ALIGN(size) ALIGN (size, P2ALIGNMENT) |
| #endif |
| |
| /* special helpers to avoid gmessage.c dependency */ |
| static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2); |
| #define mem_assert(cond) do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0) |
| |
| /* --- structures --- */ |
| typedef struct _ChunkLink ChunkLink; |
| typedef struct _SlabInfo SlabInfo; |
| typedef struct _CachedMagazine CachedMagazine; |
| struct _ChunkLink { |
| ChunkLink *next; |
| ChunkLink *data; |
| }; |
| struct _SlabInfo { |
| ChunkLink *chunks; |
| guint n_allocated; |
| SlabInfo *next, *prev; |
| }; |
| typedef struct { |
| ChunkLink *chunks; |
| gsize count; /* approximative chunks list length */ |
| } Magazine; |
| typedef struct { |
| Magazine *magazine1; /* array of MAX_SLAB_INDEX (allocator) */ |
| Magazine *magazine2; /* array of MAX_SLAB_INDEX (allocator) */ |
| } ThreadMemory; |
| typedef struct { |
| gboolean always_malloc; |
| gboolean bypass_magazines; |
| gboolean debug_blocks; |
| gsize working_set_msecs; |
| guint color_increment; |
| } SliceConfig; |
| typedef struct { |
| /* const after initialization */ |
| gsize min_page_size, max_page_size; |
| SliceConfig config; |
| gsize max_slab_chunk_size_for_magazine_cache; |
| /* magazine cache */ |
| GMutex magazine_mutex; |
| ChunkLink **magazines; /* array of MAX_SLAB_INDEX (allocator) */ |
| guint *contention_counters; /* array of MAX_SLAB_INDEX (allocator) */ |
| gint mutex_counter; |
| guint stamp_counter; |
| guint last_stamp; |
| /* slab allocator */ |
| GMutex slab_mutex; |
| SlabInfo **slab_stack; /* array of MAX_SLAB_INDEX (allocator) */ |
| guint color_accu; |
| } Allocator; |
| |
| /* --- g-slice prototypes --- */ |
| static gpointer slab_allocator_alloc_chunk (gsize chunk_size); |
| static void slab_allocator_free_chunk (gsize chunk_size, |
| gpointer mem); |
| static void private_thread_memory_cleanup (gpointer data); |
| static gpointer allocator_memalign (gsize alignment, |
| gsize memsize); |
| static void allocator_memfree (gsize memsize, |
| gpointer mem); |
| static inline void magazine_cache_update_stamp (void); |
| static inline gsize allocator_get_magazine_threshold (Allocator *allocator, |
| guint ix); |
| |
| /* --- g-slice memory checker --- */ |
| static void smc_notify_alloc (void *pointer, |
| size_t size); |
| static int smc_notify_free (void *pointer, |
| size_t size); |
| |
| /* --- variables --- */ |
| static GPrivate private_thread_memory = G_PRIVATE_INIT (private_thread_memory_cleanup); |
| static gsize sys_page_size = 0; |
| static Allocator allocator[1] = { { 0, }, }; |
| static SliceConfig slice_config = { |
| FALSE, /* always_malloc */ |
| FALSE, /* bypass_magazines */ |
| FALSE, /* debug_blocks */ |
| 15 * 1000, /* working_set_msecs */ |
| 1, /* color increment, alt: 0x7fffffff */ |
| }; |
| static GMutex smc_tree_mutex; /* mutex for G_SLICE=debug-blocks */ |
| |
| /* --- auxiliary funcitons --- */ |
| void |
| g_slice_set_config (GSliceConfig ckey, |
| gint64 value) |
| { |
| g_return_if_fail (sys_page_size == 0); |
| switch (ckey) |
| { |
| case G_SLICE_CONFIG_ALWAYS_MALLOC: |
| slice_config.always_malloc = value != 0; |
| break; |
| case G_SLICE_CONFIG_BYPASS_MAGAZINES: |
| slice_config.bypass_magazines = value != 0; |
| break; |
| case G_SLICE_CONFIG_WORKING_SET_MSECS: |
| slice_config.working_set_msecs = value; |
| break; |
| case G_SLICE_CONFIG_COLOR_INCREMENT: |
| slice_config.color_increment = value; |
| default: ; |
| } |
| } |
| |
| gint64 |
| g_slice_get_config (GSliceConfig ckey) |
| { |
| switch (ckey) |
| { |
| case G_SLICE_CONFIG_ALWAYS_MALLOC: |
| return slice_config.always_malloc; |
| case G_SLICE_CONFIG_BYPASS_MAGAZINES: |
| return slice_config.bypass_magazines; |
| case G_SLICE_CONFIG_WORKING_SET_MSECS: |
| return slice_config.working_set_msecs; |
| case G_SLICE_CONFIG_CHUNK_SIZES: |
| return MAX_SLAB_INDEX (allocator); |
| case G_SLICE_CONFIG_COLOR_INCREMENT: |
| return slice_config.color_increment; |
| default: |
| return 0; |
| } |
| } |
| |
| gint64* |
| g_slice_get_config_state (GSliceConfig ckey, |
| gint64 address, |
| guint *n_values) |
| { |
| guint i = 0; |
| g_return_val_if_fail (n_values != NULL, NULL); |
| *n_values = 0; |
| switch (ckey) |
| { |
| gint64 array[64]; |
| case G_SLICE_CONFIG_CONTENTION_COUNTER: |
| array[i++] = SLAB_CHUNK_SIZE (allocator, address); |
| array[i++] = allocator->contention_counters[address]; |
| array[i++] = allocator_get_magazine_threshold (allocator, address); |
| *n_values = i; |
| return g_memdup (array, sizeof (array[0]) * *n_values); |
| default: |
| return NULL; |
| } |
| } |
| |
| static void |
| slice_config_init (SliceConfig *config) |
| { |
| const gchar *val; |
| |
| *config = slice_config; |
| |
| val = getenv ("G_SLICE"); |
| if (val != NULL) |
| { |
| gint flags; |
| const GDebugKey keys[] = { |
| { "always-malloc", 1 << 0 }, |
| { "debug-blocks", 1 << 1 }, |
| }; |
| |
| flags = g_parse_debug_string (val, keys, G_N_ELEMENTS (keys)); |
| if (flags & (1 << 0)) |
| config->always_malloc = TRUE; |
| if (flags & (1 << 1)) |
| config->debug_blocks = TRUE; |
| } |
| else |
| { |
| /* G_SLICE was not specified, so check if valgrind is running and |
| * disable ourselves if it is. |
| * |
| * This way it's possible to force gslice to be enabled under |
| * valgrind just by setting G_SLICE to the empty string. |
| */ |
| #ifdef ENABLE_VALGRIND |
| if (RUNNING_ON_VALGRIND) |
| config->always_malloc = TRUE; |
| #endif |
| } |
| } |
| |
| static void |
| g_slice_init_nomessage (void) |
| { |
| /* we may not use g_error() or friends here */ |
| mem_assert (sys_page_size == 0); |
| mem_assert (MIN_MAGAZINE_SIZE >= 4); |
| |
| #ifdef G_OS_WIN32 |
| { |
| SYSTEM_INFO system_info; |
| GetSystemInfo (&system_info); |
| sys_page_size = system_info.dwPageSize; |
| } |
| #else |
| sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */ |
| #endif |
| mem_assert (sys_page_size >= 2 * LARGEALIGNMENT); |
| mem_assert ((sys_page_size & (sys_page_size - 1)) == 0); |
