| //! `StableGraph` keeps indices stable across removals. |
| //! |
| //! Depends on `feature = "stable_graph"`. |
| //! |
| |
| use std::cmp; |
| use std::fmt; |
| use std::iter; |
| use std::marker::PhantomData; |
| use std::mem::replace; |
| use std::mem::size_of; |
| use std::ops::{Index, IndexMut}; |
| use std::slice; |
| |
| use crate::{Directed, Direction, EdgeType, Graph, Incoming, Outgoing, Undirected}; |
| |
| use crate::iter_format::{DebugMap, IterFormatExt, NoPretty}; |
| use crate::iter_utils::IterUtilsExt; |
| |
| use super::{index_twice, Edge, Frozen, Node, Pair, DIRECTIONS}; |
| use crate::visit::{ |
| EdgeRef, IntoEdgeReferences, IntoEdges, IntoEdgesDirected, IntoNodeReferences, NodeIndexable, |
| }; |
| use crate::IntoWeightedEdge; |
| |
| // reexport those things that are shared with Graph |
| #[doc(no_inline)] |
| pub use crate::graph::{ |
| edge_index, node_index, DefaultIx, EdgeIndex, GraphIndex, IndexType, NodeIndex, |
| }; |
| |
| use crate::util::enumerate; |
| |
| #[cfg(feature = "serde-1")] |
| mod serialization; |
| |
| /// `StableGraph<N, E, Ty, Ix>` is a graph datastructure using an adjacency |
| /// list representation. |
| /// |
| /// The graph **does not invalidate** any unrelated node or edge indices when |
| /// items are removed. |
| /// |
| /// `StableGraph` is parameterized over: |
| /// |
| /// - Associated data `N` for nodes and `E` for edges, also called *weights*. |
| /// The associated data can be of arbitrary type. |
| /// - Edge type `Ty` that determines whether the graph edges are directed or undirected. |
| /// - Index type `Ix`, which determines the maximum size of the graph. |
| /// |
| /// The graph uses **O(|V| + |E|)** space, and allows fast node and edge insert |
| /// and efficient graph search. |
| /// |
| /// It implements **O(e')** edge lookup and edge and node removals, where **e'** |
| /// is some local measure of edge count. |
| /// |
| /// - Nodes and edges are each numbered in an interval from *0* to some number |
| /// *m*, but *not all* indices in the range are valid, since gaps are formed |
| /// by deletions. |
| /// |
| /// - You can select graph index integer type after the size of the graph. A smaller |
| /// size may have better performance. |
| /// |
| /// - Using indices allows mutation while traversing the graph, see `Dfs`. |
| /// |
| /// - The `StableGraph` is a regular rust collection and is `Send` and `Sync` |
| /// (as long as associated data `N` and `E` are). |
| /// |
| /// - Indices don't allow as much compile time checking as references. |
| /// |
| /// Depends on crate feature `stable_graph` (default). *Stable Graph is still |
| /// missing a few methods compared to Graph. You can contribute to help it |
| /// achieve parity.* |
| pub struct StableGraph<N, E, Ty = Directed, Ix = DefaultIx> { |
| g: Graph<Option<N>, Option<E>, Ty, Ix>, |
| node_count: usize, |
| edge_count: usize, |
| |
| // node and edge free lists (both work the same way) |
| // |
| // free_node, if not NodeIndex::end(), points to a node index |
| // that is vacant (after a deletion). The next item in the list is kept in |
| // that Node's Node.next[0] field. For Node, it's a node index stored |
| // in an EdgeIndex location, and the _into_edge()/_into_node() methods |
| // convert. |
| free_node: NodeIndex<Ix>, |
| free_edge: EdgeIndex<Ix>, |
| } |
| |
| /// A `StableGraph` with directed edges. |
| /// |
| /// For example, an edge from *1* to *2* is distinct from an edge from *2* to |
| /// *1*. |
| pub type StableDiGraph<N, E, Ix = DefaultIx> = StableGraph<N, E, Directed, Ix>; |
| |
| /// A `StableGraph` with undirected edges. |
| /// |
| /// For example, an edge between *1* and *2* is equivalent to an edge between |
| /// *2* and *1*. |
| pub type StableUnGraph<N, E, Ix = DefaultIx> = StableGraph<N, E, Undirected, Ix>; |
| |
| impl<N, E, Ty, Ix> fmt::Debug for StableGraph<N, E, Ty, Ix> |
| where |
| N: fmt::Debug, |
| E: fmt::Debug, |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| let etype = if self.is_directed() { |
| "Directed" |
| } else { |
| "Undirected" |
| }; |
| let mut fmt_struct = f.debug_struct("StableGraph"); |
| fmt_struct.field("Ty", &etype); |
| fmt_struct.field("node_count", &self.node_count); |
| fmt_struct.field("edge_count", &self.edge_count); |
| if self.g.edges.iter().any(|e| e.weight.is_some()) { |
| fmt_struct.field( |
| "edges", |
| &self |
| .g |
| .edges |
| .iter() |
| .filter(|e| e.weight.is_some()) |
| .map(|e| NoPretty((e.source().index(), e.target().index()))) |
| .format(", "), |
| ); |
| } |
| // skip weights if they are ZST! |
| if size_of::<N>() != 0 { |
| fmt_struct.field( |
| "node weights", |
| &DebugMap(|| { |
| self.g |
| .nodes |
| .iter() |
| .map(|n| n.weight.as_ref()) |
| .enumerate() |
| .filter_map(|(i, wo)| wo.map(move |w| (i, w))) |
| }), |
| ); |
| } |
| if size_of::<E>() != 0 { |
| fmt_struct.field( |
| "edge weights", |
| &DebugMap(|| { |
| self.g |
| .edges |
| .iter() |
| .map(|n| n.weight.as_ref()) |
| .enumerate() |
| .filter_map(|(i, wo)| wo.map(move |w| (i, w))) |
| }), |
| ); |
| } |
| fmt_struct.field("free_node", &self.free_node); |
| fmt_struct.field("free_edge", &self.free_edge); |
| fmt_struct.finish() |
| } |
| } |
| |
| impl<N, E> StableGraph<N, E, Directed> { |
| /// Create a new `StableGraph` with directed edges. |
| /// |
