| //! This module is responsible for resolving paths within rules. |
| |
| use hir::AsAssocItem; |
| use ide_db::FxHashMap; |
| use parsing::Placeholder; |
| use syntax::{ |
| ast::{self, HasGenericArgs}, |
| SmolStr, SyntaxKind, SyntaxNode, SyntaxToken, |
| }; |
| |
| use crate::{errors::error, parsing, SsrError}; |
| |
| pub(crate) struct ResolutionScope<'db> { |
| scope: hir::SemanticsScope<'db>, |
| node: SyntaxNode, |
| } |
| |
| pub(crate) struct ResolvedRule { |
| pub(crate) pattern: ResolvedPattern, |
| pub(crate) template: Option<ResolvedPattern>, |
| pub(crate) index: usize, |
| } |
| |
| pub(crate) struct ResolvedPattern { |
| pub(crate) placeholders_by_stand_in: FxHashMap<SmolStr, parsing::Placeholder>, |
| pub(crate) node: SyntaxNode, |
| // Paths in `node` that we've resolved. |
| pub(crate) resolved_paths: FxHashMap<SyntaxNode, ResolvedPath>, |
| pub(crate) ufcs_function_calls: FxHashMap<SyntaxNode, UfcsCallInfo>, |
| pub(crate) contains_self: bool, |
| } |
| |
| pub(crate) struct ResolvedPath { |
| pub(crate) resolution: hir::PathResolution, |
| /// The depth of the ast::Path that was resolved within the pattern. |
| pub(crate) depth: u32, |
| } |
| |
| pub(crate) struct UfcsCallInfo { |
| pub(crate) call_expr: ast::CallExpr, |
| pub(crate) function: hir::Function, |
| pub(crate) qualifier_type: Option<hir::Type>, |
| } |
| |
| impl ResolvedRule { |
| pub(crate) fn new( |
| rule: parsing::ParsedRule, |
| resolution_scope: &ResolutionScope<'_>, |
| index: usize, |
| ) -> Result<ResolvedRule, SsrError> { |
| let resolver = |
| Resolver { resolution_scope, placeholders_by_stand_in: rule.placeholders_by_stand_in }; |
| let resolved_template = match rule.template { |
| Some(template) => Some(resolver.resolve_pattern_tree(template)?), |
| None => None, |
| }; |
| Ok(ResolvedRule { |
| pattern: resolver.resolve_pattern_tree(rule.pattern)?, |
| template: resolved_template, |
| index, |
| }) |
| } |
| |
| pub(crate) fn get_placeholder(&self, token: &SyntaxToken) -> Option<&Placeholder> { |
| if token.kind() != SyntaxKind::IDENT { |
| return None; |
| } |
| self.pattern.placeholders_by_stand_in.get(token.text()) |
| } |
| } |
| |
| struct Resolver<'a, 'db> { |
| resolution_scope: &'a ResolutionScope<'db>, |
| placeholders_by_stand_in: FxHashMap<SmolStr, parsing::Placeholder>, |
| } |
| |
| impl Resolver<'_, '_> { |
| fn resolve_pattern_tree(&self, pattern: SyntaxNode) -> Result<ResolvedPattern, SsrError> { |
| use syntax::ast::AstNode; |
| use syntax::{SyntaxElement, T}; |
| let mut resolved_paths = FxHashMap::default(); |
| self.resolve(pattern.clone(), 0, &mut resolved_paths)?; |
| let ufcs_function_calls = resolved_paths |
| .iter() |
| .filter_map(|(path_node, resolved)| { |
| if let Some(grandparent) = path_node.parent().and_then(|parent| parent.parent()) { |
| if let Some(call_expr) = ast::CallExpr::cast(grandparent.clone()) { |
| if let hir::PathResolution::Def(hir::ModuleDef::Function(function)) = |
| resolved.resolution |
| { |
| if function.as_assoc_item(self.resolution_scope.scope.db).is_some() { |
| let qualifier_type = |
| self.resolution_scope.qualifier_type(path_node); |
| return Some(( |
| grandparent, |
| UfcsCallInfo { call_expr, function, qualifier_type }, |
| )); |
| } |
| } |
| } |
| } |
| None |
| }) |
| .collect(); |
| let contains_self = |
| pattern.descendants_with_tokens().any(|node_or_token| match node_or_token { |
