blob: 78889ccb89a28cdab743ff20edd82d3fe8a4dd0f [file] [log] [blame]
//! # Type Coercion
//!
//! Under certain circumstances we will coerce from one type to another,
//! for example by auto-borrowing. This occurs in situations where the
//! compiler has a firm 'expected type' that was supplied from the user,
//! and where the actual type is similar to that expected type in purpose
//! but not in representation (so actual subtyping is inappropriate).
//!
//! ## Reborrowing
//!
//! Note that if we are expecting a reference, we will *reborrow*
//! even if the argument provided was already a reference. This is
//! useful for freezing mut things (that is, when the expected type is &T
//! but you have &mut T) and also for avoiding the linearity
//! of mut things (when the expected is &mut T and you have &mut T). See
//! the various `tests/ui/coerce/*.rs` tests for
//! examples of where this is useful.
//!
//! ## Subtle note
//!
//! When inferring the generic arguments of functions, the argument
//! order is relevant, which can lead to the following edge case:
//!
//! ```ignore (illustrative)
//! fn foo<T>(a: T, b: T) {
//! // ...
//! }
//!
//! foo(&7i32, &mut 7i32);
//! // This compiles, as we first infer `T` to be `&i32`,
//! // and then coerce `&mut 7i32` to `&7i32`.
//!
//! foo(&mut 7i32, &7i32);
//! // This does not compile, as we first infer `T` to be `&mut i32`
//! // and are then unable to coerce `&7i32` to `&mut i32`.
//! ```
use hir_def::{
CallableDefId,
hir::{ExprId, ExprOrPatId},
lang_item::LangItem,
signatures::FunctionSignature,
};
use intern::sym;
use rustc_ast_ir::Mutability;
use rustc_type_ir::{
BoundVar, TypeAndMut,
error::TypeError,
inherent::{Const as _, GenericArg as _, IntoKind, Safety, SliceLike, Ty as _},
};
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument};
use triomphe::Arc;
use crate::{
Adjust, Adjustment, AutoBorrow, PointerCast, TargetFeatures, TraitEnvironment,
autoderef::Autoderef,
db::{HirDatabase, InternedClosureId},
infer::{AllowTwoPhase, InferenceContext, TypeMismatch, unify::InferenceTable},
next_solver::{
Binder, BoundConst, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, CallableIdWrapper,
Canonical, ClauseKind, CoercePredicate, Const, ConstKind, DbInterner, ErrorGuaranteed,
GenericArgs, PolyFnSig, PredicateKind, Region, RegionKind, SolverDefId, TraitRef, Ty,
TyKind,
infer::{
InferCtxt, InferOk, InferResult,
relate::RelateResult,
select::{ImplSource, SelectionError},
traits::{Obligation, ObligationCause, PredicateObligation, PredicateObligations},
},
obligation_ctxt::ObligationCtxt,
},
utils::TargetFeatureIsSafeInTarget,
};
struct Coerce<'a, 'b, 'db> {
table: &'a mut InferenceTable<'db>,
has_errors: &'a mut bool,
target_features: &'a mut dyn FnMut() -> (&'b TargetFeatures, TargetFeatureIsSafeInTarget),
use_lub: bool,
/// Determines whether or not allow_two_phase_borrow is set on any
/// autoref adjustments we create while coercing. We don't want to
/// allow deref coercions to create two-phase borrows, at least initially,
/// but we do need two-phase borrows for function argument reborrows.
/// See rust#47489 and rust#48598
/// See docs on the "AllowTwoPhase" type for a more detailed discussion
allow_two_phase: AllowTwoPhase,
/// Whether we allow `NeverToAny` coercions. This is unsound if we're
/// coercing a place expression without it counting as a read in the MIR.
/// This is a side-effect of HIR not really having a great distinction
/// between places and values.
coerce_never: bool,
cause: ObligationCause,
}
type CoerceResult<'db> = InferResult<'db, (Vec<Adjustment<'db>>, Ty<'db>)>;
/// Coercing a mutable reference to an immutable works, while
/// coercing `&T` to `&mut T` should be forbidden.
fn coerce_mutbls<'db>(from_mutbl: Mutability, to_mutbl: Mutability) -> RelateResult<'db, ()> {
if from_mutbl >= to_mutbl { Ok(()) } else { Err(TypeError::Mutability) }
}
/// This always returns `Ok(...)`.
fn success<'db>(
adj: Vec<Adjustment<'db>>,
target: Ty<'db>,
obligations: PredicateObligations<'db>,
) -> CoerceResult<'db> {
Ok(InferOk { value: (adj, target), obligations })
}
impl<'a, 'b, 'db> Coerce<'a, 'b, 'db> {
#[inline]
fn set_tainted_by_errors(&mut self) {
*self.has_errors = true;
}
#[inline]
fn interner(&self) -> DbInterner<'db> {
self.table.interner()
}
#[inline]
fn infer_ctxt(&self) -> &InferCtxt<'db> {
&self.table.infer_ctxt
}
pub(crate) fn commit_if_ok<T, E>(
&mut self,
f: impl FnOnce(&mut Self) -> Result<T, E>,
) -> Result<T, E> {
let snapshot = self.table.snapshot();
let result = f(self);
match result {
Ok(_) => {}
Err(_) => {
self.table.rollback_to(snapshot);
}
}
result
}
fn unify_raw(&mut self, a: Ty<'db>, b: Ty<'db>) -> InferResult<'db, Ty<'db>> {
debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
self.commit_if_ok(|this| {
let at = this.infer_ctxt().at(&this.cause, this.table.trait_env.env);
let res = if this.use_lub {
at.lub(b, a)
} else {
at.sup(b, a)
.map(|InferOk { value: (), obligations }| InferOk { value: b, obligations })
};
// In the new solver, lazy norm may allow us to shallowly equate
// more types, but we emit possibly impossible-to-satisfy obligations.
// Filter these cases out to make sure our coercion is more accurate.
match res {
Ok(InferOk { value, obligations }) => {
let mut ocx = ObligationCtxt::new(this.infer_ctxt());
ocx.register_obligations(obligations);
if ocx.try_evaluate_obligations().is_empty() {
Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
} else {
Err(TypeError::Mismatch)
}
}
res => res,
}
})
}
/// Unify two types (using sub or lub).
fn unify(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
self.unify_raw(a, b)
.and_then(|InferOk { value: ty, obligations }| success(vec![], ty, obligations))
}
/// Unify two types (using sub or lub) and produce a specific coercion.
fn unify_and(
&mut self,
a: Ty<'db>,
b: Ty<'db>,
adjustments: impl IntoIterator<Item = Adjustment<'db>>,
final_adjustment: Adjust<'db>,
) -> CoerceResult<'db> {
self.unify_raw(a, b).and_then(|InferOk { value: ty, obligations }| {
success(
adjustments
.into_iter()
.chain(std::iter::once(Adjustment { target: ty, kind: final_adjustment }))
.collect(),
ty,
obligations,
)
})
}
#[instrument(skip(self))]
fn coerce(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
// First, remove any resolved type variables (at the top level, at least):
let a = self.table.shallow_resolve(a);
let b = self.table.shallow_resolve(b);
debug!("Coerce.tys({:?} => {:?})", a, b);
// Coercing from `!` to any type is allowed:
if a.is_never() {
// If we're coercing into an inference var, mark it as possibly diverging.
if b.is_infer() {
self.table.set_diverging(b);
}
if self.coerce_never {
return success(
vec![Adjustment { kind: Adjust::NeverToAny, target: b }],
b,
PredicateObligations::new(),
);
} else {
// Otherwise the only coercion we can do is unification.
return self.unify(a, b);
}
}
// If we are coercing into a TAIT, coerce into its proxy inference var, instead.