| /// This is a convenience method. See `StableGraph::with_capacity` |
| /// or `StableGraph::default` for a constructor that is generic in all the |
| /// type parameters of `StableGraph`. |
| pub fn new() -> Self { |
| Self::with_capacity(0, 0) |
| } |
| } |
| |
| impl<N, E, Ty, Ix> StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| /// Create a new `StableGraph` with estimated capacity. |
| pub fn with_capacity(nodes: usize, edges: usize) -> Self { |
| StableGraph { |
| g: Graph::with_capacity(nodes, edges), |
| node_count: 0, |
| edge_count: 0, |
| free_node: NodeIndex::end(), |
| free_edge: EdgeIndex::end(), |
| } |
| } |
| |
| /// Return the current node and edge capacity of the graph. |
| pub fn capacity(&self) -> (usize, usize) { |
| self.g.capacity() |
| } |
| |
| /// Remove all nodes and edges |
| pub fn clear(&mut self) { |
| self.node_count = 0; |
| self.edge_count = 0; |
| self.free_node = NodeIndex::end(); |
| self.free_edge = EdgeIndex::end(); |
| self.g.clear(); |
| } |
| |
| /// Remove all edges |
| pub fn clear_edges(&mut self) { |
| self.edge_count = 0; |
| self.free_edge = EdgeIndex::end(); |
| self.g.edges.clear(); |
| // clear edges without touching the free list |
| for node in &mut self.g.nodes { |
| if node.weight.is_some() { |
| node.next = [EdgeIndex::end(), EdgeIndex::end()]; |
| } |
| } |
| } |
| |
| /// Return the number of nodes (vertices) in the graph. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn node_count(&self) -> usize { |
| self.node_count |
| } |
| |
| /// Return the number of edges in the graph. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn edge_count(&self) -> usize { |
| self.edge_count |
| } |
| |
| /// Whether the graph has directed edges or not. |
| #[inline] |
| pub fn is_directed(&self) -> bool { |
| Ty::is_directed() |
| } |
| |
| /// Add a node (also called vertex) with associated data `weight` to the graph. |
| /// |
| /// Computes in **O(1)** time. |
| /// |
| /// Return the index of the new node. |
| /// |
| /// **Panics** if the `StableGraph` is at the maximum number of nodes for |
| /// its index type. |
| pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix> { |
| let index = if self.free_node != NodeIndex::end() { |
| let node_idx = self.free_node; |
| let node_slot = &mut self.g.nodes[node_idx.index()]; |
| let _old = replace(&mut node_slot.weight, Some(weight)); |
| debug_assert!(_old.is_none()); |
| self.free_node = node_slot.next[0]._into_node(); |
| node_slot.next[0] = EdgeIndex::end(); |
| node_idx |
| } else { |
| self.g.add_node(Some(weight)) |
| }; |
| self.node_count += 1; |
| index |
| } |
| |
| /// free_node: Which free list to update for the vacancy |
| fn add_vacant_node(&mut self, free_node: &mut NodeIndex<Ix>) { |
| let node_idx = self.g.add_node(None); |
| // link the free list |
| let node_slot = &mut self.g.nodes[node_idx.index()]; |
| node_slot.next[0] = free_node._into_edge(); |
| *free_node = node_idx; |
| } |
| |
| /// Remove `a` from the graph if it exists, and return its weight. |
| /// If it doesn't exist in the graph, return `None`. |
| /// |
| /// The node index `a` is invalidated, but none other. |
| /// Edge indices are invalidated as they would be following the removal of |
| /// each edge with an endpoint in `a`. |
| /// |
| /// Computes in **O(e')** time, where **e'** is the number of affected |
| /// edges, including *n* calls to `.remove_edge()` where *n* is the number |
| /// of edges with an endpoint in `a`. |
| pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N> { |
| let node_weight = self.g.nodes.get_mut(a.index())?.weight.take()?; |
| for d in &DIRECTIONS { |
| let k = d.index(); |
| |
| // Remove all edges from and to this node. |
| loop { |
| let next = self.g.nodes[a.index()].next[k]; |
| if next == EdgeIndex::end() { |
| break; |
| } |
| let ret = self.remove_edge(next); |
| debug_assert!(ret.is_some()); |
| let _ = ret; |
| } |
| } |
| |
| let node_slot = &mut self.g.nodes[a.index()]; |
| //let node_weight = replace(&mut self.g.nodes[a.index()].weight, Entry::Empty(self.free_node)); |
| //self.g.nodes[a.index()].next = [EdgeIndex::end(), EdgeIndex::end()]; |
| node_slot.next = [self.free_node._into_edge(), EdgeIndex::end()]; |
| self.free_node = a; |
| self.node_count -= 1; |
| |
| Some(node_weight) |
| } |
| |
| pub fn contains_node(&self, a: NodeIndex<Ix>) -> bool { |
| self.get_node(a).is_some() |
| } |
| |
| // Return the Node if it is not vacant (non-None weight) |
| fn get_node(&self, a: NodeIndex<Ix>) -> Option<&Node<Option<N>, Ix>> { |
| self.g |
| .nodes |
| .get(a.index()) |
| .and_then(|node| node.weight.as_ref().map(move |_| node)) |
| } |
| |
| /// Add an edge from `a` to `b` to the graph, with its associated |
| /// data `weight`. |
| /// |
| /// Return the index of the new edge. |
| /// |
| /// Computes in **O(1)** time. |
| /// |
| /// **Panics** if any of the nodes don't exist.<br> |
| /// **Panics** if the `StableGraph` is at the maximum number of edges for |
| /// its index type. |
| /// |
| /// **Note:** `StableGraph` allows adding parallel (“duplicate”) edges. |
| pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> { |
| let edge_idx; |
| let mut new_edge = None::<Edge<_, _>>; |
| { |
| let edge: &mut Edge<_, _>; |
| |
| if self.free_edge != EdgeIndex::end() { |
| edge_idx = self.free_edge; |
| edge = &mut self.g.edges[edge_idx.index()]; |
