| /* GLIB - Library of useful routines for C programming |
| * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| /* Originally developed and coded by Makoto Matsumoto and Takuji |
| * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using |
| * code from this file in your own programs or libraries. |
| * Further information on the Mersenne Twister can be found at |
| * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html |
| * This code was adapted to glib by Sebastian Wilhelmi. |
| */ |
| |
| /* |
| * Modified by the GLib Team and others 1997-2000. See the AUTHORS |
| * file for a list of people on the GLib Team. See the ChangeLog |
| * files for a list of changes. These files are distributed with |
| * GLib at ftp://ftp.gtk.org/pub/gtk/. |
| */ |
| |
| /* |
| * MT safe |
| */ |
| |
| #include "config.h" |
| #define _CRT_RAND_S |
| |
| #include <math.h> |
| #include <errno.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <sys/types.h> |
| #include "grand.h" |
| |
| #include "genviron.h" |
| #include "gmain.h" |
| #include "gmem.h" |
| #include "gtestutils.h" |
| #include "gthread.h" |
| |
| #ifdef G_OS_UNIX |
| #include <unistd.h> |
| #endif |
| |
| #ifdef G_OS_WIN32 |
| #include <stdlib.h> |
| #include <process.h> /* For getpid() */ |
| #endif |
| |
| /** |
| * SECTION:random_numbers |
| * @title: Random Numbers |
| * @short_description: pseudo-random number generator |
| * |
| * The following functions allow you to use a portable, fast and good |
| * pseudo-random number generator (PRNG). |
| * |
| * Do not use this API for cryptographic purposes such as key |
| * generation, nonces, salts or one-time pads. |
| * |
| * This PRNG is suitable for non-cryptographic use such as in games |
| * (shuffling a card deck, generating levels), generating data for |
| * a test suite, etc. If you need random data for cryptographic |
| * purposes, it is recommended to use platform-specific APIs such |
| * as `/dev/random` on UNIX, or CryptGenRandom() on Windows. |
| * |
| * GRand uses the Mersenne Twister PRNG, which was originally |
| * developed by Makoto Matsumoto and Takuji Nishimura. Further |
| * information can be found at |
| * [this page](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html). |
| * |
| * If you just need a random number, you simply call the g_random_* |
| * functions, which will create a globally used #GRand and use the |
| * according g_rand_* functions internally. Whenever you need a |
| * stream of reproducible random numbers, you better create a |
| * #GRand yourself and use the g_rand_* functions directly, which |
| * will also be slightly faster. Initializing a #GRand with a |
| * certain seed will produce exactly the same series of random |
| * numbers on all platforms. This can thus be used as a seed for |
| * e.g. games. |
| * |
| * The g_rand*_range functions will return high quality equally |
| * distributed random numbers, whereas for example the |
| * `(g_random_int()%max)` approach often |
| * doesn't yield equally distributed numbers. |
| * |
| * GLib changed the seeding algorithm for the pseudo-random number |
| * generator Mersenne Twister, as used by #GRand. This was necessary, |
| * because some seeds would yield very bad pseudo-random streams. |
| * Also the pseudo-random integers generated by g_rand*_int_range() |
| * will have a slightly better equal distribution with the new |
| * version of GLib. |
| * |
| * The original seeding and generation algorithms, as found in |
| * GLib 2.0.x, can be used instead of the new ones by setting the |
| * environment variable `G_RANDOM_VERSION` to the value of '2.0'. |
| * Use the GLib-2.0 algorithms only if you have sequences of numbers |
| * generated with Glib-2.0 that you need to reproduce exactly. |
| */ |
| |
| /** |
| * GRand: |