// FIXME(next-solver): This should not be here. This is not how rustc does thing, and it also not allows us
// to normalize opaques defined in our scopes. Instead, we should properly register
// `TypingMode::Analysis::defining_opaque_types_and_generators`, and rely on the solver to reveal
// them for us (we'll also need some global-like registry for the values, something we cannot
// really implement, therefore we can really support only RPITs and ITIAT or the new `#[define_opaque]`
// TAIT, not the old global TAIT).
let mut b = b;
if let Some(tait_table) = &self.table.tait_coercion_table
&& let TyKind::Alias(rustc_type_ir::Opaque, opaque_ty) = b.kind()
&& let SolverDefId::InternedOpaqueTyId(opaque_ty_id) = opaque_ty.def_id
&& !matches!(a.kind(), TyKind::Infer(..) | TyKind::Alias(rustc_type_ir::Opaque, _))
&& let Some(ty) = tait_table.get(&opaque_ty_id)
{
b = self.table.shallow_resolve(*ty);
}
let b = b;
// Coercing *from* an unresolved inference variable means that
// we have no information about the source type. This will always
// ultimately fall back to some form of subtyping.
if a.is_infer() {
return self.coerce_from_inference_variable(a, b);
}
// Consider coercing the subtype to a DST
//
// NOTE: this is wrapped in a `commit_if_ok` because it creates
// a "spurious" type variable, and we don't want to have that
// type variable in memory if the coercion fails.
let unsize = self.commit_if_ok(|this| this.coerce_unsized(a, b));
match unsize {
Ok(_) => {
debug!("coerce: unsize successful");
return unsize;
}
Err(error) => {
debug!(?error, "coerce: unsize failed");
}
}
// Examine the supertype and consider type-specific coercions, such
// as auto-borrowing, coercing pointer mutability, a `dyn*` coercion,
// or pin-ergonomics.
match b.kind() {
TyKind::RawPtr(_, b_mutbl) => {
return self.coerce_raw_ptr(a, b, b_mutbl);
}
TyKind::Ref(r_b, _, mutbl_b) => {
return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
}
_ => {}
}
match a.kind() {
TyKind::FnDef(..) => {
// Function items are coercible to any closure
// type; function pointers are not (that would
// require double indirection).
// Additionally, we permit coercion of function
// items to drop the unsafe qualifier.
self.coerce_from_fn_item(a, b)
}
TyKind::FnPtr(a_sig_tys, a_hdr) => {
// We permit coercion of fn pointers to drop the
// unsafe qualifier.
self.coerce_from_fn_pointer(a_sig_tys.with(a_hdr), b)
}
TyKind::Closure(closure_def_id_a, args_a) => {
// Non-capturing closures are coercible to
// function pointers or unsafe function pointers.
// It cannot convert closures that require unsafe.
self.coerce_closure_to_fn(a, closure_def_id_a.0, args_a, b)
}
_ => {
// Otherwise, just use unification rules.
self.unify(a, b)
}
}
}
/// Coercing *from* an inference variable. In this case, we have no information
/// about the source type, so we can't really do a true coercion and we always
/// fall back to subtyping (`unify_and`).
fn coerce_from_inference_variable(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
debug_assert!(a.is_infer() && self.table.shallow_resolve(a) == a);
debug_assert!(self.table.shallow_resolve(b) == b);
if b.is_infer() {
// Two unresolved type variables: create a `Coerce` predicate.
let target_ty = if self.use_lub { self.table.next_ty_var() } else { b };
let mut obligations = PredicateObligations::with_capacity(2);
for &source_ty in &[a, b] {
if source_ty != target_ty {
obligations.push(Obligation::new(
self.interner(),
self.cause.clone(),
self.table.trait_env.env,
Binder::dummy(PredicateKind::Coerce(CoercePredicate {
a: source_ty,
b: target_ty,
})),
));
}
}
debug!(
"coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
target_ty, obligations
);
success(vec![], target_ty, obligations)
} else {
// One unresolved type variable: just apply subtyping, we may be able
// to do something useful.
self.unify(a, b)
}
}
/// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
/// To match `A` with `B`, autoderef will be performed,
/// calling `deref`/`deref_mut` where necessary.
fn coerce_borrowed_pointer(
&mut self,
a: Ty<'db>,
b: Ty<'db>,
r_b: Region<'db>,
mutbl_b: Mutability,
) -> CoerceResult<'db> {
debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
debug_assert!(self.table.shallow_resolve(a) == a);
debug_assert!(self.table.shallow_resolve(b) == b);
// If we have a parameter of type `&M T_a` and the value
// provided is `expr`, we will be adding an implicit borrow,
// meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
// to type check, we will construct the type that `&M*expr` would
// yield.
let (r_a, mt_a) = match a.kind() {
TyKind::Ref(r_a, ty, mutbl) => {
let mt_a = TypeAndMut::<DbInterner<'db>> { ty, mutbl };
coerce_mutbls(mt_a.mutbl, mutbl_b)?;
(r_a, mt_a)
}
_ => return self.unify(a, b),
};
let mut first_error = None;
let mut r_borrow_var = None;
let mut autoderef = Autoderef::new(self.table, a);
let mut found = None;
while let Some((referent_ty, autoderefs)) = autoderef.next() {
if autoderefs == 0 {
// Don't let this pass, otherwise it would cause
// &T to autoref to &&T.
continue;
}
// At this point, we have deref'd `a` to `referent_ty`. So
// imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
// In the autoderef loop for `&'a mut Vec<T>`, we would get
// three callbacks:
//
// - `&'a mut Vec<T>` -- 0 derefs, just ignore it
// - `Vec<T>` -- 1 deref
// - `[T]` -- 2 deref
//
// At each point after the first callback, we want to
// check to see whether this would match out target type
// (`&'b mut [T]`) if we autoref'd it. We can't just
// compare the referent types, though, because we still
// have to consider the mutability. E.g., in the case
// we've been considering, we have an `&mut` reference, so
// the `T` in `[T]` needs to be unified with equality.