| let _old = replace(&mut edge.weight, Some(weight)); |
| debug_assert!(_old.is_none()); |
| self.free_edge = edge.next[0]; |
| edge.node = [a, b]; |
| } else { |
| edge_idx = EdgeIndex::new(self.g.edges.len()); |
| assert!(<Ix as IndexType>::max().index() == !0 || EdgeIndex::end() != edge_idx); |
| new_edge = Some(Edge { |
| weight: Some(weight), |
| node: [a, b], |
| next: [EdgeIndex::end(); 2], |
| }); |
| edge = new_edge.as_mut().unwrap(); |
| } |
| |
| let wrong_index = match index_twice(&mut self.g.nodes, a.index(), b.index()) { |
| Pair::None => Some(cmp::max(a.index(), b.index())), |
| Pair::One(an) => { |
| if an.weight.is_none() { |
| Some(a.index()) |
| } else { |
| edge.next = an.next; |
| an.next[0] = edge_idx; |
| an.next[1] = edge_idx; |
| None |
| } |
| } |
| Pair::Both(an, bn) => { |
| // a and b are different indices |
| if an.weight.is_none() { |
| Some(a.index()) |
| } else if bn.weight.is_none() { |
| Some(b.index()) |
| } else { |
| edge.next = [an.next[0], bn.next[1]]; |
| an.next[0] = edge_idx; |
| bn.next[1] = edge_idx; |
| None |
| } |
| } |
| }; |
| if let Some(i) = wrong_index { |
| panic!( |
| "StableGraph::add_edge: node index {} is not a node in the graph", |
| i |
| ); |
| } |
| self.edge_count += 1; |
| } |
| if let Some(edge) = new_edge { |
| self.g.edges.push(edge); |
| } |
| edge_idx |
| } |
| |
| /// free_edge: Which free list to update for the vacancy |
| fn add_vacant_edge(&mut self, free_edge: &mut EdgeIndex<Ix>) { |
| let edge_idx = EdgeIndex::new(self.g.edges.len()); |
| debug_assert!(edge_idx != EdgeIndex::end()); |
| let mut edge = Edge { |
| weight: None, |
| node: [NodeIndex::end(); 2], |
| next: [EdgeIndex::end(); 2], |
| }; |
| edge.next[0] = *free_edge; |
| *free_edge = edge_idx; |
| self.g.edges.push(edge); |
| } |
| |
| /// Add or update an edge from `a` to `b`. |
| /// If the edge already exists, its weight is updated. |
| /// |
| /// Return the index of the affected edge. |
| /// |
| /// Computes in **O(e')** time, where **e'** is the number of edges |
| /// connected to `a` (and `b`, if the graph edges are undirected). |
| /// |
| /// **Panics** if any of the nodes don't exist. |
| pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> { |
| if let Some(ix) = self.find_edge(a, b) { |
| self[ix] = weight; |
| return ix; |
| } |
| self.add_edge(a, b, weight) |
| } |
| |
| /// Remove an edge and return its edge weight, or `None` if it didn't exist. |
| /// |
| /// Invalidates the edge index `e` but no other. |
| /// |
| /// Computes in **O(e')** time, where **e'** is the number of edges |
| /// connected to the same endpoints as `e`. |
| pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E> { |
| // every edge is part of two lists, |
| // outgoing and incoming edges. |
| // Remove it from both |
| let (is_edge, edge_node, edge_next) = match self.g.edges.get(e.index()) { |
| None => return None, |
| Some(x) => (x.weight.is_some(), x.node, x.next), |
| }; |
| if !is_edge { |
| return None; |
| } |
| |
| // Remove the edge from its in and out lists by replacing it with |
| // a link to the next in the list. |
| self.g.change_edge_links(edge_node, e, edge_next); |
| |
| // Clear the edge and put it in the free list |
| let edge = &mut self.g.edges[e.index()]; |
| edge.next = [self.free_edge, EdgeIndex::end()]; |
| edge.node = [NodeIndex::end(), NodeIndex::end()]; |
| self.free_edge = e; |
| self.edge_count -= 1; |
| edge.weight.take() |
| } |
| |
| /// Access the weight for node `a`. |
| /// |
| /// Also available with indexing syntax: `&graph[a]`. |
| pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N> { |
| match self.g.nodes.get(a.index()) { |
| Some(no) => no.weight.as_ref(), |
| None => None, |
| } |
| } |
| |
| /// Access the weight for node `a`, mutably. |
| /// |
| /// Also available with indexing syntax: `&mut graph[a]`. |
| pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N> { |
| match self.g.nodes.get_mut(a.index()) { |
| Some(no) => no.weight.as_mut(), |
| None => None, |
| } |
| } |
| |
| /// Return an iterator yielding mutable access to all node weights. |
| /// |
| /// The order in which weights are yielded matches the order of their node |
| /// indices. |
| pub fn node_weights_mut(&mut self) -> impl Iterator<Item = &mut N> { |
| self.g |
| .node_weights_mut() |
| .flat_map(|maybe_node| maybe_node.iter_mut()) |
| } |
| |
| /// Return an iterator over the node indices of the graph |
| pub fn node_indices(&self) -> NodeIndices<N, Ix> { |
| NodeIndices { |
| iter: enumerate(self.raw_nodes()), |
| } |
| } |
| |
| /// Access the weight for edge `e`. |
| /// |
| /// Also available with indexing syntax: `&graph[e]`. |
| pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E> { |
| match self.g.edges.get(e.index()) { |
| Some(ed) => ed.weight.as_ref(), |
| None => None, |
| } |
| } |
| |
| /// Access the weight for edge `e`, mutably |
| /// |
| /// Also available with indexing syntax: `&mut graph[e]`. |
| pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E> { |
| match self.g.edges.get_mut(e.index()) { |
| Some(ed) => ed.weight.as_mut(), |
| None => None, |
| } |
| } |
| |
| /// Return an iterator yielding mutable access to all edge weights. |
| /// |
| /// The order in which weights are yielded matches the order of their edge |
| /// indices. |
| pub fn edge_weights_mut(&mut self) -> impl Iterator<Item = &mut E> { |
| self.g |