| * |
| * The GRand struct is an opaque data structure. It should only be |
| * accessed through the g_rand_* functions. |
| **/ |
| |
| G_LOCK_DEFINE_STATIC (global_random); |
| |
| /* Period parameters */ |
| #define N 624 |
| #define M 397 |
| #define MATRIX_A 0x9908b0df /* constant vector a */ |
| #define UPPER_MASK 0x80000000 /* most significant w-r bits */ |
| #define LOWER_MASK 0x7fffffff /* least significant r bits */ |
| |
| /* Tempering parameters */ |
| #define TEMPERING_MASK_B 0x9d2c5680 |
| #define TEMPERING_MASK_C 0xefc60000 |
| #define TEMPERING_SHIFT_U(y) (y >> 11) |
| #define TEMPERING_SHIFT_S(y) (y << 7) |
| #define TEMPERING_SHIFT_T(y) (y << 15) |
| #define TEMPERING_SHIFT_L(y) (y >> 18) |
| |
| static guint |
| get_random_version (void) |
| { |
| static gsize initialized = FALSE; |
| static guint random_version; |
| |
| if (g_once_init_enter (&initialized)) |
| { |
| const gchar *version_string = g_getenv ("G_RANDOM_VERSION"); |
| if (!version_string || version_string[0] == '\000' || |
| strcmp (version_string, "2.2") == 0) |
| random_version = 22; |
| else if (strcmp (version_string, "2.0") == 0) |
| random_version = 20; |
| else |
| { |
| g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.", |
| version_string); |
| random_version = 22; |
| } |
| g_once_init_leave (&initialized, TRUE); |
| } |
| |
| return random_version; |
| } |
| |
| struct _GRand |
| { |
| guint32 mt[N]; /* the array for the state vector */ |
| guint mti; |
| }; |
| |
| /** |
| * g_rand_new_with_seed: |
| * @seed: a value to initialize the random number generator |
| * |
| * Creates a new random number generator initialized with @seed. |
| * |
| * Returns: the new #GRand |
| **/ |
| GRand* |
| g_rand_new_with_seed (guint32 seed) |
| { |
| GRand *rand = g_new0 (GRand, 1); |
| g_rand_set_seed (rand, seed); |
| return rand; |
| } |
| |
| /** |
| * g_rand_new_with_seed_array: |
| * @seed: an array of seeds to initialize the random number generator |
| * @seed_length: an array of seeds to initialize the random number |
| * generator |
| * |
| * Creates a new random number generator initialized with @seed. |
| * |
| * Returns: the new #GRand |
| * |
| * Since: 2.4 |
| */ |
| GRand* |
| g_rand_new_with_seed_array (const guint32 *seed, |
| guint seed_length) |
| { |
| GRand *rand = g_new0 (GRand, 1); |
| g_rand_set_seed_array (rand, seed, seed_length); |
| return rand; |
| } |
| |
| /** |
| * g_rand_new: |
| * |
| * Creates a new random number generator initialized with a seed taken |
| * either from `/dev/urandom` (if existing) or from the current time |
| * (as a fallback). |
| * |
| * On Windows, the seed is taken from rand_s(). |
| * |
| * Returns: the new #GRand |
| */ |
| GRand* |
| g_rand_new (void) |
| { |
| guint32 seed[4]; |
| #ifdef G_OS_UNIX |
| static gboolean dev_urandom_exists = TRUE; |
| GTimeVal now; |
| |
| if (dev_urandom_exists) |
| { |
| FILE* dev_urandom; |
| |
| do |
| { |
| dev_urandom = fopen("/dev/urandom", "rb"); |
| } |
| while G_UNLIKELY (dev_urandom == NULL && errno == EINTR); |
| |
| if (dev_urandom) |
| { |
| int r; |
| |
| setvbuf (dev_urandom, NULL, _IONBF, 0); |
| do |
| { |
| errno = 0; |
| r = fread (seed, sizeof (seed), 1, dev_urandom); |
| } |
| while G_UNLIKELY (errno == EINTR); |
| |
| if (r != 1) |
| dev_urandom_exists = FALSE; |
| |
| fclose (dev_urandom); |
| } |
| else |
| dev_urandom_exists = FALSE; |
| } |
| |
| if (!dev_urandom_exists) |
| { |
| g_get_current_time (&now); |
| seed[0] = now.tv_sec; |
| seed[1] = now.tv_usec; |
| seed[2] = getpid (); |
| seed[3] = getppid (); |
| } |
| #else /* G_OS_WIN32 */ |
| /* rand_s() is only available since Visual Studio 2005 and |
| * MinGW-w64 has a wrapper that will emulate rand_s() if it's not in msvcrt |
| */ |
| #if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR) |