//
// Therefore, we construct reference types reflecting what
// the types will be after we do the final auto-ref and
// compare those. Note that this means we use the target
// mutability [1], since it may be that we are coercing
// from `&mut T` to `&U`.
//
// One fine point concerns the region that we use. We
// choose the region such that the region of the final
// type that results from `unify` will be the region we
// want for the autoref:
//
// - if in sub mode, that means we want to use `'b` (the
// region from the target reference) for both
// pointers [2]. This is because sub mode (somewhat
// arbitrarily) returns the subtype region. In the case
// where we are coercing to a target type, we know we
// want to use that target type region (`'b`) because --
// for the program to type-check -- it must be the
// smaller of the two.
// - One fine point. It may be surprising that we can
// use `'b` without relating `'a` and `'b`. The reason
// that this is ok is that what we produce is
// effectively a `&'b *x` expression (if you could
// annotate the region of a borrow), and regionck has
// code that adds edges from the region of a borrow
// (`'b`, here) into the regions in the borrowed
// expression (`*x`, here). (Search for "link".)
// - if in lub mode, things can get fairly complicated. The
// easiest thing is just to make a fresh
// region variable [4], which effectively means we defer
// the decision to region inference (and regionck, which will add
// some more edges to this variable). However, this can wind up
// creating a crippling number of variables in some cases --
// e.g., #32278 -- so we optimize one particular case [3].
// Let me try to explain with some examples:
// - The "running example" above represents the simple case,
// where we have one `&` reference at the outer level and
// ownership all the rest of the way down. In this case,
// we want `LUB('a, 'b)` as the resulting region.
// - However, if there are nested borrows, that region is
// too strong. Consider a coercion from `&'a &'x Rc<T>` to
// `&'b T`. In this case, `'a` is actually irrelevant.
// The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
// we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
// (The errors actually show up in borrowck, typically, because
// this extra edge causes the region `'a` to be inferred to something
// too big, which then results in borrowck errors.)
// - We could track the innermost shared reference, but there is already
// code in regionck that has the job of creating links between
// the region of a borrow and the regions in the thing being
// borrowed (here, `'a` and `'x`), and it knows how to handle
// all the various cases. So instead we just make a region variable
// and let regionck figure it out.
let r = if !self.use_lub {
r_b // [2] above
} else if autoderefs == 1 {
r_a // [3] above
} else {
if r_borrow_var.is_none() {
// create var lazily, at most once
let r = autoderef.table.next_region_var();
r_borrow_var = Some(r); // [4] above
}
r_borrow_var.unwrap()
};
let derefd_ty_a = Ty::new_ref(
autoderef.table.interner(),
r,
referent_ty,
mutbl_b, // [1] above
);
// We need to construct a new `Coerce` because of lifetimes.
let mut coerce = Coerce {
table: autoderef.table,
has_errors: self.has_errors,
target_features: self.target_features,
use_lub: self.use_lub,
allow_two_phase: self.allow_two_phase,
coerce_never: self.coerce_never,
cause: self.cause.clone(),
};
match coerce.unify_raw(derefd_ty_a, b) {
Ok(ok) => {
found = Some(ok);
break;
}
Err(err) => {
if first_error.is_none() {
first_error = Some(err);
}
}
}
}
// Extract type or return an error. We return the first error
// we got, which should be from relating the "base" type
// (e.g., in example above, the failure from relating `Vec<T>`
// to the target type), since that should be the least
// confusing.
let Some(InferOk { value: ty, mut obligations }) = found else {
if let Some(first_error) = first_error {
debug!("coerce_borrowed_pointer: failed with err = {:?}", first_error);
return Err(first_error);
} else {
// This may happen in the new trait solver since autoderef requires
// the pointee to be structurally normalizable, or else it'll just bail.
// So when we have a type like `&<not well formed>`, then we get no
// autoderef steps (even though there should be at least one). That means
// we get no type mismatches, since the loop above just exits early.
return Err(TypeError::Mismatch);
}
};
if ty == a && mt_a.mutbl.is_not() && autoderef.step_count() == 1 {
// As a special case, if we would produce `&'a *x`, that's
// a total no-op. We end up with the type `&'a T` just as
// we started with. In that case, just skip it
// altogether. This is just an optimization.
//
// Note that for `&mut`, we DO want to reborrow --
// otherwise, this would be a move, which might be an
// error. For example `foo(self.x)` where `self` and
// `self.x` both have `&mut `type would be a move of
// `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
// which is a borrow.
assert!(mutbl_b.is_not()); // can only coerce &T -> &U
return success(vec![], ty, obligations);
}
let InferOk { value: mut adjustments, obligations: o } =
autoderef.adjust_steps_as_infer_ok();
obligations.extend(o);
// Now apply the autoref. We have to extract the region out of
// the final ref type we got.
let TyKind::Ref(region, _, _) = ty.kind() else {
panic!("expected a ref type, got {:?}", ty);
};
adjustments.push(Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(region, mutbl_b)),
target: ty,
});
debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
success(adjustments, ty, obligations)
}
/// Performs [unsized coercion] by emulating a fulfillment loop on a
/// `CoerceUnsized` goal until all `CoerceUnsized` and `Unsize` goals
/// are successfully selected.
///
/// [unsized coercion](https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions)
#[instrument(skip(self), level = "debug")]
fn coerce_unsized(&mut self, source: Ty<'db>, target: Ty<'db>) -> CoerceResult<'db> {
debug!(?source, ?target);
debug_assert!(self.table.shallow_resolve(source) == source);
debug_assert!(self.table.shallow_resolve(target) == target);
// We don't apply any coercions incase either the source or target
// aren't sufficiently well known but tend to instead just equate
// them both.
if source.is_infer() {
debug!("coerce_unsized: source is a TyVar, bailing out");
return Err(TypeError::Mismatch);
}
if target.is_infer() {
debug!("coerce_unsized: target is a TyVar, bailing out");
return Err(TypeError::Mismatch);
}
// This is an optimization because coercion is one of the most common
// operations that we do in typeck, since it happens at every assignment
// and call arg (among other positions).
//
// These targets are known to never be RHS in `LHS: CoerceUnsized<RHS>`.
// That's because these are built-in types for which a core-provided impl
// doesn't exist, and for which a user-written impl is invalid.
//
// This is technically incomplete when users write impossible bounds like
// `where T: CoerceUnsized<usize>`, for example, but that trait is unstable
// and coercion is allowed to be incomplete. The only case where this matters
// is impossible bounds.