| .edge_weights_mut() |
| .flat_map(|maybe_edge| maybe_edge.iter_mut()) |
| } |
| |
| /// Access the source and target nodes for `e`. |
| pub fn edge_endpoints(&self, e: EdgeIndex<Ix>) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)> { |
| match self.g.edges.get(e.index()) { |
| Some(ed) if ed.weight.is_some() => Some((ed.source(), ed.target())), |
| _otherwise => None, |
| } |
| } |
| |
| /// Return an iterator over the edge indices of the graph |
| pub fn edge_indices(&self) -> EdgeIndices<E, Ix> { |
| EdgeIndices { |
| iter: enumerate(self.raw_edges()), |
| } |
| } |
| |
| /// Lookup if there is an edge from `a` to `b`. |
| /// |
| /// Computes in **O(e')** time, where **e'** is the number of edges |
| /// connected to `a` (and `b`, if the graph edges are undirected). |
| pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool { |
| self.find_edge(a, b).is_some() |
| } |
| |
| /// Lookup an edge from `a` to `b`. |
| /// |
| /// Computes in **O(e')** time, where **e'** is the number of edges |
| /// connected to `a` (and `b`, if the graph edges are undirected). |
| pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>> { |
| if !self.is_directed() { |
| self.find_edge_undirected(a, b).map(|(ix, _)| ix) |
| } else { |
| match self.get_node(a) { |
| None => None, |
| Some(node) => self.g.find_edge_directed_from_node(node, b), |
| } |
| } |
| } |
| |
| /// Lookup an edge between `a` and `b`, in either direction. |
| /// |
| /// If the graph is undirected, then this is equivalent to `.find_edge()`. |
| /// |
| /// Return the edge index and its directionality, with `Outgoing` meaning |
| /// from `a` to `b` and `Incoming` the reverse, |
| /// or `None` if the edge does not exist. |
| pub fn find_edge_undirected( |
| &self, |
| a: NodeIndex<Ix>, |
| b: NodeIndex<Ix>, |
| ) -> Option<(EdgeIndex<Ix>, Direction)> { |
| match self.get_node(a) { |
| None => None, |
| Some(node) => self.g.find_edge_undirected_from_node(node, b), |
| } |
| } |
| |
| /// Return an iterator of all nodes with an edge starting from `a`. |
| /// |
| /// - `Directed`: Outgoing edges from `a`. |
| /// - `Undirected`: All edges connected to `a`. |
| /// |
| /// Produces an empty iterator if the node doesn't exist.<br> |
| /// Iterator element type is `NodeIndex<Ix>`. |
| /// |
| /// Use [`.neighbors(a).detach()`][1] to get a neighbor walker that does |
| /// not borrow from the graph. |
| /// |
| /// [1]: struct.Neighbors.html#method.detach |
| pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix> { |
| self.neighbors_directed(a, Outgoing) |
| } |
| |
| /// Return an iterator of all neighbors that have an edge between them and `a`, |
| /// in the specified direction. |
| /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*. |
| /// |
| /// - `Directed`, `Outgoing`: All edges from `a`. |
| /// - `Directed`, `Incoming`: All edges to `a`. |
| /// - `Undirected`: All edges connected to `a`. |
| /// |
| /// Produces an empty iterator if the node doesn't exist.<br> |
| /// Iterator element type is `NodeIndex<Ix>`. |
| /// |
| /// Use [`.neighbors_directed(a, dir).detach()`][1] to get a neighbor walker that does |
| /// not borrow from the graph. |
| /// |
| /// [1]: struct.Neighbors.html#method.detach |
| pub fn neighbors_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Neighbors<E, Ix> { |
| let mut iter = self.neighbors_undirected(a); |
| if self.is_directed() { |
| let k = dir.index(); |
| iter.next[1 - k] = EdgeIndex::end(); |
| iter.skip_start = NodeIndex::end(); |
| } |
| iter |
| } |
| |
| /// Return an iterator of all neighbors that have an edge between them and `a`, |
| /// in either direction. |
| /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*. |
| /// |
| /// - `Directed` and `Undirected`: All edges connected to `a`. |
| /// |
| /// Produces an empty iterator if the node doesn't exist.<br> |
| /// Iterator element type is `NodeIndex<Ix>`. |
| /// |
| /// Use [`.neighbors_undirected(a).detach()`][1] to get a neighbor walker that does |
| /// not borrow from the graph. |
| /// |
| /// [1]: struct.Neighbors.html#method.detach |
| pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix> { |
| Neighbors { |
| skip_start: a, |
| edges: &self.g.edges, |
| next: match self.get_node(a) { |
| None => [EdgeIndex::end(), EdgeIndex::end()], |
| Some(n) => n.next, |
| }, |
| } |
| } |
| |
| /// Return an iterator of all edges of `a`. |
| /// |
| /// - `Directed`: Outgoing edges from `a`. |
| /// - `Undirected`: All edges connected to `a`. |
| /// |
| /// Produces an empty iterator if the node doesn't exist.<br> |
| /// Iterator element type is `EdgeReference<E, Ix>`. |
| pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix> { |
| self.edges_directed(a, Outgoing) |
| } |
| |
| /// Return an iterator of all edges of `a`, in the specified direction. |
| /// |
| /// - `Directed`, `Outgoing`: All edges from `a`. |
| /// - `Directed`, `Incoming`: All edges to `a`. |
| /// - `Undirected`, `Outgoing`: All edges connected to `a`, with `a` being the source of each |
| /// edge. |
| /// - `Undirected`, `Incoming`: All edges connected to `a`, with `a` being the target of each |
| /// edge. |
| /// |
| /// Produces an empty iterator if the node `a` doesn't exist.<br> |
| /// Iterator element type is `EdgeReference<E, Ix>`. |
| pub fn edges_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Edges<E, Ty, Ix> { |