| gint i; |
| |
| for (i = 0; i < G_N_ELEMENTS (seed); i++) |
| rand_s (&seed[i]); |
| #else |
| #warning Using insecure seed for random number generation because of missing rand_s() in Windows XP |
| GTimeVal now; |
| |
| g_get_current_time (&now); |
| seed[0] = now.tv_sec; |
| seed[1] = now.tv_usec; |
| seed[2] = getpid (); |
| seed[3] = 0; |
| #endif |
| |
| #endif |
| |
| return g_rand_new_with_seed_array (seed, 4); |
| } |
| |
| /** |
| * g_rand_free: |
| * @rand_: a #GRand |
| * |
| * Frees the memory allocated for the #GRand. |
| */ |
| void |
| g_rand_free (GRand *rand) |
| { |
| g_return_if_fail (rand != NULL); |
| |
| g_free (rand); |
| } |
| |
| /** |
| * g_rand_copy: |
| * @rand_: a #GRand |
| * |
| * Copies a #GRand into a new one with the same exact state as before. |
| * This way you can take a snapshot of the random number generator for |
| * replaying later. |
| * |
| * Returns: the new #GRand |
| * |
| * Since: 2.4 |
| */ |
| GRand* |
| g_rand_copy (GRand *rand) |
| { |
| GRand* new_rand; |
| |
| g_return_val_if_fail (rand != NULL, NULL); |
| |
| new_rand = g_new0 (GRand, 1); |
| memcpy (new_rand, rand, sizeof (GRand)); |
| |
| return new_rand; |
| } |
| |
| /** |
| * g_rand_set_seed: |
| * @rand_: a #GRand |
| * @seed: a value to reinitialize the random number generator |
| * |
| * Sets the seed for the random number generator #GRand to @seed. |
| */ |
| void |
| g_rand_set_seed (GRand *rand, |
| guint32 seed) |
| { |
| g_return_if_fail (rand != NULL); |
| |
| switch (get_random_version ()) |
| { |
| case 20: |
| /* setting initial seeds to mt[N] using */ |
| /* the generator Line 25 of Table 1 in */ |
| /* [KNUTH 1981, The Art of Computer Programming */ |
| /* Vol. 2 (2nd Ed.), pp102] */ |
| |
| if (seed == 0) /* This would make the PRNG produce only zeros */ |
| seed = 0x6b842128; /* Just set it to another number */ |
| |
| rand->mt[0]= seed; |
| for (rand->mti=1; rand->mti<N; rand->mti++) |
| rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]); |
| |
| break; |
| case 22: |
| /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ |
| /* In the previous version (see above), MSBs of the */ |
| /* seed affect only MSBs of the array mt[]. */ |
| |
| rand->mt[0]= seed; |
| for (rand->mti=1; rand->mti<N; rand->mti++) |
| rand->mt[rand->mti] = 1812433253UL * |
| (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti; |
| break; |
| default: |
| g_assert_not_reached (); |
| } |
| } |
| |
| /** |
| * g_rand_set_seed_array: |
| * @rand_: a #GRand |
| * @seed: array to initialize with |
| * @seed_length: length of array |
| * |
| * Initializes the random number generator by an array of longs. |
| * Array can be of arbitrary size, though only the first 624 values |
| * are taken. This function is useful if you have many low entropy |
| * seeds, or if you require more then 32 bits of actual entropy for |
| * your application. |
| * |
| * Since: 2.4 |
| */ |
| void |
| g_rand_set_seed_array (GRand *rand, |
| const guint32 *seed, |
| guint seed_length) |
| { |
| guint i, j, k; |
| |
| g_return_if_fail (rand != NULL); |
| g_return_if_fail (seed_length >= 1); |
| |
| g_rand_set_seed (rand, 19650218UL); |
| |
| i=1; j=0; |
| k = (N>seed_length ? N : seed_length); |
| for (; k; k--) |
| { |
| rand->mt[i] = (rand->mt[i] ^ |
| ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL)) |
| + seed[j] + j; /* non linear */ |
| rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
| i++; j++; |
| if (i>=N) |
| { |
| rand->mt[0] = rand->mt[N-1]; |
| i=1; |
| } |
| if (j>=seed_length) |
| j=0; |
| } |
| for (k=N-1; k; k--) |
| { |
| rand->mt[i] = (rand->mt[i] ^ |
| ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL)) |
| - i; /* non linear */ |
| rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