//
// Note that some of these types implement `LHS: Unsize<RHS>`, but they
// do not implement *`CoerceUnsized`* which is the root obligation of the
// check below.
match target.kind() {
TyKind::Bool
| TyKind::Char
| TyKind::Int(_)
| TyKind::Uint(_)
| TyKind::Float(_)
| TyKind::Infer(rustc_type_ir::IntVar(_) | rustc_type_ir::FloatVar(_))
| TyKind::Str
| TyKind::Array(_, _)
| TyKind::Slice(_)
| TyKind::FnDef(_, _)
| TyKind::FnPtr(_, _)
| TyKind::Dynamic(_, _)
| TyKind::Closure(_, _)
| TyKind::CoroutineClosure(_, _)
| TyKind::Coroutine(_, _)
| TyKind::CoroutineWitness(_, _)
| TyKind::Never
| TyKind::Tuple(_) => return Err(TypeError::Mismatch),
_ => {}
}
// Additionally, we ignore `&str -> &str` coercions, which happen very
// commonly since strings are one of the most used argument types in Rust,
// we do coercions when type checking call expressions.
if let TyKind::Ref(_, source_pointee, Mutability::Not) = source.kind()
&& source_pointee.is_str()
&& let TyKind::Ref(_, target_pointee, Mutability::Not) = target.kind()
&& target_pointee.is_str()
{
return Err(TypeError::Mismatch);
}
let traits = (
LangItem::Unsize.resolve_trait(self.table.db, self.table.trait_env.krate),
LangItem::CoerceUnsized.resolve_trait(self.table.db, self.table.trait_env.krate),
);
let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
debug!("missing Unsize or CoerceUnsized traits");
return Err(TypeError::Mismatch);
};
// Note, we want to avoid unnecessary unsizing. We don't want to coerce to
// a DST unless we have to. This currently comes out in the wash since
// we can't unify [T] with U. But to properly support DST, we need to allow
// that, at which point we will need extra checks on the target here.
// Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
let reborrow = match (source.kind(), target.kind()) {
(TyKind::Ref(_, ty_a, mutbl_a), TyKind::Ref(_, _, mutbl_b)) => {
coerce_mutbls(mutbl_a, mutbl_b)?;
let r_borrow = self.table.next_region_var();
// We don't allow two-phase borrows here, at least for initial
// implementation. If it happens that this coercion is a function argument,
// the reborrow in coerce_borrowed_ptr will pick it up.
// let mutbl = AutoBorrowMutability::new(mutbl_b, AllowTwoPhase::No);
let mutbl = mutbl_b;
Some((
Adjustment { kind: Adjust::Deref(None), target: ty_a },
Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(r_borrow, mutbl)),
target: Ty::new_ref(self.interner(), r_borrow, ty_a, mutbl_b),
},
))
}
(TyKind::Ref(_, ty_a, mt_a), TyKind::RawPtr(_, mt_b)) => {
coerce_mutbls(mt_a, mt_b)?;
Some((
Adjustment { kind: Adjust::Deref(None), target: ty_a },
Adjustment {
kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
target: Ty::new_ptr(self.interner(), ty_a, mt_b),
},
))
}
_ => None,
};
let coerce_source = reborrow.as_ref().map_or(source, |(_, r)| r.target);
// Setup either a subtyping or a LUB relationship between
// the `CoerceUnsized` target type and the expected type.
// We only have the latter, so we use an inference variable
// for the former and let type inference do the rest.
let coerce_target = self.table.next_ty_var();
let mut coercion = self.unify_and(
coerce_target,
target,
reborrow.into_iter().flat_map(|(deref, autoref)| [deref, autoref]),
Adjust::Pointer(PointerCast::Unsize),
)?;
// Create an obligation for `Source: CoerceUnsized<Target>`.
let cause = self.cause.clone();
// Use a FIFO queue for this custom fulfillment procedure.
//
// A Vec (or SmallVec) is not a natural choice for a queue. However,
// this code path is hot, and this queue usually has a max length of 1
// and almost never more than 3. By using a SmallVec we avoid an
// allocation, at the (very small) cost of (occasionally) having to
// shift subsequent elements down when removing the front element.
let mut queue: SmallVec<[PredicateObligation<'db>; 4]> = smallvec![Obligation::new(
self.interner(),
cause,
self.table.trait_env.env,
TraitRef::new(
self.interner(),
coerce_unsized_did.into(),
[coerce_source, coerce_target]
)
)];
// Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
// emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
// inference might unify those two inner type variables later.
let traits = [coerce_unsized_did, unsize_did];
while !queue.is_empty() {
let obligation = queue.remove(0);
let trait_pred = match obligation.predicate.kind().no_bound_vars() {
Some(PredicateKind::Clause(ClauseKind::Trait(trait_pred)))
if traits.contains(&trait_pred.def_id().0) =>
{
self.infer_ctxt().resolve_vars_if_possible(trait_pred)
}
// Eagerly process alias-relate obligations in new trait solver,
// since these can be emitted in the process of solving trait goals,
// but we need to constrain vars before processing goals mentioning
// them.
Some(PredicateKind::AliasRelate(..)) => {
let mut ocx = ObligationCtxt::new(self.infer_ctxt());
ocx.register_obligation(obligation);
if !ocx.try_evaluate_obligations().is_empty() {
return Err(TypeError::Mismatch);
}
coercion.obligations.extend(ocx.into_pending_obligations());
continue;
}
_ => {
coercion.obligations.push(obligation);
continue;
}
};
debug!("coerce_unsized resolve step: {:?}", trait_pred);
match self.infer_ctxt().select(&obligation.with(self.interner(), trait_pred)) {
// Uncertain or unimplemented.
Ok(None) => {
if trait_pred.def_id().0 == unsize_did {
let self_ty = trait_pred.self_ty();
let unsize_ty = trait_pred.trait_ref.args.inner()[1].expect_ty();
debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
match (self_ty.kind(), unsize_ty.kind()) {
(TyKind::Infer(rustc_type_ir::TyVar(v)), TyKind::Dynamic(..))
if self.table.type_var_is_sized(v) =>
{
debug!("coerce_unsized: have sized infer {:?}", v);
coercion.obligations.push(obligation);
// `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
// for unsizing.
}
_ => {
// Some other case for `$0: Unsize<Something>`. Note that we
// hit this case even if `Something` is a sized type, so just
// don't do the coercion.
debug!("coerce_unsized: ambiguous unsize");
return Err(TypeError::Mismatch);
}
}
} else {
debug!("coerce_unsized: early return - ambiguous");
if !coerce_source.references_non_lt_error()
&& !coerce_target.references_non_lt_error()
{
// rustc always early-returns here, even when the types contains errors. However not bailing
// improves error recovery, and while we don't implement generic consts properly, it also helps
// correct code.
return Err(TypeError::Mismatch);
}
}
}
Err(SelectionError::Unimplemented) => {
debug!("coerce_unsized: early return - can't prove obligation");
return Err(TypeError::Mismatch);
}
Err(SelectionError::TraitDynIncompatible(_)) => {
// Dyn compatibility errors in coercion will *always* be due to the
// fact that the RHS of the coercion is a non-dyn compatible `dyn Trait`
// written in source somewhere (otherwise we will never have lowered
// the dyn trait from HIR to middle).