| Edges { |
| skip_start: a, |
| edges: &self.g.edges, |
| direction: dir, |
| next: match self.get_node(a) { |
| None => [EdgeIndex::end(), EdgeIndex::end()], |
| Some(n) => n.next, |
| }, |
| ty: PhantomData, |
| } |
| } |
| |
| /// Return an iterator over either the nodes without edges to them |
| /// (`Incoming`) or from them (`Outgoing`). |
| /// |
| /// An *internal* node has both incoming and outgoing edges. |
| /// The nodes in `.externals(Incoming)` are the source nodes and |
| /// `.externals(Outgoing)` are the sinks of the graph. |
| /// |
| /// For a graph with undirected edges, both the sinks and the sources are |
| /// just the nodes without edges. |
| /// |
| /// The whole iteration computes in **O(|V|)** time. |
| pub fn externals(&self, dir: Direction) -> Externals<N, Ty, Ix> { |
| Externals { |
| iter: self.raw_nodes().iter().enumerate(), |
| dir, |
| ty: PhantomData, |
| } |
| } |
| |
| /// Index the `StableGraph` by two indices, any combination of |
| /// node or edge indices is fine. |
| /// |
| /// **Panics** if the indices are equal or if they are out of bounds. |
| pub fn index_twice_mut<T, U>( |
| &mut self, |
| i: T, |
| j: U, |
| ) -> ( |
| &mut <Self as Index<T>>::Output, |
| &mut <Self as Index<U>>::Output, |
| ) |
| where |
| Self: IndexMut<T> + IndexMut<U>, |
| T: GraphIndex, |
| U: GraphIndex, |
| { |
| assert!(T::is_node_index() != U::is_node_index() || i.index() != j.index()); |
| |
| // Allow two mutable indexes here -- they are nonoverlapping |
| unsafe { |
| let self_mut = self as *mut _; |
| ( |
| <Self as IndexMut<T>>::index_mut(&mut *self_mut, i), |
| <Self as IndexMut<U>>::index_mut(&mut *self_mut, j), |
| ) |
| } |
| } |
| |
| /// Keep all nodes that return `true` from the `visit` closure, |
| /// remove the others. |
| /// |
| /// `visit` is provided a proxy reference to the graph, so that |
| /// the graph can be walked and associated data modified. |
| /// |
| /// The order nodes are visited is not specified. |
| /// |
| /// The node indices of the removed nodes are invalidated, but none other. |
| /// Edge indices are invalidated as they would be following the removal of |
| /// each edge with an endpoint in a removed node. |
| /// |
| /// Computes in **O(n + e')** time, where **n** is the number of node indices and |
| /// **e'** is the number of affected edges, including *n* calls to `.remove_edge()` |
| /// where *n* is the number of edges with an endpoint in a removed node. |
| pub fn retain_nodes<F>(&mut self, mut visit: F) |
| where |
| F: FnMut(Frozen<Self>, NodeIndex<Ix>) -> bool, |
| { |
| for i in 0..self.node_bound() { |
| let ix = node_index(i); |
| if self.contains_node(ix) && !visit(Frozen(self), ix) { |
| self.remove_node(ix); |
| } |
| } |
| self.check_free_lists(); |
| } |
| |
| /// Keep all edges that return `true` from the `visit` closure, |
| /// remove the others. |
| /// |
| /// `visit` is provided a proxy reference to the graph, so that |
| /// the graph can be walked and associated data modified. |
| /// |
| /// The order edges are visited is not specified. |
| /// |
| /// The edge indices of the removed edes are invalidated, but none other. |
| /// |
| /// Computes in **O(e'')** time, **e'** is the number of affected edges, |
| /// including the calls to `.remove_edge()` for each removed edge. |
| pub fn retain_edges<F>(&mut self, mut visit: F) |
| where |
| F: FnMut(Frozen<Self>, EdgeIndex<Ix>) -> bool, |
| { |
| for i in 0..self.edge_bound() { |
| let ix = edge_index(i); |
| if self.edge_weight(ix).is_some() && !visit(Frozen(self), ix) { |
| self.remove_edge(ix); |
| } |
| } |
| self.check_free_lists(); |
| } |
| |
| /// Create a new `StableGraph` from an iterable of edges. |
| /// |
| /// Node weights `N` are set to default values. |
| /// Edge weights `E` may either be specified in the list, |
| /// or they are filled with default values. |
| /// |
| /// Nodes are inserted automatically to match the edges. |
| /// |
| /// ``` |
| /// use petgraph::stable_graph::StableGraph; |
| /// |
| /// let gr = StableGraph::<(), i32>::from_edges(&[ |
| /// (0, 1), (0, 2), (0, 3), |
| /// (1, 2), (1, 3), |
| /// (2, 3), |
| /// ]); |
| /// ``` |
| pub fn from_edges<I>(iterable: I) -> Self |
| where |
| I: IntoIterator, |
| I::Item: IntoWeightedEdge<E>, |
| <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>, |
| N: Default, |
| { |
| let mut g = Self::with_capacity(0, 0); |
| g.extend_with_edges(iterable); |
| g |
| } |
| |
| /// Create a new `StableGraph` by mapping node and |
| /// edge weights to new values. |
| /// |
| /// The resulting graph has the same structure and the same |
| /// graph indices as `self`. |
| pub fn map<'a, F, G, N2, E2>( |
| &'a self, |
| mut node_map: F, |
| mut edge_map: G, |
| ) -> StableGraph<N2, E2, Ty, Ix> |
| where |
| F: FnMut(NodeIndex<Ix>, &'a N) -> N2, |
| G: FnMut(EdgeIndex<Ix>, &'a E) -> E2, |
| { |
| let g = self.g.map( |
| move |i, w| w.as_ref().map(|w| node_map(i, w)), |
| move |i, w| w.as_ref().map(|w| edge_map(i, w)), |
| ); |
| StableGraph { |
| g, |
| node_count: self.node_count, |
| edge_count: self.edge_count, |
| free_node: self.free_node, |
| free_edge: self.free_edge, |
| } |
| } |
| |
| /// Create a new `StableGraph` by mapping nodes and edges. |
| /// A node or edge may be mapped to `None` to exclude it from |
| /// the resulting graph. |
| /// |