| slice_config_init (&allocator->config); |
| allocator->min_page_size = sys_page_size; |
| #if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN |
| /* allow allocation of pages up to 8KB (with 8KB alignment). |
| * this is useful because many medium to large sized structures |
| * fit less than 8 times (see [4]) into 4KB pages. |
| * we allow very small page sizes here, to reduce wastage in |
| * threads if only small allocations are required (this does |
| * bear the risk of increasing allocation times and fragmentation |
| * though). |
| */ |
| allocator->min_page_size = MAX (allocator->min_page_size, 4096); |
| allocator->max_page_size = MAX (allocator->min_page_size, 8192); |
| allocator->min_page_size = MIN (allocator->min_page_size, 128); |
| #else |
| /* we can only align to system page size */ |
| allocator->max_page_size = sys_page_size; |
| #endif |
| if (allocator->config.always_malloc) |
| { |
| allocator->contention_counters = NULL; |
| allocator->magazines = NULL; |
| allocator->slab_stack = NULL; |
| } |
| else |
| { |
| allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator)); |
| allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator)); |
| allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator)); |
| } |
| |
| allocator->mutex_counter = 0; |
| allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */ |
| allocator->last_stamp = 0; |
| allocator->color_accu = 0; |
| magazine_cache_update_stamp(); |
| /* values cached for performance reasons */ |
| allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator); |
| if (allocator->config.always_malloc || allocator->config.bypass_magazines) |
| allocator->max_slab_chunk_size_for_magazine_cache = 0; /* non-optimized cases */ |
| } |
| |
| static inline guint |
| allocator_categorize (gsize aligned_chunk_size) |
| { |
| /* speed up the likely path */ |
| if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache)) |
| return 1; /* use magazine cache */ |
| |
| if (!allocator->config.always_malloc && |
| aligned_chunk_size && |
| aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator)) |
| { |
| if (allocator->config.bypass_magazines) |
| return 2; /* use slab allocator, see [2] */ |
| return 1; /* use magazine cache */ |
| } |
| return 0; /* use malloc() */ |
| } |
| |
| static inline void |
| g_mutex_lock_a (GMutex *mutex, |
| guint *contention_counter) |
| { |
| gboolean contention = FALSE; |
| if (!g_mutex_trylock (mutex)) |
| { |
| g_mutex_lock (mutex); |
| contention = TRUE; |
| } |
| if (contention) |
| { |
| allocator->mutex_counter++; |
| if (allocator->mutex_counter >= 1) /* quickly adapt to contention */ |
| { |
| allocator->mutex_counter = 0; |
| *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE); |
| } |
| } |
| else /* !contention */ |
| { |
| allocator->mutex_counter--; |
| if (allocator->mutex_counter < -11) /* moderately recover magazine sizes */ |
| { |
| allocator->mutex_counter = 0; |
| *contention_counter = MAX (*contention_counter, 1) - 1; |
| } |
| } |
| } |
| |
| static inline ThreadMemory* |
| thread_memory_from_self (void) |
| { |
| ThreadMemory *tmem = g_private_get (&private_thread_memory); |
| if (G_UNLIKELY (!tmem)) |
| { |
| static GMutex init_mutex; |
| guint n_magazines; |
| |
| g_mutex_lock (&init_mutex); |
| if G_UNLIKELY (sys_page_size == 0) |
| g_slice_init_nomessage (); |
| g_mutex_unlock (&init_mutex); |
| |
| n_magazines = MAX_SLAB_INDEX (allocator); |
| tmem = g_malloc0 (sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines); |
| tmem->magazine1 = (Magazine*) (tmem + 1); |
| tmem->magazine2 = &tmem->magazine1[n_magazines]; |
| g_private_set (&private_thread_memory, tmem); |
| } |
| return tmem; |
| } |
| |
| static inline ChunkLink* |
| magazine_chain_pop_head (ChunkLink **magazine_chunks) |
| { |
| /* magazine chains are linked via ChunkLink->next. |
| * each ChunkLink->data of the toplevel chain may point to a subchain, |
| * linked via ChunkLink->next. ChunkLink->data of the subchains just |
| * contains uninitialized junk. |
| */ |
| ChunkLink *chunk = (*magazine_chunks)->data; |
| if (G_UNLIKELY (chunk)) |
| { |
| /* allocating from freed list */ |
| (*magazine_chunks)->data = chunk->next; |
| } |
| else |
| { |
| chunk = *magazine_chunks; |
| *magazine_chunks = chunk->next; |
| } |
| return chunk; |
| } |
| |
| #if 0 /* useful for debugging */ |
| static guint |
| magazine_count (ChunkLink *head) |
| { |
| guint count = 0; |
| if (!head) |
| return 0; |
| while (head) |
| { |
| ChunkLink *child = head->data; |
| count += 1; |
| for (child = head->data; child; child = child->next) |
| count += 1; |
| head = head->next; |
| } |
| return count; |
| } |
| #endif |
| |
| static inline gsize |
| allocator_get_magazine_threshold (Allocator *allocator, |
| guint ix) |
| { |
| /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE, |
| * which is required by the implementation. also, for moderately sized chunks |
| * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number |
| * of chunks available per page/2 to avoid excessive traffic in the magazine |
| * cache for small to medium sized structures. |
| * the upper bound of the magazine size is effectively provided by |
| * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that |
| * the content of a single magazine doesn't exceed ca. 16KB. |
| */ |
| gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32)); |
| guint contention_counter = allocator->contention_counters[ix]; |
| if (G_UNLIKELY (contention_counter)) /* single CPU bias */ |
| { |
| /* adapt contention counter thresholds to chunk sizes */ |
| contention_counter = contention_counter * 64 / chunk_size; |
| threshold = MAX (threshold, contention_counter); |
| } |
| return threshold; |
| } |
| |
| /* --- magazine cache --- */ |
| static inline void |
| magazine_cache_update_stamp (void) |
| { |
| if (allocator->stamp_counter >= MAX_STAMP_COUNTER) |
| { |
| GTimeVal tv; |
| g_get_current_time (&tv); |