//
// There's no reason to emit yet another dyn compatibility error,
// especially since the span will differ slightly and thus not be
// deduplicated at all!
self.set_tainted_by_errors();
}
Err(_err) => {
// FIXME: Report an error:
// let guar = self.err_ctxt().report_selection_error(
// obligation.clone(),
// &obligation,
// &err,
// );
self.set_tainted_by_errors();
// Treat this like an obligation and follow through
// with the unsizing - the lack of a coercion should
// be silent, as it causes a type mismatch later.
}
Ok(Some(ImplSource::UserDefined(impl_source))) => {
queue.extend(impl_source.nested);
}
Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
}
}
Ok(coercion)
}
fn coerce_from_safe_fn(
&mut self,
fn_ty_a: PolyFnSig<'db>,
b: Ty<'db>,
adjustment: Option<Adjust<'db>>,
) -> CoerceResult<'db> {
debug_assert!(self.table.shallow_resolve(b) == b);
self.commit_if_ok(|this| {
if let TyKind::FnPtr(_, hdr_b) = b.kind()
&& fn_ty_a.safety().is_safe()
&& !hdr_b.safety.is_safe()
{
let unsafe_a = Ty::safe_to_unsafe_fn_ty(this.interner(), fn_ty_a);
this.unify_and(
unsafe_a,
b,
adjustment.map(|kind| Adjustment {
kind,
target: Ty::new_fn_ptr(this.interner(), fn_ty_a),
}),
Adjust::Pointer(PointerCast::UnsafeFnPointer),
)
} else {
let a = Ty::new_fn_ptr(this.interner(), fn_ty_a);
match adjustment {
Some(adjust) => this.unify_and(a, b, [], adjust),
None => this.unify(a, b),
}
}
})
}
fn coerce_from_fn_pointer(&mut self, fn_ty_a: PolyFnSig<'db>, b: Ty<'db>) -> CoerceResult<'db> {
debug!(?fn_ty_a, ?b, "coerce_from_fn_pointer");
debug_assert!(self.table.shallow_resolve(b) == b);
self.coerce_from_safe_fn(fn_ty_a, b, None)
}
fn coerce_from_fn_item(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
debug_assert!(self.table.shallow_resolve(a) == a);
debug_assert!(self.table.shallow_resolve(b) == b);
match b.kind() {
TyKind::FnPtr(_, b_hdr) => {
let a_sig = a.fn_sig(self.interner());
if let TyKind::FnDef(def_id, _) = a.kind() {
// Intrinsics are not coercible to function pointers
if let CallableDefId::FunctionId(def_id) = def_id.0 {
if FunctionSignature::is_intrinsic(self.table.db, def_id) {
return Err(TypeError::IntrinsicCast);
}
let attrs = self.table.db.attrs(def_id.into());
if attrs.by_key(sym::rustc_force_inline).exists() {
return Err(TypeError::ForceInlineCast);
}
if b_hdr.safety.is_safe() && attrs.by_key(sym::target_feature).exists() {
let fn_target_features =
TargetFeatures::from_attrs_no_implications(&attrs);
// Allow the coercion if the current function has all the features that would be
// needed to call the coercee safely.
let (target_features, target_feature_is_safe) =
(self.target_features)();
if target_feature_is_safe == TargetFeatureIsSafeInTarget::No
&& !target_features.enabled.is_superset(&fn_target_features.enabled)
{
return Err(TypeError::TargetFeatureCast(
CallableIdWrapper(def_id.into()).into(),
));
}
}
}
}
self.coerce_from_safe_fn(
a_sig,
b,
Some(Adjust::Pointer(PointerCast::ReifyFnPointer)),
)
}
_ => self.unify(a, b),
}
}
/// Attempts to coerce from the type of a non-capturing closure
/// into a function pointer.
fn coerce_closure_to_fn(
&mut self,
a: Ty<'db>,
_closure_def_id_a: InternedClosureId,
args_a: GenericArgs<'db>,
b: Ty<'db>,
) -> CoerceResult<'db> {
debug_assert!(self.table.shallow_resolve(a) == a);
debug_assert!(self.table.shallow_resolve(b) == b);
match b.kind() {
// FIXME: We need to have an `upvars_mentioned()` query:
// At this point we haven't done capture analysis, which means
// that the ClosureArgs just contains an inference variable instead
// of tuple of captured types.
//
// All we care here is if any variable is being captured and not the exact paths,
// so we check `upvars_mentioned` for root variables being captured.
TyKind::FnPtr(_, hdr) =>
// if self
// .db
// .upvars_mentioned(closure_def_id_a.expect_local())
// .is_none_or(|u| u.is_empty()) =>
{
// We coerce the closure, which has fn type
// `extern "rust-call" fn((arg0,arg1,...)) -> _`
// to
// `fn(arg0,arg1,...) -> _`
// or
// `unsafe fn(arg0,arg1,...) -> _`
let safety = hdr.safety;
let closure_sig = args_a.closure_sig_untupled().map_bound(|mut sig| {
sig.safety = hdr.safety;
sig
});
let pointer_ty = Ty::new_fn_ptr(self.interner(), closure_sig);
debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
self.unify_and(
pointer_ty,
b,
[],
Adjust::Pointer(PointerCast::ClosureFnPointer(safety)),
)
}
_ => self.unify(a, b),
}
}
fn coerce_raw_ptr(&mut self, a: Ty<'db>, b: Ty<'db>, mutbl_b: Mutability) -> CoerceResult<'db> {
debug!("coerce_raw_ptr(a={:?}, b={:?})", a, b);
debug_assert!(self.table.shallow_resolve(a) == a);
debug_assert!(self.table.shallow_resolve(b) == b);
let (is_ref, mt_a) = match a.kind() {
TyKind::Ref(_, ty, mutbl) => (true, TypeAndMut::<DbInterner<'db>> { ty, mutbl }),
TyKind::RawPtr(ty, mutbl) => (false, TypeAndMut { ty, mutbl }),
_ => return self.unify(a, b),
};
coerce_mutbls(mt_a.mutbl, mutbl_b)?;
// Check that the types which they point at are compatible.
let a_raw = Ty::new_ptr(self.interner(), mt_a.ty, mutbl_b);
// Although references and raw ptrs have the same
// representation, we still register an Adjust::DerefRef so that
// regionck knows that the region for `a` must be valid here.
if is_ref {
self.unify_and(
a_raw,
b,
[Adjustment { kind: Adjust::Deref(None), target: mt_a.ty }],
Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)),
)
} else if mt_a.mutbl != mutbl_b {
self.unify_and(a_raw, b, [], Adjust::Pointer(PointerCast::MutToConstPointer))
} else {
self.unify(a_raw, b)
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum CoerceNever {
No,
Yes,
}
impl<'db> InferenceContext<'_, 'db> {
/// Attempt to coerce an expression to a type, and return the
/// adjusted type of the expression, if successful.