| /// Nodes are mapped first with the `node_map` closure, then |
| /// `edge_map` is called for the edges that have not had any endpoint |
| /// removed. |
| /// |
| /// The resulting graph has the structure of a subgraph of the original graph. |
| /// Nodes and edges that are not removed maintain their old node or edge |
| /// indices. |
| pub fn filter_map<'a, F, G, N2, E2>( |
| &'a self, |
| mut node_map: F, |
| mut edge_map: G, |
| ) -> StableGraph<N2, E2, Ty, Ix> |
| where |
| F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>, |
| G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>, |
| { |
| let node_bound = self.node_bound(); |
| let edge_bound = self.edge_bound(); |
| let mut result_g = StableGraph::with_capacity(node_bound, edge_bound); |
| // use separate free lists so that |
| // add_node / add_edge below do not reuse the tombstones |
| let mut free_node = NodeIndex::end(); |
| let mut free_edge = EdgeIndex::end(); |
| |
| // the stable graph keeps the node map itself |
| |
| for (i, node) in enumerate(self.raw_nodes()) { |
| if i >= node_bound { |
| break; |
| } |
| if let Some(node_weight) = node.weight.as_ref() { |
| if let Some(new_weight) = node_map(NodeIndex::new(i), node_weight) { |
| result_g.add_node(new_weight); |
| continue; |
| } |
| } |
| result_g.add_vacant_node(&mut free_node); |
| } |
| for (i, edge) in enumerate(self.raw_edges()) { |
| if i >= edge_bound { |
| break; |
| } |
| let source = edge.source(); |
| let target = edge.target(); |
| if let Some(edge_weight) = edge.weight.as_ref() { |
| if result_g.contains_node(source) && result_g.contains_node(target) { |
| if let Some(new_weight) = edge_map(EdgeIndex::new(i), edge_weight) { |
| result_g.add_edge(source, target, new_weight); |
| continue; |
| } |
| } |
| } |
| result_g.add_vacant_edge(&mut free_edge); |
| } |
| result_g.free_node = free_node; |
| result_g.free_edge = free_edge; |
| result_g.check_free_lists(); |
| result_g |
| } |
| |
| /// Extend the graph from an iterable of edges. |
| /// |
| /// Node weights `N` are set to default values. |
| /// Edge weights `E` may either be specified in the list, |
| /// or they are filled with default values. |
| /// |
| /// Nodes are inserted automatically to match the edges. |
| pub fn extend_with_edges<I>(&mut self, iterable: I) |
| where |
| I: IntoIterator, |
| I::Item: IntoWeightedEdge<E>, |
| <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>, |
| N: Default, |
| { |
| let iter = iterable.into_iter(); |
| |
| for elt in iter { |
| let (source, target, weight) = elt.into_weighted_edge(); |
| let (source, target) = (source.into(), target.into()); |
| let nx = cmp::max(source, target); |
| while nx.index() >= self.node_count() { |
| self.add_node(N::default()); |
| } |
| self.add_edge(source, target, weight); |
| } |
| } |
| |
| // |
| // internal methods |
| // |
| fn raw_nodes(&self) -> &[Node<Option<N>, Ix>] { |
| self.g.raw_nodes() |
| } |
| |
| fn raw_edges(&self) -> &[Edge<Option<E>, Ix>] { |
| self.g.raw_edges() |
| } |
| |
| fn edge_bound(&self) -> usize { |
| self.edge_references() |
| .next_back() |
| .map_or(0, |edge| edge.id().index() + 1) |
| } |
| |
| #[cfg(feature = "serde-1")] |
| /// Fix up node and edge links after deserialization |
| fn link_edges(&mut self) -> Result<(), NodeIndex<Ix>> { |
| // set up free node list |
| self.node_count = 0; |
| self.edge_count = 0; |
| let mut free_node = NodeIndex::end(); |
| for (node_index, node) in enumerate(&mut self.g.nodes) { |
| if node.weight.is_some() { |
| self.node_count += 1; |
| } else { |
| // free node |
| node.next = [free_node._into_edge(), EdgeIndex::end()]; |
| free_node = NodeIndex::new(node_index); |
| } |
| } |
| self.free_node = free_node; |
| |
| let mut free_edge = EdgeIndex::end(); |
| for (edge_index, edge) in enumerate(&mut self.g.edges) { |
| if edge.weight.is_none() { |
| // free edge |
| edge.next = [free_edge, EdgeIndex::end()]; |
| free_edge = EdgeIndex::new(edge_index); |
| continue; |
| } |
| let a = edge.source(); |
| let b = edge.target(); |
| let edge_idx = EdgeIndex::new(edge_index); |
| match index_twice(&mut self.g.nodes, a.index(), b.index()) { |
| Pair::None => return Err(if a > b { a } else { b }), |
| Pair::One(an) => { |
| edge.next = an.next; |
| an.next[0] = edge_idx; |
| an.next[1] = edge_idx; |
| } |
| Pair::Both(an, bn) => { |
| // a and b are different indices |
| edge.next = [an.next[0], bn.next[1]]; |
| an.next[0] = edge_idx; |
| bn.next[1] = edge_idx; |
| } |
| } |
| self.edge_count += 1; |
| } |
| self.free_edge = free_edge; |
| Ok(()) |
| } |
| |
| #[cfg(not(debug_assertions))] |
| fn check_free_lists(&self) {} |
| #[cfg(debug_assertions)] |
| // internal method to debug check the free lists (linked lists) |
| fn check_free_lists(&self) { |
| let mut free_node = self.free_node; |
| let mut free_node_len = 0; |
| while free_node != NodeIndex::end() { |
| if let Some(n) = self.g.nodes.get(free_node.index()) { |
| if n.weight.is_none() { |
| free_node = n.next[0]._into_node(); |
| free_node_len += 1; |
| continue; |
| } |
| debug_assert!( |
| false, |
| "Corrupt free list: pointing to existing {:?}", |
| free_node.index() |
| ); |
| } |
| debug_assert!(false, "Corrupt free list: missing {:?}", free_node.index()); |
| } |
| debug_assert_eq!(self.node_count(), self.raw_nodes().len() - free_node_len); |
| |
| let mut free_edge_len = 0; |