| allocator->last_stamp = tv.tv_sec * 1000 + tv.tv_usec / 1000; /* milli seconds */ |
| allocator->stamp_counter = 0; |
| } |
| else |
| allocator->stamp_counter++; |
| } |
| |
| static inline ChunkLink* |
| magazine_chain_prepare_fields (ChunkLink *magazine_chunks) |
| { |
| ChunkLink *chunk1; |
| ChunkLink *chunk2; |
| ChunkLink *chunk3; |
| ChunkLink *chunk4; |
| /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */ |
| /* ensure a magazine with at least 4 unused data pointers */ |
| chunk1 = magazine_chain_pop_head (&magazine_chunks); |
| chunk2 = magazine_chain_pop_head (&magazine_chunks); |
| chunk3 = magazine_chain_pop_head (&magazine_chunks); |
| chunk4 = magazine_chain_pop_head (&magazine_chunks); |
| chunk4->next = magazine_chunks; |
| chunk3->next = chunk4; |
| chunk2->next = chunk3; |
| chunk1->next = chunk2; |
| return chunk1; |
| } |
| |
| /* access the first 3 fields of a specially prepared magazine chain */ |
| #define magazine_chain_prev(mc) ((mc)->data) |
| #define magazine_chain_stamp(mc) ((mc)->next->data) |
| #define magazine_chain_uint_stamp(mc) GPOINTER_TO_UINT ((mc)->next->data) |
| #define magazine_chain_next(mc) ((mc)->next->next->data) |
| #define magazine_chain_count(mc) ((mc)->next->next->next->data) |
| |
| static void |
| magazine_cache_trim (Allocator *allocator, |
| guint ix, |
| guint stamp) |
| { |
| /* g_mutex_lock (allocator->mutex); done by caller */ |
| /* trim magazine cache from tail */ |
| ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]); |
| ChunkLink *trash = NULL; |
| while (ABS (stamp - magazine_chain_uint_stamp (current)) >= allocator->config.working_set_msecs) |
| { |
| /* unlink */ |
| ChunkLink *prev = magazine_chain_prev (current); |
| ChunkLink *next = magazine_chain_next (current); |
| magazine_chain_next (prev) = next; |
| magazine_chain_prev (next) = prev; |
| /* clear special fields, put on trash stack */ |
| magazine_chain_next (current) = NULL; |
| magazine_chain_count (current) = NULL; |
| magazine_chain_stamp (current) = NULL; |
| magazine_chain_prev (current) = trash; |
| trash = current; |
| /* fixup list head if required */ |
| if (current == allocator->magazines[ix]) |
| { |
| allocator->magazines[ix] = NULL; |
| break; |
| } |
| current = prev; |
| } |
| g_mutex_unlock (&allocator->magazine_mutex); |
| /* free trash */ |
| if (trash) |
| { |
| const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| g_mutex_lock (&allocator->slab_mutex); |
| while (trash) |
| { |
| current = trash; |
| trash = magazine_chain_prev (current); |
| magazine_chain_prev (current) = NULL; /* clear special field */ |
| while (current) |
| { |
| ChunkLink *chunk = magazine_chain_pop_head (¤t); |
| slab_allocator_free_chunk (chunk_size, chunk); |
| } |
| } |
| g_mutex_unlock (&allocator->slab_mutex); |
| } |
| } |
| |
| static void |
| magazine_cache_push_magazine (guint ix, |
| ChunkLink *magazine_chunks, |
| gsize count) /* must be >= MIN_MAGAZINE_SIZE */ |
| { |
| ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks); |
| ChunkLink *next, *prev; |
| g_mutex_lock (&allocator->magazine_mutex); |
| /* add magazine at head */ |
| next = allocator->magazines[ix]; |
| if (next) |
| prev = magazine_chain_prev (next); |
| else |
| next = prev = current; |
| magazine_chain_next (prev) = current; |
| magazine_chain_prev (next) = current; |
| magazine_chain_prev (current) = prev; |
| magazine_chain_next (current) = next; |
| magazine_chain_count (current) = (gpointer) count; |
| /* stamp magazine */ |
| magazine_cache_update_stamp(); |
| magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp); |
| allocator->magazines[ix] = current; |
| /* free old magazines beyond a certain threshold */ |
| magazine_cache_trim (allocator, ix, allocator->last_stamp); |
| /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */ |
| } |
| |
| static ChunkLink* |
| magazine_cache_pop_magazine (guint ix, |
| gsize *countp) |
| { |
| g_mutex_lock_a (&allocator->magazine_mutex, &allocator->contention_counters[ix]); |
| if (!allocator->magazines[ix]) |
| { |
| guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix); |
| gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| ChunkLink *chunk, *head; |
| g_mutex_unlock (&allocator->magazine_mutex); |
| g_mutex_lock (&allocator->slab_mutex); |
| head = slab_allocator_alloc_chunk (chunk_size); |
| head->data = NULL; |
| chunk = head; |
| for (i = 1; i < magazine_threshold; i++) |
| { |
| chunk->next = slab_allocator_alloc_chunk (chunk_size); |
| chunk = chunk->next; |
| chunk->data = NULL; |
| } |
| chunk->next = NULL; |
| g_mutex_unlock (&allocator->slab_mutex); |
| *countp = i; |
| return head; |
| } |
| else |
| { |
| ChunkLink *current = allocator->magazines[ix]; |
| ChunkLink *prev = magazine_chain_prev (current); |
| ChunkLink *next = magazine_chain_next (current); |
| /* unlink */ |
| magazine_chain_next (prev) = next; |
| magazine_chain_prev (next) = prev; |
| allocator->magazines[ix] = next == current ? NULL : next; |
| g_mutex_unlock (&allocator->magazine_mutex); |
| /* clear special fields and hand out */ |
| *countp = (gsize) magazine_chain_count (current); |
| magazine_chain_prev (current) = NULL; |
| magazine_chain_next (current) = NULL; |
| magazine_chain_count (current) = NULL; |
| magazine_chain_stamp (current) = NULL; |
| return current; |
| } |
| } |
| |
| /* --- thread magazines --- */ |
| static void |
| private_thread_memory_cleanup (gpointer data) |
| { |
| ThreadMemory *tmem = data; |
| const guint n_magazines = MAX_SLAB_INDEX (allocator); |
| guint ix; |
| for (ix = 0; ix < n_magazines; ix++) |
| { |
| Magazine *mags[2]; |
| guint j; |
| mags[0] = &tmem->magazine1[ix]; |
| mags[1] = &tmem->magazine2[ix]; |
| for (j = 0; j < 2; j++) |
| { |
| Magazine *mag = mags[j]; |
| if (mag->count >= MIN_MAGAZINE_SIZE) |
| magazine_cache_push_magazine (ix, mag->chunks, mag->count); |
| else |
| { |
| const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix); |
| g_mutex_lock (&allocator->slab_mutex); |
| while (mag->chunks) |