/// Adjustments are only recorded if the coercion succeeded.
/// The expressions *must not* have any preexisting adjustments.
pub(crate) fn coerce(
&mut self,
expr: ExprOrPatId,
expr_ty: Ty<'db>,
mut target: Ty<'db>,
allow_two_phase: AllowTwoPhase,
coerce_never: CoerceNever,
) -> RelateResult<'db, Ty<'db>> {
let source = self.table.try_structurally_resolve_type(expr_ty);
target = self.table.try_structurally_resolve_type(target);
debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
let cause = ObligationCause::new();
let krate = self.krate();
let mut coerce = Coerce {
table: &mut self.table,
has_errors: &mut self.result.has_errors,
cause,
allow_two_phase,
coerce_never: matches!(coerce_never, CoerceNever::Yes),
use_lub: false,
target_features: &mut || {
Self::target_features(self.db, &self.target_features, self.owner, krate)
},
};
let ok = coerce.commit_if_ok(|coerce| coerce.coerce(source, target))?;
let (adjustments, _) = self.table.register_infer_ok(ok);
match expr {
ExprOrPatId::ExprId(expr) => self.write_expr_adj(expr, adjustments.into_boxed_slice()),
ExprOrPatId::PatId(pat) => self
.write_pat_adj(pat, adjustments.into_iter().map(|adjust| adjust.target).collect()),
}
Ok(target)
}
/// Given some expressions, their known unified type and another expression,
/// tries to unify the types, potentially inserting coercions on any of the
/// provided expressions and returns their LUB (aka "common supertype").
///
/// This is really an internal helper. From outside the coercion
/// module, you should instantiate a `CoerceMany` instance.
fn try_find_coercion_lub(
&mut self,
exprs: &[ExprId],
prev_ty: Ty<'db>,
new: ExprId,
new_ty: Ty<'db>,
) -> RelateResult<'db, Ty<'db>> {
let prev_ty = self.table.try_structurally_resolve_type(prev_ty);
let new_ty = self.table.try_structurally_resolve_type(new_ty);
debug!(
"coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
prev_ty,
new_ty,
exprs.len()
);
// The following check fixes #88097, where the compiler erroneously
// attempted to coerce a closure type to itself via a function pointer.
if prev_ty == new_ty {
return Ok(prev_ty);
}
let is_force_inline = |ty: Ty<'db>| {
if let TyKind::FnDef(CallableIdWrapper(CallableDefId::FunctionId(did)), _) = ty.kind() {
self.db.attrs(did.into()).by_key(sym::rustc_force_inline).exists()
} else {
false
}
};
if is_force_inline(prev_ty) || is_force_inline(new_ty) {
return Err(TypeError::ForceInlineCast);
}
// Special-case that coercion alone cannot handle:
// Function items or non-capturing closures of differing IDs or GenericArgs.
let (a_sig, b_sig) = {
let is_capturing_closure = |_ty: Ty<'db>| {
// FIXME:
// if let TyKind::Closure(closure_def_id, _args) = ty.kind() {
// self.db.upvars_mentioned(closure_def_id.expect_local()).is_some()
// } else {
// false
// }
false
};
if is_capturing_closure(prev_ty) || is_capturing_closure(new_ty) {
(None, None)
} else {
match (prev_ty.kind(), new_ty.kind()) {
(TyKind::FnDef(..), TyKind::FnDef(..)) => {
// Don't reify if the function types have a LUB, i.e., they
// are the same function and their parameters have a LUB.
match self.table.commit_if_ok(|table| {
// We need to eagerly handle nested obligations due to lazy norm.
let mut ocx = ObligationCtxt::new(&table.infer_ctxt);
let value = ocx.lub(
&ObligationCause::new(),
table.trait_env.env,
prev_ty,
new_ty,
)?;
if ocx.try_evaluate_obligations().is_empty() {
Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
} else {
Err(TypeError::Mismatch)
}
}) {
// We have a LUB of prev_ty and new_ty, just return it.
Ok(ok) => return Ok(self.table.register_infer_ok(ok)),
Err(_) => (
Some(prev_ty.fn_sig(self.table.interner())),
Some(new_ty.fn_sig(self.table.interner())),
),
}
}
(TyKind::Closure(_, args), TyKind::FnDef(..)) => {
let b_sig = new_ty.fn_sig(self.table.interner());
let a_sig = args.closure_sig_untupled().map_bound(|mut sig| {
sig.safety = b_sig.safety();
sig
});
(Some(a_sig), Some(b_sig))
}
(TyKind::FnDef(..), TyKind::Closure(_, args)) => {
let a_sig = prev_ty.fn_sig(self.table.interner());
let b_sig = args.closure_sig_untupled().map_bound(|mut sig| {
sig.safety = a_sig.safety();
sig
});
(Some(a_sig), Some(b_sig))
}
(TyKind::Closure(_, args_a), TyKind::Closure(_, args_b)) => {
(Some(args_a.closure_sig_untupled()), Some(args_b.closure_sig_untupled()))
}
_ => (None, None),
}
}
};
if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
// The signature must match.
let sig = self
.table
.infer_ctxt
.at(&ObligationCause::new(), self.table.trait_env.env)
.lub(a_sig, b_sig)
.map(|ok| self.table.register_infer_ok(ok))?;
// Reify both sides and return the reified fn pointer type.
let fn_ptr = Ty::new_fn_ptr(self.table.interner(), sig);
let prev_adjustment = match prev_ty.kind() {
TyKind::Closure(..) => {
Adjust::Pointer(PointerCast::ClosureFnPointer(a_sig.safety()))
}
TyKind::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
_ => panic!("should not try to coerce a {prev_ty:?} to a fn pointer"),
};
let next_adjustment = match new_ty.kind() {
TyKind::Closure(..) => {
Adjust::Pointer(PointerCast::ClosureFnPointer(b_sig.safety()))
}
TyKind::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
_ => panic!("should not try to coerce a {new_ty:?} to a fn pointer"),
};
for &expr in exprs {
self.write_expr_adj(
expr,
Box::new([Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }]),
);
}
self.write_expr_adj(
new,
Box::new([Adjustment { kind: next_adjustment, target: fn_ptr }]),
);
return Ok(fn_ptr);
}
// Configure a Coerce instance to compute the LUB.
// We don't allow two-phase borrows on any autorefs this creates since we
// probably aren't processing function arguments here and even if we were,
// they're going to get autorefed again anyway and we can apply 2-phase borrows
// at that time.