| i++; |
| if (i>=N) |
| { |
| rand->mt[0] = rand->mt[N-1]; |
| i=1; |
| } |
| } |
| |
| rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ |
| } |
| |
| /** |
| * g_rand_boolean: |
| * @rand_: a #GRand |
| * |
| * Returns a random #gboolean from @rand_. |
| * This corresponds to a unbiased coin toss. |
| * |
| * Returns: a random #gboolean |
| */ |
| /** |
| * g_rand_int: |
| * @rand_: a #GRand |
| * |
| * Returns the next random #guint32 from @rand_ equally distributed over |
| * the range [0..2^32-1]. |
| * |
| * Returns: a random number |
| */ |
| guint32 |
| g_rand_int (GRand *rand) |
| { |
| guint32 y; |
| static const guint32 mag01[2]={0x0, MATRIX_A}; |
| /* mag01[x] = x * MATRIX_A for x=0,1 */ |
| |
| g_return_val_if_fail (rand != NULL, 0); |
| |
| if (rand->mti >= N) { /* generate N words at one time */ |
| int kk; |
| |
| for (kk = 0; kk < N - M; kk++) { |
| y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
| rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]; |
| } |
| for (; kk < N - 1; kk++) { |
| y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
| rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]; |
| } |
| y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK); |
| rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]; |
| |
| rand->mti = 0; |
| } |
| |
| y = rand->mt[rand->mti++]; |
| y ^= TEMPERING_SHIFT_U(y); |
| y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; |
| y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; |
| y ^= TEMPERING_SHIFT_L(y); |
| |
| return y; |
| } |
| |
| /* transform [0..2^32] -> [0..1] */ |
| #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10 |
| |
| /** |
| * g_rand_int_range: |
| * @rand_: a #GRand |
| * @begin: lower closed bound of the interval |
| * @end: upper open bound of the interval |
| * |
| * Returns the next random #gint32 from @rand_ equally distributed over |
| * the range [@begin..@end-1]. |
| * |
| * Returns: a random number |
| */ |
| gint32 |
| g_rand_int_range (GRand *rand, |
| gint32 begin, |
| gint32 end) |
| { |
| guint32 dist = end - begin; |
| guint32 random; |
| |
| g_return_val_if_fail (rand != NULL, begin); |
| g_return_val_if_fail (end > begin, begin); |
| |
| switch (get_random_version ()) |
| { |
| case 20: |
| if (dist <= 0x10000L) /* 2^16 */ |
| { |
| /* This method, which only calls g_rand_int once is only good |
| * for (end - begin) <= 2^16, because we only have 32 bits set |
| * from the one call to g_rand_int (). |
| * |
| * We are using (trans + trans * trans), because g_rand_int only |
| * covers [0..2^32-1] and thus g_rand_int * trans only covers |
| * [0..1-2^-32], but the biggest double < 1 is 1-2^-52. |
| */ |
| |
| gdouble double_rand = g_rand_int (rand) * |
| (G_RAND_DOUBLE_TRANSFORM + |
| G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM); |
| |
| random = (gint32) (double_rand * dist); |
| } |
| else |
| { |
| /* Now we use g_rand_double_range (), which will set 52 bits |
| * for us, so that it is safe to round and still get a decent |
| * distribution |
| */ |
| random = (gint32) g_rand_double_range (rand, 0, dist); |
| } |
| break; |
| case 22: |
| if (dist == 0) |
| random = 0; |
| else |
| { |
| /* maxvalue is set to the predecessor of the greatest |
| * multiple of dist less or equal 2^32. |
| */ |
| guint32 maxvalue; |
| if (dist <= 0x80000000u) /* 2^31 */ |
| { |
| /* maxvalue = 2^32 - 1 - (2^32 % dist) */ |
| guint32 leftover = (0x80000000u % dist) * 2; |
| if (leftover >= dist) leftover -= dist; |
| maxvalue = 0xffffffffu - leftover; |
| } |
| else |
| maxvalue = dist - 1; |
| |
| do |
| random = g_rand_int (rand); |
| while (random > maxvalue); |
| |
| random %= dist; |
| } |
| break; |
| default: |
| random = 0; /* Quiet GCC */ |
| g_assert_not_reached (); |
| } |
| |
| return begin + random; |