| { |
| ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks); |
| slab_allocator_free_chunk (chunk_size, chunk); |
| } |
| g_mutex_unlock (&allocator->slab_mutex); |
| } |
| } |
| } |
| g_free (tmem); |
| } |
| |
| static void |
| thread_memory_magazine1_reload (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine *mag = &tmem->magazine1[ix]; |
| mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */ |
| mag->count = 0; |
| mag->chunks = magazine_cache_pop_magazine (ix, &mag->count); |
| } |
| |
| static void |
| thread_memory_magazine2_unload (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine *mag = &tmem->magazine2[ix]; |
| magazine_cache_push_magazine (ix, mag->chunks, mag->count); |
| mag->chunks = NULL; |
| mag->count = 0; |
| } |
| |
| static inline void |
| thread_memory_swap_magazines (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine xmag = tmem->magazine1[ix]; |
| tmem->magazine1[ix] = tmem->magazine2[ix]; |
| tmem->magazine2[ix] = xmag; |
| } |
| |
| static inline gboolean |
| thread_memory_magazine1_is_empty (ThreadMemory *tmem, |
| guint ix) |
| { |
| return tmem->magazine1[ix].chunks == NULL; |
| } |
| |
| static inline gboolean |
| thread_memory_magazine2_is_full (ThreadMemory *tmem, |
| guint ix) |
| { |
| return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix); |
| } |
| |
| static inline gpointer |
| thread_memory_magazine1_alloc (ThreadMemory *tmem, |
| guint ix) |
| { |
| Magazine *mag = &tmem->magazine1[ix]; |
| ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks); |
| if (G_LIKELY (mag->count > 0)) |
| mag->count--; |
| return chunk; |
| } |
| |
| static inline void |
| thread_memory_magazine2_free (ThreadMemory *tmem, |
| guint ix, |
| gpointer mem) |
| { |
| Magazine *mag = &tmem->magazine2[ix]; |
| ChunkLink *chunk = mem; |
| chunk->data = NULL; |
| chunk->next = mag->chunks; |
| mag->chunks = chunk; |
| mag->count++; |
| } |
| |
| /* --- API functions --- */ |
| |
| /** |
| * g_slice_new: |
| * @type: the type to allocate, typically a structure name |
| * |
| * A convenience macro to allocate a block of memory from the |
| * slice allocator. |
| * |
| * It calls g_slice_alloc() with `sizeof (@type)` and casts the |
| * returned pointer to a pointer of the given type, avoiding a type |
| * cast in the source code. Note that the underlying slice allocation |
| * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE] |
| * environment variable. |
| * |
| * This can never return %NULL as the minimum allocation size from |
| * `sizeof (@type)` is 1 byte. |
| * |
| * Returns: (not nullable): a pointer to the allocated block, cast to a pointer |
| * to @type |
| * |
| * Since: 2.10 |
| */ |
| |
| /** |
| * g_slice_new0: |
| * @type: the type to allocate, typically a structure name |
| * |
| * A convenience macro to allocate a block of memory from the |
| * slice allocator and set the memory to 0. |
| * |
| * It calls g_slice_alloc0() with `sizeof (@type)` |
| * and casts the returned pointer to a pointer of the given type, |
| * avoiding a type cast in the source code. |
| * Note that the underlying slice allocation mechanism can |
| * be changed with the [`G_SLICE=always-malloc`][G_SLICE] |
| * environment variable. |
| * |
| * This can never return %NULL as the minimum allocation size from |
| * `sizeof (@type)` is 1 byte. |
| * |
| * Returns: (not nullable): a pointer to the allocated block, cast to a pointer |
| * to @type |
| * |
| * Since: 2.10 |
| */ |
| |
| /** |
| * g_slice_dup: |
| * @type: the type to duplicate, typically a structure name |
| * @mem: (not nullable): the memory to copy into the allocated block |
| * |
| * A convenience macro to duplicate a block of memory using |
| * the slice allocator. |
| * |
| * It calls g_slice_copy() with `sizeof (@type)` |
| * and casts the returned pointer to a pointer of the given type, |
| * avoiding a type cast in the source code. |
| * Note that the underlying slice allocation mechanism can |
| * be changed with the [`G_SLICE=always-malloc`][G_SLICE] |
| * environment variable. |
| * |
| * This can never return %NULL. |
| * |
| * Returns: (not nullable): a pointer to the allocated block, cast to a pointer |
| * to @type |
| * |
| * Since: 2.14 |
| */ |
| |
| /** |
| * g_slice_free: |
| * @type: the type of the block to free, typically a structure name |
| * @mem: a pointer to the block to free |
| * |
| * A convenience macro to free a block of memory that has |
| * been allocated from the slice allocator. |
| * |
| * It calls g_slice_free1() using `sizeof (type)` |
| * as the block size. |
| * Note that the exact release behaviour can be changed with the |
| * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see |
| * [`G_SLICE`][G_SLICE] for related debugging options. |
| * |
| * If @mem is %NULL, this macro does nothing. |
| * |
| * Since: 2.10 |
| */ |
| |
| /** |
| * g_slice_free_chain: |
| * @type: the type of the @mem_chain blocks |
| * @mem_chain: a pointer to the first block of the chain |
| * @next: the field name of the next pointer in @type |
| * |
| * Frees a linked list of memory blocks of structure type @type. |
| * The memory blocks must be equal-sized, allocated via |
| * g_slice_alloc() or g_slice_alloc0() and linked together by |
| * a @next pointer (similar to #GSList). The name of the |
| * @next field in @type is passed as third argument. |
| * Note that the exact release behaviour can be changed with the |
| * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see |
| * [`G_SLICE`][G_SLICE] for related debugging options. |
| * |
| * If @mem_chain is %NULL, this function does nothing. |
| * |
| * Since: 2.10 |
| */ |
| |
| /** |
| * g_slice_alloc: |
| * @block_size: the number of bytes to allocate |
| * |
| * Allocates a block of memory from the slice allocator. |
| * The block address handed out can be expected to be aligned |
| * to at least 1 * sizeof (void*), |
| * though in general slices are 2 * sizeof (void*) bytes aligned, |