| SyntaxElement::Token(t) => t.kind() == T![self], |
| _ => false, |
| }); |
| Ok(ResolvedPattern { |
| node: pattern, |
| resolved_paths, |
| placeholders_by_stand_in: self.placeholders_by_stand_in.clone(), |
| ufcs_function_calls, |
| contains_self, |
| }) |
| } |
| |
| fn resolve( |
| &self, |
| node: SyntaxNode, |
| depth: u32, |
| resolved_paths: &mut FxHashMap<SyntaxNode, ResolvedPath>, |
| ) -> Result<(), SsrError> { |
| use syntax::ast::AstNode; |
| if let Some(path) = ast::Path::cast(node.clone()) { |
| if is_self(&path) { |
| // Self cannot be resolved like other paths. |
| return Ok(()); |
| } |
| // Check if this is an appropriate place in the path to resolve. If the path is |
| // something like `a::B::<i32>::c` then we want to resolve `a::B`. If the path contains |
| // a placeholder. e.g. `a::$b::c` then we want to resolve `a`. |
| if !path_contains_type_arguments(path.qualifier()) |
| && !self.path_contains_placeholder(&path) |
| { |
| let resolution = self |
| .resolution_scope |
| .resolve_path(&path) |
| .ok_or_else(|| error!("Failed to resolve path `{}`", node.text()))?; |
| if self.ok_to_use_path_resolution(&resolution) { |
| resolved_paths.insert(node, ResolvedPath { resolution, depth }); |
| return Ok(()); |
| } |
| } |
| } |
| for node in node.children() { |
| self.resolve(node, depth + 1, resolved_paths)?; |
| } |
| Ok(()) |
| } |
| |
| /// Returns whether `path` contains a placeholder, but ignores any placeholders within type |
| /// arguments. |
| fn path_contains_placeholder(&self, path: &ast::Path) -> bool { |
| if let Some(segment) = path.segment() { |
| if let Some(name_ref) = segment.name_ref() { |
| if self.placeholders_by_stand_in.contains_key(name_ref.text().as_str()) { |
| return true; |
| } |
| } |
| } |
| if let Some(qualifier) = path.qualifier() { |
| return self.path_contains_placeholder(&qualifier); |
| } |
| false |
| } |
| |
| fn ok_to_use_path_resolution(&self, resolution: &hir::PathResolution) -> bool { |
| match resolution { |
| hir::PathResolution::Def(hir::ModuleDef::Function(function)) |
| if function.as_assoc_item(self.resolution_scope.scope.db).is_some() => |
| { |
| if function.self_param(self.resolution_scope.scope.db).is_some() { |
| // If we don't use this path resolution, then we won't be able to match method |
| // calls. e.g. `Foo::bar($s)` should match `x.bar()`. |
| true |
| } else { |
| cov_mark::hit!(replace_associated_trait_default_function_call); |
| false |
| } |
| } |
| hir::PathResolution::Def( |
| def @ (hir::ModuleDef::Const(_) | hir::ModuleDef::TypeAlias(_)), |
| ) if def.as_assoc_item(self.resolution_scope.scope.db).is_some() => { |
| // Not a function. Could be a constant or an associated type. |
| cov_mark::hit!(replace_associated_trait_constant); |
| false |
| } |
| _ => true, |
| } |
| } |
| } |
| |
| impl<'db> ResolutionScope<'db> { |
| pub(crate) fn new( |
| sema: &hir::Semantics<'db, ide_db::RootDatabase>, |
| resolve_context: hir::FilePosition, |
| ) -> Option<ResolutionScope<'db>> { |
| use syntax::ast::AstNode; |
| let file = sema.parse(resolve_context.file_id); |
| // Find a node at the requested position, falling back to the whole file. |
| let node = file |
| .syntax() |
| .token_at_offset(resolve_context.offset) |
| .left_biased() |
| .and_then(|token| token.parent()) |
| .unwrap_or_else(|| file.syntax().clone()); |
| let node = pick_node_for_resolution(node); |