| let mut free_edge = self.free_edge; |
| while free_edge != EdgeIndex::end() { |
| if let Some(n) = self.g.edges.get(free_edge.index()) { |
| if n.weight.is_none() { |
| free_edge = n.next[0]; |
| free_edge_len += 1; |
| continue; |
| } |
| debug_assert!( |
| false, |
| "Corrupt free list: pointing to existing {:?}", |
| free_node.index() |
| ); |
| } |
| debug_assert!(false, "Corrupt free list: missing {:?}", free_edge.index()); |
| } |
| debug_assert_eq!(self.edge_count(), self.raw_edges().len() - free_edge_len); |
| } |
| } |
| |
| /// The resulting cloned graph has the same graph indices as `self`. |
| impl<N, E, Ty, Ix: IndexType> Clone for StableGraph<N, E, Ty, Ix> |
| where |
| N: Clone, |
| E: Clone, |
| { |
| fn clone(&self) -> Self { |
| StableGraph { |
| g: self.g.clone(), |
| node_count: self.node_count, |
| edge_count: self.edge_count, |
| free_node: self.free_node, |
| free_edge: self.free_edge, |
| } |
| } |
| |
| fn clone_from(&mut self, rhs: &Self) { |
| self.g.clone_from(&rhs.g); |
| self.node_count = rhs.node_count; |
| self.edge_count = rhs.edge_count; |
| self.free_node = rhs.free_node; |
| self.free_edge = rhs.free_edge; |
| } |
| } |
| |
| /// Index the `StableGraph` by `NodeIndex` to access node weights. |
| /// |
| /// **Panics** if the node doesn't exist. |
| impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type Output = N; |
| fn index(&self, index: NodeIndex<Ix>) -> &N { |
| self.node_weight(index).unwrap() |
| } |
| } |
| |
| /// Index the `StableGraph` by `NodeIndex` to access node weights. |
| /// |
| /// **Panics** if the node doesn't exist. |
| impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N { |
| self.node_weight_mut(index).unwrap() |
| } |
| } |
| |
| /// Index the `StableGraph` by `EdgeIndex` to access edge weights. |
| /// |
| /// **Panics** if the edge doesn't exist. |
| impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type Output = E; |
| fn index(&self, index: EdgeIndex<Ix>) -> &E { |
| self.edge_weight(index).unwrap() |
| } |
| } |
| |
| /// Index the `StableGraph` by `EdgeIndex` to access edge weights. |
| /// |
| /// **Panics** if the edge doesn't exist. |
| impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E { |
| self.edge_weight_mut(index).unwrap() |
| } |
| } |
| |
| /// Create a new empty `StableGraph`. |
| impl<N, E, Ty, Ix> Default for StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| fn default() -> Self { |
| Self::with_capacity(0, 0) |
| } |
| } |
| |
| /// Convert a `Graph` into a `StableGraph` |
| /// |
| /// Computes in **O(|V| + |E|)** time. |
| /// |
| /// The resulting graph has the same node and edge indices as |
| /// the original graph. |
| impl<N, E, Ty, Ix> From<Graph<N, E, Ty, Ix>> for StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| fn from(g: Graph<N, E, Ty, Ix>) -> Self { |
| let nodes = g.nodes.into_iter().map(|e| Node { |
| weight: Some(e.weight), |
| next: e.next, |
| }); |
| let edges = g.edges.into_iter().map(|e| Edge { |
| weight: Some(e.weight), |
| node: e.node, |
| next: e.next, |
| }); |
| StableGraph { |
| node_count: nodes.len(), |
| edge_count: edges.len(), |
| g: Graph { |
| edges: edges.collect(), |
| nodes: nodes.collect(), |
| ty: g.ty, |
| }, |
| free_node: NodeIndex::end(), |
| free_edge: EdgeIndex::end(), |
| } |
| } |
| } |
| |
| /// Convert a `StableGraph` into a `Graph` |
| /// |
| /// Computes in **O(|V| + |E|)** time. |
| /// |
| /// This translates the stable graph into a graph with node and edge indices in |
| /// a compact interval without holes (like `Graph`s always are). |
| /// |
| /// Only if the stable graph had no vacancies after deletions (if node bound was |
| /// equal to node count, and the same for edges), would the resulting graph have |
| /// the same node and edge indices as the input. |
| impl<N, E, Ty, Ix> From<StableGraph<N, E, Ty, Ix>> for Graph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| fn from(graph: StableGraph<N, E, Ty, Ix>) -> Self { |
| let mut result_g = Graph::with_capacity(graph.node_count(), graph.edge_count()); |
| // mapping from old node index to new node index |
| let mut node_index_map = vec![NodeIndex::end(); graph.node_bound()]; |
| |
| for (i, node) in enumerate(graph.g.nodes) { |
| if let Some(nw) = node.weight { |
| node_index_map[i] = result_g.add_node(nw); |
| } |
| } |
| for edge in graph.g.edges { |
| let source_index = edge.source().index(); |
| let target_index = edge.target().index(); |
| if let Some(ew) = edge.weight { |
| let source = node_index_map[source_index]; |
| let target = node_index_map[target_index]; |
| debug_assert!(source != NodeIndex::end()); |
| debug_assert!(target != NodeIndex::end()); |
| result_g.add_edge(source, target, ew); |
| } |
| } |
| result_g |
| } |
| } |
| |
| impl<'a, N, E, Ty, Ix> IntoNodeReferences for &'a StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type NodeRef = (NodeIndex<Ix>, &'a N); |
| type NodeReferences = NodeReferences<'a, N, Ix>; |
| fn node_references(self) -> Self::NodeReferences { |
| NodeReferences { |
| iter: enumerate(self.raw_nodes()), |
| } |
| } |
| } |
| |
| /// Iterator over all nodes of a graph. |
| pub struct NodeReferences<'a, N: 'a, Ix: IndexType = DefaultIx> { |
| iter: iter::Enumerate<slice::Iter<'a, Node<Option<N>, Ix>>>, |
| } |
| |
| impl<'a, N, Ix> Iterator for NodeReferences<'a, N, Ix> |
| where |
| Ix: IndexType, |