| * if a malloc() fallback implementation is used instead, |
| * the alignment may be reduced in a libc dependent fashion. |
| * Note that the underlying slice allocation mechanism can |
| * be changed with the [`G_SLICE=always-malloc`][G_SLICE] |
| * environment variable. |
| * |
| * Returns: a pointer to the allocated memory block, which will be %NULL if and |
| * only if @mem_size is 0 |
| * |
| * Since: 2.10 |
| */ |
| gpointer |
| g_slice_alloc (gsize mem_size) |
| { |
| ThreadMemory *tmem; |
| gsize chunk_size; |
| gpointer mem; |
| guint acat; |
| |
| /* This gets the private structure for this thread. If the private |
| * structure does not yet exist, it is created. |
| * |
| * This has a side effect of causing GSlice to be initialised, so it |
| * must come first. |
| */ |
| tmem = thread_memory_from_self (); |
| |
| chunk_size = P2ALIGN (mem_size); |
| acat = allocator_categorize (chunk_size); |
| if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ |
| { |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix))) |
| { |
| thread_memory_swap_magazines (tmem, ix); |
| if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix))) |
| thread_memory_magazine1_reload (tmem, ix); |
| } |
| mem = thread_memory_magazine1_alloc (tmem, ix); |
| } |
| else if (acat == 2) /* allocate through slab allocator */ |
| { |
| g_mutex_lock (&allocator->slab_mutex); |
| mem = slab_allocator_alloc_chunk (chunk_size); |
| g_mutex_unlock (&allocator->slab_mutex); |
| } |
| else /* delegate to system malloc */ |
| mem = g_malloc (mem_size); |
| if (G_UNLIKELY (allocator->config.debug_blocks)) |
| smc_notify_alloc (mem, mem_size); |
| |
| TRACE (GLIB_SLICE_ALLOC((void*)mem, mem_size)); |
| |
| return mem; |
| } |
| |
| /** |
| * g_slice_alloc0: |
| * @block_size: the number of bytes to allocate |
| * |
| * Allocates a block of memory via g_slice_alloc() and initializes |
| * the returned memory to 0. Note that the underlying slice allocation |
| * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE] |
| * environment variable. |
| * |
| * Returns: a pointer to the allocated block, which will be %NULL if and only |
| * if @mem_size is 0 |
| * |
| * Since: 2.10 |
| */ |
| gpointer |
| g_slice_alloc0 (gsize mem_size) |
| { |
| gpointer mem = g_slice_alloc (mem_size); |
| if (mem) |
| memset (mem, 0, mem_size); |
| return mem; |
| } |
| |
| /** |
| * g_slice_copy: |
| * @block_size: the number of bytes to allocate |
| * @mem_block: the memory to copy |
| * |
| * Allocates a block of memory from the slice allocator |
| * and copies @block_size bytes into it from @mem_block. |
| * |
| * @mem_block must be non-%NULL if @block_size is non-zero. |
| * |
| * Returns: a pointer to the allocated memory block, which will be %NULL if and |
| * only if @mem_size is 0 |
| * |
| * Since: 2.14 |
| */ |
| gpointer |
| g_slice_copy (gsize mem_size, |
| gconstpointer mem_block) |
| { |
| gpointer mem = g_slice_alloc (mem_size); |
| if (mem) |
| memcpy (mem, mem_block, mem_size); |
| return mem; |
| } |
| |
| /** |
| * g_slice_free1: |
| * @block_size: the size of the block |
| * @mem_block: a pointer to the block to free |
| * |
| * Frees a block of memory. |
| * |
| * The memory must have been allocated via g_slice_alloc() or |
| * g_slice_alloc0() and the @block_size has to match the size |
| * specified upon allocation. Note that the exact release behaviour |
| * can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment |
| * variable, also see [`G_SLICE`][G_SLICE] for related debugging options. |
| * |
| * If @mem_block is %NULL, this function does nothing. |
| * |
| * Since: 2.10 |
| */ |
| void |
| g_slice_free1 (gsize mem_size, |
| gpointer mem_block) |
| { |
| gsize chunk_size = P2ALIGN (mem_size); |
| guint acat = allocator_categorize (chunk_size); |
| if (G_UNLIKELY (!mem_block)) |
| return; |
| if (G_UNLIKELY (allocator->config.debug_blocks) && |
| !smc_notify_free (mem_block, mem_size)) |
| abort(); |
| if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ |
| { |
| ThreadMemory *tmem = thread_memory_from_self(); |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) |
| { |
| thread_memory_swap_magazines (tmem, ix); |
| if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) |
| thread_memory_magazine2_unload (tmem, ix); |
| } |
| if (G_UNLIKELY (g_mem_gc_friendly)) |
| memset (mem_block, 0, chunk_size); |
| thread_memory_magazine2_free (tmem, ix, mem_block); |
| } |
| else if (acat == 2) /* allocate through slab allocator */ |
| { |
| if (G_UNLIKELY (g_mem_gc_friendly)) |
| memset (mem_block, 0, chunk_size); |
| g_mutex_lock (&allocator->slab_mutex); |
| slab_allocator_free_chunk (chunk_size, mem_block); |
| g_mutex_unlock (&allocator->slab_mutex); |
| } |
| else /* delegate to system malloc */ |
| { |
| if (G_UNLIKELY (g_mem_gc_friendly)) |
| memset (mem_block, 0, mem_size); |
| g_free (mem_block); |
| } |
| TRACE (GLIB_SLICE_FREE((void*)mem_block, mem_size)); |
| } |
| |
| /** |
| * g_slice_free_chain_with_offset: |
| * @block_size: the size of the blocks |
| * @mem_chain: a pointer to the first block of the chain |
| * @next_offset: the offset of the @next field in the blocks |
| * |
| * Frees a linked list of memory blocks of structure type @type. |
| * |
| * The memory blocks must be equal-sized, allocated via |
| * g_slice_alloc() or g_slice_alloc0() and linked together by a |
| * @next pointer (similar to #GSList). The offset of the @next |
| * field in each block is passed as third argument. |
| * Note that the exact release behaviour can be changed with the |
| * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see |
| * [`G_SLICE`][G_SLICE] for related debugging options. |
| * |
| * If @mem_chain is %NULL, this function does nothing. |
| * |
| * Since: 2.10 |
| */ |
| void |
| g_slice_free_chain_with_offset (gsize mem_size, |
| gpointer mem_chain, |
| gsize next_offset) |
| { |
| gpointer slice = mem_chain; |
| /* while the thread magazines and the magazine cache are implemented so that |