//
// NOTE: we set `coerce_never` to `true` here because coercion LUBs only
// operate on values and not places, so a never coercion is valid.
let krate = self.krate();
let mut coerce = Coerce {
table: &mut self.table,
has_errors: &mut self.result.has_errors,
cause: ObligationCause::new(),
allow_two_phase: AllowTwoPhase::No,
coerce_never: true,
use_lub: true,
target_features: &mut || {
Self::target_features(self.db, &self.target_features, self.owner, krate)
},
};
// First try to coerce the new expression to the type of the previous ones,
// but only if the new expression has no coercion already applied to it.
let mut first_error = None;
if !self.result.expr_adjustments.contains_key(&new) {
let result = coerce.commit_if_ok(|coerce| coerce.coerce(new_ty, prev_ty));
match result {
Ok(ok) => {
let (adjustments, target) = self.table.register_infer_ok(ok);
self.write_expr_adj(new, adjustments.into_boxed_slice());
debug!(
"coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
new_ty, prev_ty, target
);
return Ok(target);
}
Err(e) => first_error = Some(e),
}
}
match coerce.commit_if_ok(|coerce| coerce.coerce(prev_ty, new_ty)) {
Err(_) => {
// Avoid giving strange errors on failed attempts.
if let Some(e) = first_error {
Err(e)
} else {
Err(self
.table
.commit_if_ok(|table| {
table
.infer_ctxt
.at(&ObligationCause::new(), table.trait_env.env)
.lub(prev_ty, new_ty)
})
.unwrap_err())
}
}
Ok(ok) => {
let (adjustments, target) = self.table.register_infer_ok(ok);
for &expr in exprs {
self.write_expr_adj(expr, adjustments.as_slice().into());
}
debug!(
"coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
prev_ty, new_ty, target
);
Ok(target)
}
}
}
}
/// CoerceMany encapsulates the pattern you should use when you have
/// many expressions that are all getting coerced to a common
/// type. This arises, for example, when you have a match (the result
/// of each arm is coerced to a common type). It also arises in less
/// obvious places, such as when you have many `break foo` expressions
/// that target the same loop, or the various `return` expressions in
/// a function.
///
/// The basic protocol is as follows:
///
/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
/// This will also serve as the "starting LUB". The expectation is
/// that this type is something which all of the expressions *must*
/// be coercible to. Use a fresh type variable if needed.
/// - For each expression whose result is to be coerced, invoke `coerce()` with.
/// - In some cases we wish to coerce "non-expressions" whose types are implicitly
/// unit. This happens for example if you have a `break` with no expression,
/// or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
/// - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
/// from you so that you don't have to worry your pretty head about it.
/// But if an error is reported, the final type will be `err`.
/// - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
/// previously coerced expressions.
/// - When all done, invoke `complete()`. This will return the LUB of
/// all your expressions.
/// - WARNING: I don't believe this final type is guaranteed to be
/// related to your initial `expected_ty` in any particular way,
/// although it will typically be a subtype, so you should check it.
/// - Invoking `complete()` may cause us to go and adjust the "adjustments" on
/// previously coerced expressions.
///
/// Example:
///
/// ```ignore (illustrative)
/// let mut coerce = CoerceMany::new(expected_ty);
/// for expr in exprs {
/// let expr_ty = fcx.check_expr_with_expectation(expr, expected);
/// coerce.coerce(fcx, &cause, expr, expr_ty);
/// }
/// let final_ty = coerce.complete(fcx);
/// ```
#[derive(Debug, Clone)]
pub(crate) struct CoerceMany<'db, 'exprs> {
expected_ty: Ty<'db>,
final_ty: Option<Ty<'db>>,
expressions: Expressions<'exprs>,
pushed: usize,
}
/// The type of a `CoerceMany` that is storing up the expressions into
/// a buffer. We use this for things like `break`.
pub(crate) type DynamicCoerceMany<'db> = CoerceMany<'db, 'db>;
#[derive(Debug, Clone)]
enum Expressions<'exprs> {
Dynamic(SmallVec<[ExprId; 4]>),
UpFront(&'exprs [ExprId]),
}
impl<'db, 'exprs> CoerceMany<'db, 'exprs> {
/// The usual case; collect the set of expressions dynamically.
/// If the full set of coercion sites is known before hand,
/// consider `with_coercion_sites()` instead to avoid allocation.
pub(crate) fn new(expected_ty: Ty<'db>) -> Self {
Self::make(expected_ty, Expressions::Dynamic(SmallVec::new()))
}
/// As an optimization, you can create a `CoerceMany` with a
/// preexisting slice of expressions. In this case, you are
/// expected to pass each element in the slice to `coerce(...)` in
/// order. This is used with arrays in particular to avoid
/// needlessly cloning the slice.
pub(crate) fn with_coercion_sites(
expected_ty: Ty<'db>,
coercion_sites: &'exprs [ExprId],
) -> Self {
Self::make(expected_ty, Expressions::UpFront(coercion_sites))
}
fn make(expected_ty: Ty<'db>, expressions: Expressions<'exprs>) -> Self {
CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
}
/// Returns the "expected type" with which this coercion was
/// constructed. This represents the "downward propagated" type
/// that was given to us at the start of typing whatever construct
/// we are typing (e.g., the match expression).
///
/// Typically, this is used as the expected type when
/// type-checking each of the alternative expressions whose types
/// we are trying to merge.
pub(crate) fn expected_ty(&self) -> Ty<'db> {
self.expected_ty
}
/// Returns the current "merged type", representing our best-guess
/// at the LUB of the expressions we've seen so far (if any). This
/// isn't *final* until you call `self.complete()`, which will return
/// the merged type.
pub(crate) fn merged_ty(&self) -> Ty<'db> {
self.final_ty.unwrap_or(self.expected_ty)
}
/// Indicates that the value generated by `expression`, which is
/// of type `expression_ty`, is one of the possibilities that we
/// could coerce from. This will record `expression`, and later
/// calls to `coerce` may come back and add adjustments and things
/// if necessary.
pub(crate) fn coerce(
&mut self,
icx: &mut InferenceContext<'_, 'db>,
cause: &ObligationCause,
expression: ExprId,
expression_ty: Ty<'db>,
) {
self.coerce_inner(icx, cause, expression, expression_ty, false, false)
}
/// Indicates that one of the inputs is a "forced unit". This
/// occurs in a case like `if foo { ... };`, where the missing else
/// generates a "forced unit". Another example is a `loop { break;
/// }`, where the `break` has no argument expression. We treat
/// these cases slightly differently for error-reporting
/// purposes. Note that these tend to correspond to cases where
/// the `()` expression is implicit in the source, and hence we do
/// not take an expression argument.