| } |
| |
| /** |
| * g_rand_double: |
| * @rand_: a #GRand |
| * |
| * Returns the next random #gdouble from @rand_ equally distributed over |
| * the range [0..1). |
| * |
| * Returns: a random number |
| */ |
| gdouble |
| g_rand_double (GRand *rand) |
| { |
| /* We set all 52 bits after the point for this, not only the first |
| 32. Thats why we need two calls to g_rand_int */ |
| gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM; |
| retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM; |
| |
| /* The following might happen due to very bad rounding luck, but |
| * actually this should be more than rare, we just try again then */ |
| if (retval >= 1.0) |
| return g_rand_double (rand); |
| |
| return retval; |
| } |
| |
| /** |
| * g_rand_double_range: |
| * @rand_: a #GRand |
| * @begin: lower closed bound of the interval |
| * @end: upper open bound of the interval |
| * |
| * Returns the next random #gdouble from @rand_ equally distributed over |
| * the range [@begin..@end). |
| * |
| * Returns: a random number |
| */ |
| gdouble |
| g_rand_double_range (GRand *rand, |
| gdouble begin, |
| gdouble end) |
| { |
| gdouble r; |
| |
| r = g_rand_double (rand); |
| |
| return r * end - (r - 1) * begin; |
| } |
| |
| static GRand * |
| get_global_random (void) |
| { |
| static GRand *global_random; |
| |
| /* called while locked */ |
| if (!global_random) |
| global_random = g_rand_new (); |
| |
| return global_random; |
| } |
| |
| /** |
| * g_random_boolean: |
| * |
| * Returns a random #gboolean. |
| * This corresponds to a unbiased coin toss. |
| * |
| * Returns: a random #gboolean |
| */ |
| /** |
| * g_random_int: |
| * |
| * Return a random #guint32 equally distributed over the range |
| * [0..2^32-1]. |
| * |
| * Returns: a random number |
| */ |
| guint32 |
| g_random_int (void) |
| { |
| guint32 result; |
| G_LOCK (global_random); |
| result = g_rand_int (get_global_random ()); |
| G_UNLOCK (global_random); |
| return result; |
| } |
| |
| /** |
| * g_random_int_range: |
| * @begin: lower closed bound of the interval |
| * @end: upper open bound of the interval |
| * |
| * Returns a random #gint32 equally distributed over the range |
| * [@begin..@end-1]. |
| * |
| * Returns: a random number |
| */ |
| gint32 |
| g_random_int_range (gint32 begin, |
| gint32 end) |
| { |
| gint32 result; |
| G_LOCK (global_random); |
| result = g_rand_int_range (get_global_random (), begin, end); |
| G_UNLOCK (global_random); |
| return result; |
| } |
| |
| /** |
| * g_random_double: |
| * |
| * Returns a random #gdouble equally distributed over the range [0..1). |
| * |
| * Returns: a random number |
| */ |
| gdouble |
| g_random_double (void) |
| { |
| double result; |
| G_LOCK (global_random); |
| result = g_rand_double (get_global_random ()); |
| G_UNLOCK (global_random); |
| return result; |
| } |
| |
| /** |
| * g_random_double_range: |
| * @begin: lower closed bound of the interval |
| * @end: upper open bound of the interval |
| * |
| * Returns a random #gdouble equally distributed over the range |
| * [@begin..@end). |
| * |
| * Returns: a random number |
| */ |
| gdouble |
| g_random_double_range (gdouble begin, |
| gdouble end) |
| { |
| double result; |
| G_LOCK (global_random); |
| result = g_rand_double_range (get_global_random (), begin, end); |
| G_UNLOCK (global_random); |
| return result; |
| } |
| |
| /** |
| * g_random_set_seed: |
| * @seed: a value to reinitialize the global random number generator |
| * |
| * Sets the seed for the global random number generator, which is used |
| * by the g_random_* functions, to @seed. |
| */ |
| void |
| g_random_set_seed (guint32 seed) |
| { |
| G_LOCK (global_random); |
| g_rand_set_seed (get_global_random (), seed); |
| G_UNLOCK (global_random); |
| } |