| * they can easily be extended to allow for free lists containing more free |
| * lists for the first level nodes, which would allow O(1) freeing in this |
| * function, the benefit of such an extension is questionable, because: |
| * - the magazine size counts will become mere lower bounds which confuses |
| * the code adapting to lock contention; |
| * - freeing a single node to the thread magazines is very fast, so this |
| * O(list_length) operation is multiplied by a fairly small factor; |
| * - memory usage histograms on larger applications seem to indicate that |
| * the amount of released multi node lists is negligible in comparison |
| * to single node releases. |
| * - the major performance bottle neck, namely g_private_get() or |
| * g_mutex_lock()/g_mutex_unlock() has already been moved out of the |
| * inner loop for freeing chained slices. |
| */ |
| gsize chunk_size = P2ALIGN (mem_size); |
| guint acat = allocator_categorize (chunk_size); |
| if (G_LIKELY (acat == 1)) /* allocate through magazine layer */ |
| { |
| ThreadMemory *tmem = thread_memory_from_self(); |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| while (slice) |
| { |
| guint8 *current = slice; |
| slice = *(gpointer*) (current + next_offset); |
| if (G_UNLIKELY (allocator->config.debug_blocks) && |
| !smc_notify_free (current, mem_size)) |
| abort(); |
| if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) |
| { |
| thread_memory_swap_magazines (tmem, ix); |
| if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix))) |
| thread_memory_magazine2_unload (tmem, ix); |
| } |
| if (G_UNLIKELY (g_mem_gc_friendly)) |
| memset (current, 0, chunk_size); |
| thread_memory_magazine2_free (tmem, ix, current); |
| } |
| } |
| else if (acat == 2) /* allocate through slab allocator */ |
| { |
| g_mutex_lock (&allocator->slab_mutex); |
| while (slice) |
| { |
| guint8 *current = slice; |
| slice = *(gpointer*) (current + next_offset); |
| if (G_UNLIKELY (allocator->config.debug_blocks) && |
| !smc_notify_free (current, mem_size)) |
| abort(); |
| if (G_UNLIKELY (g_mem_gc_friendly)) |
| memset (current, 0, chunk_size); |
| slab_allocator_free_chunk (chunk_size, current); |
| } |
| g_mutex_unlock (&allocator->slab_mutex); |
| } |
| else /* delegate to system malloc */ |
| while (slice) |
| { |
| guint8 *current = slice; |
| slice = *(gpointer*) (current + next_offset); |
| if (G_UNLIKELY (allocator->config.debug_blocks) && |
| !smc_notify_free (current, mem_size)) |
| abort(); |
| if (G_UNLIKELY (g_mem_gc_friendly)) |
| memset (current, 0, mem_size); |
| g_free (current); |
| } |
| } |
| |
| /* --- single page allocator --- */ |
| static void |
| allocator_slab_stack_push (Allocator *allocator, |
| guint ix, |
| SlabInfo *sinfo) |
| { |
| /* insert slab at slab ring head */ |
| if (!allocator->slab_stack[ix]) |
| { |
| sinfo->next = sinfo; |
| sinfo->prev = sinfo; |
| } |
| else |
| { |
| SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev; |
| next->prev = sinfo; |
| prev->next = sinfo; |
| sinfo->next = next; |
| sinfo->prev = prev; |
| } |
| allocator->slab_stack[ix] = sinfo; |
| } |
| |
| static gsize |
| allocator_aligned_page_size (Allocator *allocator, |
| gsize n_bytes) |
| { |
| gsize val = 1 << g_bit_storage (n_bytes - 1); |
| val = MAX (val, allocator->min_page_size); |
| return val; |
| } |
| |
| static void |
| allocator_add_slab (Allocator *allocator, |
| guint ix, |
| gsize chunk_size) |
| { |
| ChunkLink *chunk; |
| SlabInfo *sinfo; |
| gsize addr, padding, n_chunks, color = 0; |
| gsize page_size; |
| int errsv; |
| gpointer aligned_memory; |
| guint8 *mem; |
| guint i; |
| |
| page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size)); |
| /* allocate 1 page for the chunks and the slab */ |
| aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING); |
| errsv = errno; |
| mem = aligned_memory; |
| |
| if (!mem) |
| { |
| const gchar *syserr = strerror (errsv); |
| mem_error ("failed to allocate %u bytes (alignment: %u): %s\n", |
| (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr); |
| } |
| /* mask page address */ |
| addr = ((gsize) mem / page_size) * page_size; |
| /* assert alignment */ |
| mem_assert (aligned_memory == (gpointer) addr); |
| /* basic slab info setup */ |
| sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE); |
| sinfo->n_allocated = 0; |
| sinfo->chunks = NULL; |
| /* figure cache colorization */ |
| n_chunks = ((guint8*) sinfo - mem) / chunk_size; |
| padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size; |
| if (padding) |
| { |
| color = (allocator->color_accu * P2ALIGNMENT) % padding; |
| allocator->color_accu += allocator->config.color_increment; |
| } |
| /* add chunks to free list */ |
| chunk = (ChunkLink*) (mem + color); |
| sinfo->chunks = chunk; |
| for (i = 0; i < n_chunks - 1; i++) |
| { |
| chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size); |
| chunk = chunk->next; |
| } |
| chunk->next = NULL; /* last chunk */ |
| /* add slab to slab ring */ |
| allocator_slab_stack_push (allocator, ix, sinfo); |
| } |
| |
| static gpointer |
| slab_allocator_alloc_chunk (gsize chunk_size) |
| { |
| ChunkLink *chunk; |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| /* ensure non-empty slab */ |
| if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks) |
| allocator_add_slab (allocator, ix, chunk_size); |
| /* allocate chunk */ |
| chunk = allocator->slab_stack[ix]->chunks; |
| allocator->slab_stack[ix]->chunks = chunk->next; |
| allocator->slab_stack[ix]->n_allocated++; |
| /* rotate empty slabs */ |
| if (!allocator->slab_stack[ix]->chunks) |
| allocator->slab_stack[ix] = allocator->slab_stack[ix]->next; |
| return chunk; |
| } |
| |
| static void |
| slab_allocator_free_chunk (gsize chunk_size, |
| gpointer mem) |
| { |
| ChunkLink *chunk; |
| gboolean was_empty; |
| guint ix = SLAB_INDEX (allocator, chunk_size); |
| gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size)); |
| gsize addr = ((gsize) mem / page_size) * page_size; |