| let scope = sema.scope(&node)?; |
| Some(ResolutionScope { scope, node }) |
| } |
| |
| /// Returns the function in which SSR was invoked, if any. |
| pub(crate) fn current_function(&self) -> Option<SyntaxNode> { |
| self.node.ancestors().find(|node| node.kind() == SyntaxKind::FN) |
| } |
| |
| fn resolve_path(&self, path: &ast::Path) -> Option<hir::PathResolution> { |
| // First try resolving the whole path. This will work for things like |
| // `std::collections::HashMap`, but will fail for things like |
| // `std::collections::HashMap::new`. |
| if let Some(resolution) = self.scope.speculative_resolve(path) { |
| return Some(resolution); |
| } |
| // Resolution failed, try resolving the qualifier (e.g. `std::collections::HashMap` and if |
| // that succeeds, then iterate through the candidates on the resolved type with the provided |
| // name. |
| let resolved_qualifier = self.scope.speculative_resolve(&path.qualifier()?)?; |
| if let hir::PathResolution::Def(hir::ModuleDef::Adt(adt)) = resolved_qualifier { |
| let name = path.segment()?.name_ref()?; |
| let module = self.scope.module(); |
| adt.ty(self.scope.db).iterate_path_candidates( |
| self.scope.db, |
| &self.scope, |
| &self.scope.visible_traits().0, |
| Some(module), |
| None, |
| |assoc_item| { |
| let item_name = assoc_item.name(self.scope.db)?; |
| if item_name.as_str() == name.text() { |
| Some(hir::PathResolution::Def(assoc_item.into())) |
| } else { |
| None |
| } |
| }, |
| ) |
| } else { |
| None |
| } |
| } |
| |
| fn qualifier_type(&self, path: &SyntaxNode) -> Option<hir::Type> { |
| use syntax::ast::AstNode; |
| if let Some(path) = ast::Path::cast(path.clone()) { |
| if let Some(qualifier) = path.qualifier() { |
| if let Some(hir::PathResolution::Def(hir::ModuleDef::Adt(adt))) = |
| self.resolve_path(&qualifier) |
| { |
| return Some(adt.ty(self.scope.db)); |
| } |
| } |
| } |
| None |
| } |
| } |
| |
| fn is_self(path: &ast::Path) -> bool { |
| path.segment().map(|segment| segment.self_token().is_some()).unwrap_or(false) |
| } |
| |
| /// Returns a suitable node for resolving paths in the current scope. If we create a scope based on |
| /// a statement node, then we can't resolve local variables that were defined in the current scope |
| /// (only in parent scopes). So we find another node, ideally a child of the statement where local |
| /// variable resolution is permitted. |
| fn pick_node_for_resolution(node: SyntaxNode) -> SyntaxNode { |
| match node.kind() { |
| SyntaxKind::EXPR_STMT => { |
| if let Some(n) = node.first_child() { |
| cov_mark::hit!(cursor_after_semicolon); |
| return n; |
| } |
| } |
| SyntaxKind::LET_STMT | SyntaxKind::IDENT_PAT => { |
| if let Some(next) = node.next_sibling() { |
| return pick_node_for_resolution(next); |
| } |
| } |
| SyntaxKind::NAME => { |
| if let Some(parent) = node.parent() { |
| return pick_node_for_resolution(parent); |
| } |
| } |
| _ => {} |
| } |
| node |
| } |
| |
| /// Returns whether `path` or any of its qualifiers contains type arguments. |
| fn path_contains_type_arguments(path: Option<ast::Path>) -> bool { |
| if let Some(path) = path { |
| if let Some(segment) = path.segment() { |
| if segment.generic_arg_list().is_some() { |
| cov_mark::hit!(type_arguments_within_path); |
| return true; |
| } |
| } |
| return path_contains_type_arguments(path.qualifier()); |
| } |
| false |
| } |