///
/// The `augment_error` gives you a chance to extend the error
/// message, in case any results (e.g., we use this to suggest
/// removing a `;`).
pub(crate) fn coerce_forced_unit(
&mut self,
icx: &mut InferenceContext<'_, 'db>,
expr: ExprId,
cause: &ObligationCause,
label_unit_as_expected: bool,
) {
self.coerce_inner(icx, cause, expr, icx.types.unit, true, label_unit_as_expected)
}
/// The inner coercion "engine". If `expression` is `None`, this
/// is a forced-unit case, and hence `expression_ty` must be
/// `Nil`.
pub(crate) fn coerce_inner(
&mut self,
icx: &mut InferenceContext<'_, 'db>,
cause: &ObligationCause,
expression: ExprId,
mut expression_ty: Ty<'db>,
force_unit: bool,
label_expression_as_expected: bool,
) {
// Incorporate whatever type inference information we have
// until now; in principle we might also want to process
// pending obligations, but doing so should only improve
// compatibility (hopefully that is true) by helping us
// uncover never types better.
if expression_ty.is_ty_var() {
expression_ty = icx.shallow_resolve(expression_ty);
}
let (expected, found) = if label_expression_as_expected {
// In the case where this is a "forced unit", like
// `break`, we want to call the `()` "expected"
// since it is implied by the syntax.
// (Note: not all force-units work this way.)"
(expression_ty, self.merged_ty())
} else {
// Otherwise, the "expected" type for error
// reporting is the current unification type,
// which is basically the LUB of the expressions
// we've seen so far (combined with the expected
// type)
(self.merged_ty(), expression_ty)
};
// Handle the actual type unification etc.
let result = if !force_unit {
if self.pushed == 0 {
// Special-case the first expression we are coercing.
// To be honest, I'm not entirely sure why we do this.
// We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
icx.coerce(
expression.into(),
expression_ty,
self.expected_ty,
AllowTwoPhase::No,
CoerceNever::Yes,
)
} else {
match self.expressions {
Expressions::Dynamic(ref exprs) => icx.try_find_coercion_lub(
exprs,
self.merged_ty(),
expression,
expression_ty,
),
Expressions::UpFront(coercion_sites) => icx.try_find_coercion_lub(
&coercion_sites[0..self.pushed],
self.merged_ty(),
expression,
expression_ty,
),
}
}
} else {
// this is a hack for cases where we default to `()` because
// the expression etc has been omitted from the source. An
// example is an `if let` without an else:
//
// if let Some(x) = ... { }
//
// we wind up with a second match arm that is like `_ =>
// ()`. That is the case we are considering here. We take
// a different path to get the right "expected, found"
// message and so forth (and because we know that
// `expression_ty` will be unit).
//
// Another example is `break` with no argument expression.
assert!(expression_ty.is_unit(), "if let hack without unit type");
icx.table.infer_ctxt.at(cause, icx.table.trait_env.env).eq(expected, found).map(
|infer_ok| {
icx.table.register_infer_ok(infer_ok);
expression_ty
},
)
};
debug!(?result);
match result {
Ok(v) => {
self.final_ty = Some(v);
match self.expressions {
Expressions::Dynamic(ref mut buffer) => buffer.push(expression),
Expressions::UpFront(coercion_sites) => {
// if the user gave us an array to validate, check that we got
// the next expression in the list, as expected
assert_eq!(coercion_sites[self.pushed], expression);
}
}
}
Err(_coercion_error) => {
// Mark that we've failed to coerce the types here to suppress
// any superfluous errors we might encounter while trying to
// emit or provide suggestions on how to fix the initial error.
icx.set_tainted_by_errors();
self.final_ty = Some(icx.types.error);
icx.result.type_mismatches.insert(
expression.into(),
if label_expression_as_expected {
TypeMismatch { expected: found, actual: expected }
} else {
TypeMismatch { expected, actual: found }
},
);
}
}
self.pushed += 1;
}
pub(crate) fn complete(self, icx: &mut InferenceContext<'_, 'db>) -> Ty<'db> {
if let Some(final_ty) = self.final_ty {
final_ty
} else {
// If we only had inputs that were of type `!` (or no
// inputs at all), then the final type is `!`.
assert_eq!(self.pushed, 0);
icx.types.never
}
}
}
pub fn could_coerce<'db>(
db: &'db dyn HirDatabase,
env: Arc<TraitEnvironment<'db>>,
tys: &Canonical<'db, (Ty<'db>, Ty<'db>)>,
) -> bool {
coerce(db, env, tys).is_ok()
}
fn coerce<'db>(
db: &'db dyn HirDatabase,
env: Arc<TraitEnvironment<'db>>,
tys: &Canonical<'db, (Ty<'db>, Ty<'db>)>,
) -> Result<(Vec<Adjustment<'db>>, Ty<'db>), TypeError<DbInterner<'db>>> {
let mut table = InferenceTable::new(db, env);
let interner = table.interner();
let ((ty1_with_vars, ty2_with_vars), vars) = table.infer_ctxt.instantiate_canonical(tys);
let cause = ObligationCause::new();
// FIXME: Target features.
let target_features = TargetFeatures::default();
let mut coerce = Coerce {
table: &mut table,
has_errors: &mut false,
cause,
allow_two_phase: AllowTwoPhase::No,
coerce_never: true,
use_lub: false,
target_features: &mut || (&target_features, TargetFeatureIsSafeInTarget::No),
};
let InferOk { value: (adjustments, ty), obligations } =
coerce.coerce(ty1_with_vars, ty2_with_vars)?;
table.register_predicates(obligations);
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
let mut fallback_ty = |debruijn, infer| {
let var = vars.var_values.iter().position(|arg| {
arg.as_type().is_some_and(|ty| match ty.kind() {
TyKind::Infer(it) => infer == it,
_ => false,
})
});
var.map_or_else(
|| Ty::new_error(interner, ErrorGuaranteed),
|i| {
Ty::new_bound(
interner,
debruijn,
BoundTy { kind: BoundTyKind::Anon, var: BoundVar::from_usize(i) },
)
},
)
};
let mut fallback_const = |debruijn, infer| {
let var = vars.var_values.iter().position(|arg| {
arg.as_const().is_some_and(|ty| match ty.kind() {
ConstKind::Infer(it) => infer == it,
_ => false,
})
});
var.map_or_else(
|| Const::new_error(interner, ErrorGuaranteed),
|i| Const::new_bound(interner, debruijn, BoundConst { var: BoundVar::from_usize(i) }),
)
};
let mut fallback_region = |debruijn, infer| {
let var = vars.var_values.iter().position(|arg| {
arg.as_region().is_some_and(|ty| match ty.kind() {
RegionKind::ReVar(it) => infer == it,
_ => false,
})
});
var.map_or_else(
|| Region::error(interner),
|i| {
Region::new_bound(
interner,
debruijn,
BoundRegion { kind: BoundRegionKind::Anon, var: BoundVar::from_usize(i) },
)
},
)
};
// FIXME also map the types in the adjustments
// FIXME: We don't fallback correctly since this is done on `InferenceContext` and we only have `InferenceTable`.
let ty = table.resolve_with_fallback(
ty,
&mut fallback_ty,
&mut fallback_const,
&mut fallback_region,
);
Ok((adjustments, ty))
}