| /* mask page address */ |
| guint8 *page = (guint8*) addr; |
| SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE); |
| /* assert valid chunk count */ |
| mem_assert (sinfo->n_allocated > 0); |
| /* add chunk to free list */ |
| was_empty = sinfo->chunks == NULL; |
| chunk = (ChunkLink*) mem; |
| chunk->next = sinfo->chunks; |
| sinfo->chunks = chunk; |
| sinfo->n_allocated--; |
| /* keep slab ring partially sorted, empty slabs at end */ |
| if (was_empty) |
| { |
| /* unlink slab */ |
| SlabInfo *next = sinfo->next, *prev = sinfo->prev; |
| next->prev = prev; |
| prev->next = next; |
| if (allocator->slab_stack[ix] == sinfo) |
| allocator->slab_stack[ix] = next == sinfo ? NULL : next; |
| /* insert slab at head */ |
| allocator_slab_stack_push (allocator, ix, sinfo); |
| } |
| /* eagerly free complete unused slabs */ |
| if (!sinfo->n_allocated) |
| { |
| /* unlink slab */ |
| SlabInfo *next = sinfo->next, *prev = sinfo->prev; |
| next->prev = prev; |
| prev->next = next; |
| if (allocator->slab_stack[ix] == sinfo) |
| allocator->slab_stack[ix] = next == sinfo ? NULL : next; |
| /* free slab */ |
| allocator_memfree (page_size, page); |
| } |
| } |
| |
| /* --- memalign implementation --- */ |
| #ifdef HAVE_MALLOC_H |
| #include <malloc.h> /* memalign() */ |
| #endif |
| |
| /* from config.h: |
| * define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, <stdlib.h> |
| * define HAVE_MEMALIGN 1 // if free(memalign(3)) works, <malloc.h> |
| * define HAVE_VALLOC 1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h> |
| * if none is provided, we implement malloc(3)-based alloc-only page alignment |
| */ |
| |
| #if !(HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC) |
| static GTrashStack *compat_valloc_trash = NULL; |
| #endif |
| |
| static gpointer |
| allocator_memalign (gsize alignment, |
| gsize memsize) |
| { |
| gpointer aligned_memory = NULL; |
| gint err = ENOMEM; |
| #if HAVE_POSIX_MEMALIGN |
| err = posix_memalign (&aligned_memory, alignment, memsize); |
| #elif HAVE_MEMALIGN |
| errno = 0; |
| aligned_memory = memalign (alignment, memsize); |
| err = errno; |
| #elif HAVE_VALLOC |
| errno = 0; |
| aligned_memory = valloc (memsize); |
| err = errno; |
| #else |
| /* simplistic non-freeing page allocator */ |
| mem_assert (alignment == sys_page_size); |
| mem_assert (memsize <= sys_page_size); |
| if (!compat_valloc_trash) |
| { |
| const guint n_pages = 16; |
| guint8 *mem = malloc (n_pages * sys_page_size); |
| err = errno; |
| if (mem) |
| { |
| gint i = n_pages; |
| guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size); |
| if (amem != mem) |
| i--; /* mem wasn't page aligned */ |
| G_GNUC_BEGIN_IGNORE_DEPRECATIONS |
| while (--i >= 0) |
| g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size); |
| G_GNUC_END_IGNORE_DEPRECATIONS |
| } |
| } |
| G_GNUC_BEGIN_IGNORE_DEPRECATIONS |
| aligned_memory = g_trash_stack_pop (&compat_valloc_trash); |
| G_GNUC_END_IGNORE_DEPRECATIONS |
| #endif |
| if (!aligned_memory) |
| errno = err; |
| return aligned_memory; |
| } |
| |
| static void |
| allocator_memfree (gsize memsize, |
| gpointer mem) |
| { |
| #if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC |
| free (mem); |
| #else |
| mem_assert (memsize <= sys_page_size); |
| G_GNUC_BEGIN_IGNORE_DEPRECATIONS |
| g_trash_stack_push (&compat_valloc_trash, mem); |
| G_GNUC_END_IGNORE_DEPRECATIONS |
| #endif |
| } |
| |
| static void |
| mem_error (const char *format, |
| ...) |
| { |
| const char *pname; |
| va_list args; |
| /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */ |
| fputs ("\n***MEMORY-ERROR***: ", stderr); |
| pname = g_get_prgname(); |
| g_fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid()); |
| va_start (args, format); |
| g_vfprintf (stderr, format, args); |
| va_end (args); |
| fputs ("\n", stderr); |
| abort(); |
| _exit (1); |
| } |
| |
| /* --- g-slice memory checker tree --- */ |
| typedef size_t SmcKType; /* key type */ |
| typedef size_t SmcVType; /* value type */ |
| typedef struct { |
| SmcKType key; |
| SmcVType value; |
| } SmcEntry; |
| static void smc_tree_insert (SmcKType key, |
| SmcVType value); |
| static gboolean smc_tree_lookup (SmcKType key, |
| SmcVType *value_p); |
| static gboolean smc_tree_remove (SmcKType key); |
| |
| |
| /* --- g-slice memory checker implementation --- */ |
| static void |
| smc_notify_alloc (void *pointer, |
| size_t size) |
| { |
| size_t address = (size_t) pointer; |
| if (pointer) |
| smc_tree_insert (address, size); |
| } |
| |
| #if 0 |
| static void |
| smc_notify_ignore (void *pointer) |
| { |
| size_t address = (size_t) pointer; |
| if (pointer) |
| smc_tree_remove (address); |
| } |
| #endif |
| |
| static int |
| smc_notify_free (void *pointer, |
| size_t size) |
| { |
| size_t address = (size_t) pointer; |
| SmcVType real_size; |
| gboolean found_one; |
| |
| if (!pointer) |
| return 1; /* ignore */ |
| found_one = smc_tree_lookup (address, &real_size); |
| if (!found_one) |
| { |
| g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size); |
| return 0; |
| } |
| if (real_size != size && (real_size || size)) |
| { |
| g_fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size); |
| return 0; |
| } |
| if (!smc_tree_remove (address)) |
| { |
| g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size); |
| return 0; |
| } |
| return 1; /* all fine */ |
| } |
| |
| /* --- g-slice memory checker tree implementation --- */ |
| #define SMC_TRUNK_COUNT (4093 /* 16381 */) /* prime, to distribute trunk collisions (big, allocated just once) */ |
| #define SMC_BRANCH_COUNT (511) /* prime, to distribute branch collisions */ |
| #define SMC_TRUNK_EXTENT (SMC_BRANCH_COUNT * 2039) /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */ |
| #define SMC_TRUNK_HASH(k) ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT) /* generate new trunk hash per megabyte (roughly) */ |
| #define SMC_BRANCH_HASH(k) (k % SMC_BRANCH_COUNT) |
| |
| typedef struct { |
| SmcEntry *entries; |
| unsigned int n_entries; |
| } SmcBranch; |
| |
| static SmcBranch **smc_tree_root = NULL; |
| |
| static void |
| smc_tree_abort (int errval) |
| { |
| const char *syserr = strerror (errval); |
| mem_error ("MemChecker: failure in debugging tree: %s", syserr); |
| } |
| |
| static inline SmcEntry* |
| smc_tree_branch_grow_L (SmcBranch *branch, |
| unsigned int index) |
| { |
| unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]); |
| unsigned int new_size = old_size + sizeof (branch->entries[0]); |
| SmcEntry *entry; |
| mem_assert (index <= branch->n_entries); |
| branch->entries = (SmcEntry*) realloc (branch->entries, new_size); |
| if (!branch->entries) |
| smc_tree_abort (errno); |
| entry = branch->entries + index; |
| memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0])); |
| branch->n_entries += 1; |
| return entry; |
| } |
| |
| static inline SmcEntry* |
| smc_tree_branch_lookup_nearest_L (SmcBranch *branch, |
| SmcKType key) |
| { |
| unsigned int n_nodes = branch->n_entries, offs = 0; |
| SmcEntry *check = branch->entries; |
| int cmp = 0; |
| while (offs < n_nodes) |
| { |
| unsigned int i = (offs + n_nodes) >> 1; |
| check = branch->entries + i; |
| cmp = key < check->key ? -1 : key != check->key; |
| if (cmp == 0) |
| return check; /* return exact match */ |
| else if (cmp < 0) |
| n_nodes = i; |
| else /* (cmp > 0) */ |
| offs = i + 1; |
| } |
| /* check points at last mismatch, cmp > 0 indicates greater key */ |
| return cmp > 0 ? check + 1 : check; /* return insertion position for inexact match */ |
| } |
| |
| static void |
| smc_tree_insert (SmcKType key, |
| SmcVType value) |
| { |
| unsigned int ix0, ix1; |
| SmcEntry *entry; |
| |
| g_mutex_lock (&smc_tree_mutex); |
| ix0 = SMC_TRUNK_HASH (key); |
| ix1 = SMC_BRANCH_HASH (key); |
| if (!smc_tree_root) |
| { |
| smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0])); |
| if (!smc_tree_root) |
| smc_tree_abort (errno); |
| } |
| if (!smc_tree_root[ix0]) |
| { |
| smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0])); |
| if (!smc_tree_root[ix0]) |
| smc_tree_abort (errno); |
| } |
| entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key); |
| if (!entry || /* need create */ |
| entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries || /* need append */ |
| entry->key != key) /* need insert */ |
| entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries); |
| entry->key = key; |
| entry->value = value; |
| g_mutex_unlock (&smc_tree_mutex); |
| } |
| |
| static gboolean |
| smc_tree_lookup (SmcKType key, |
| SmcVType *value_p) |
| { |
| SmcEntry *entry = NULL; |
| unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key); |
| gboolean found_one = FALSE; |
| *value_p = 0; |
| g_mutex_lock (&smc_tree_mutex); |
| if (smc_tree_root && smc_tree_root[ix0]) |
| { |
| entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key); |
| if (entry && |
| entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries && |
| entry->key == key) |
| { |
| found_one = TRUE; |
| *value_p = entry->value; |
| } |
| } |
| g_mutex_unlock (&smc_tree_mutex); |
| return found_one; |
| } |
| |
| static gboolean |
| smc_tree_remove (SmcKType key) |
| { |
| unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key); |
| gboolean found_one = FALSE; |
| g_mutex_lock (&smc_tree_mutex); |
| if (smc_tree_root && smc_tree_root[ix0]) |
| { |
| SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key); |
| if (entry && |
| entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries && |
| entry->key == key) |
| { |
| unsigned int i = entry - smc_tree_root[ix0][ix1].entries; |
| smc_tree_root[ix0][ix1].n_entries -= 1; |
| memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0])); |
| if (!smc_tree_root[ix0][ix1].n_entries) |
| { |
| /* avoid useless pressure on the memory system */ |
| free (smc_tree_root[ix0][ix1].entries); |
| smc_tree_root[ix0][ix1].entries = NULL; |
| } |
| found_one = TRUE; |
| } |
| } |
| g_mutex_unlock (&smc_tree_mutex); |
| return found_one; |
| } |
| |
| #ifdef G_ENABLE_DEBUG |
| void |
| g_slice_debug_tree_statistics (void) |
| { |
| g_mutex_lock (&smc_tree_mutex); |
| if (smc_tree_root) |
| { |
| unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u; |
| double tf, bf; |
| for (i = 0; i < SMC_TRUNK_COUNT; i++) |
| if (smc_tree_root[i]) |
| { |
| t++; |
| for (j = 0; j < SMC_BRANCH_COUNT; j++) |
| if (smc_tree_root[i][j].n_entries) |
| { |
| b++; |
| su += smc_tree_root[i][j].n_entries; |
| en = MIN (en, smc_tree_root[i][j].n_entries); |
| ex = MAX (ex, smc_tree_root[i][j].n_entries); |
| } |
| else if (smc_tree_root[i][j].entries) |
| o++; /* formerly used, now empty */ |
| } |
| en = b ? en : 0; |
| tf = MAX (t, 1.0); /* max(1) to be a valid divisor */ |
| bf = MAX (b, 1.0); /* max(1) to be a valid divisor */ |
| g_fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o); |
| g_fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n", |
| b / tf, |
| 100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT)); |
| g_fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n", |
| su / bf, en, ex); |
| } |
| else |
| g_fprintf (stderr, "GSlice: MemChecker: root=NULL\n"); |
| g_mutex_unlock (&smc_tree_mutex); |
| |
| /* sample statistics (beast + GSLice + 24h scripted core & GUI activity): |
| * PID %CPU %MEM VSZ RSS COMMAND |
| * 8887 30.3 45.8 456068 414856 beast-0.7.1 empty.bse |
| * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages |
| * 114017 103714 2354 344 0 108676 0 |
| * $ cat /proc/8887/status |
| * Name: beast-0.7.1 |
| * VmSize: 456068 kB |
| * VmLck: 0 kB |
| * VmRSS: 414856 kB |
| * VmData: 434620 kB |
| * VmStk: 84 kB |
| * VmExe: 1376 kB |
| * VmLib: 13036 kB |
| * VmPTE: 456 kB |
| * Threads: 3 |
| * (gdb) print g_slice_debug_tree_statistics () |
| * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches |
| * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization |
| * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum |
| */ |
| } |
| #endif /* G_ENABLE_DEBUG */ |