| { |
| type Item = (NodeIndex<Ix>, &'a N); |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| self.iter |
| .ex_find_map(|(i, node)| node.weight.as_ref().map(move |w| (node_index(i), w))) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let (_, hi) = self.iter.size_hint(); |
| (0, hi) |
| } |
| } |
| |
| impl<'a, N, Ix> DoubleEndedIterator for NodeReferences<'a, N, Ix> |
| where |
| Ix: IndexType, |
| { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter |
| .ex_rfind_map(|(i, node)| node.weight.as_ref().map(move |w| (node_index(i), w))) |
| } |
| } |
| |
| /// Reference to a `StableGraph` edge. |
| #[derive(Debug)] |
| pub struct EdgeReference<'a, E: 'a, Ix = DefaultIx> { |
| index: EdgeIndex<Ix>, |
| node: [NodeIndex<Ix>; 2], |
| weight: &'a E, |
| } |
| |
| impl<'a, E, Ix: IndexType> Clone for EdgeReference<'a, E, Ix> { |
| fn clone(&self) -> Self { |
| *self |
| } |
| } |
| |
| impl<'a, E, Ix: IndexType> Copy for EdgeReference<'a, E, Ix> {} |
| |
| impl<'a, E, Ix: IndexType> PartialEq for EdgeReference<'a, E, Ix> |
| where |
| E: PartialEq, |
| { |
| fn eq(&self, rhs: &Self) -> bool { |
| self.index == rhs.index && self.weight == rhs.weight |
| } |
| } |
| |
| impl<'a, Ix, E> EdgeReference<'a, E, Ix> |
| where |
| Ix: IndexType, |
| { |
| /// Access the edge’s weight. |
| /// |
| /// **NOTE** that this method offers a longer lifetime |
| /// than the trait (unfortunately they don't match yet). |
| pub fn weight(&self) -> &'a E { |
| self.weight |
| } |
| } |
| |
| impl<'a, Ix, E> EdgeRef for EdgeReference<'a, E, Ix> |
| where |
| Ix: IndexType, |
| { |
| type NodeId = NodeIndex<Ix>; |
| type EdgeId = EdgeIndex<Ix>; |
| type Weight = E; |
| |
| fn source(&self) -> Self::NodeId { |
| self.node[0] |
| } |
| fn target(&self) -> Self::NodeId { |
| self.node[1] |
| } |
| fn weight(&self) -> &E { |
| self.weight |
| } |
| fn id(&self) -> Self::EdgeId { |
| self.index |
| } |
| } |
| |
| impl<'a, N, E, Ty, Ix> IntoEdges for &'a StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type Edges = Edges<'a, E, Ty, Ix>; |
| fn edges(self, a: Self::NodeId) -> Self::Edges { |
| self.edges(a) |
| } |
| } |
| |
| impl<'a, N, E, Ty, Ix> IntoEdgesDirected for &'a StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type EdgesDirected = Edges<'a, E, Ty, Ix>; |
| fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected { |
| self.edges_directed(a, dir) |
| } |
| } |
| |
| /// Iterator over the edges of from or to a node |
| pub struct Edges<'a, E: 'a, Ty, Ix: 'a = DefaultIx> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| /// starting node to skip over |
| skip_start: NodeIndex<Ix>, |
| edges: &'a [Edge<Option<E>, Ix>], |
| |
| /// Next edge to visit. |
| next: [EdgeIndex<Ix>; 2], |
| |
| /// For directed graphs: the direction to iterate in |
| /// For undirected graphs: the direction of edges |
| direction: Direction, |
| ty: PhantomData<Ty>, |
| } |
| |
| impl<'a, E, Ty, Ix> Iterator for Edges<'a, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type Item = EdgeReference<'a, E, Ix>; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| // type direction | iterate over reverse |
| // | |
| // Directed Outgoing | outgoing no |
| // Directed Incoming | incoming no |
| // Undirected Outgoing | both incoming |
| // Undirected Incoming | both outgoing |
| |
| // For iterate_over, "both" is represented as None. |
| // For reverse, "no" is represented as None. |
| let (iterate_over, reverse) = if Ty::is_directed() { |
| (Some(self.direction), None) |
| } else { |
| (None, Some(self.direction.opposite())) |
| }; |
| |
| if iterate_over.unwrap_or(Outgoing) == Outgoing { |
| let i = self.next[0].index(); |
| if let Some(Edge { |
| node, |
| weight: Some(weight), |
| next, |
| }) = self.edges.get(i) |
| { |
| self.next[0] = next[0]; |
| return Some(EdgeReference { |
| index: edge_index(i), |
| node: if reverse == Some(Outgoing) { |
| swap_pair(*node) |
| } else { |
| *node |
| }, |
| weight, |
| }); |
| } |
| } |
| |
| if iterate_over.unwrap_or(Incoming) == Incoming { |
| while let Some(Edge { node, weight, next }) = self.edges.get(self.next[1].index()) { |
| debug_assert!(weight.is_some()); |
| let edge_index = self.next[1]; |
| self.next[1] = next[1]; |
| // In any of the "both" situations, self-loops would be iterated over twice. |
| // Skip them here. |
| if iterate_over.is_none() && node[0] == self.skip_start { |
| continue; |
| } |
| |
| return Some(EdgeReference { |
| index: edge_index, |
| node: if reverse == Some(Incoming) { |
| swap_pair(*node) |
| } else { |
| *node |
| }, |
| weight: weight.as_ref().unwrap(), |
| }); |
| } |
| } |
| |
| None |
| } |
| } |
| |
| fn swap_pair<T>(mut x: [T; 2]) -> [T; 2] { |
| x.swap(0, 1); |
| x |
| } |
| |
| impl<'a, N: 'a, E: 'a, Ty, Ix> IntoEdgeReferences for &'a StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type EdgeRef = EdgeReference<'a, E, Ix>; |
| type EdgeReferences = EdgeReferences<'a, E, Ix>; |
| |
| /// Create an iterator over all edges in the graph, in indexed order. |
| /// |
| /// Iterator element type is `EdgeReference<E, Ix>`. |
| fn edge_references(self) -> Self::EdgeReferences { |
| EdgeReferences { |
| iter: self.g.edges.iter().enumerate(), |
| } |
| } |
| } |
| |
| /// Iterator over all edges of a graph. |
| pub struct EdgeReferences<'a, E: 'a, Ix: 'a = DefaultIx> { |
| iter: iter::Enumerate<slice::Iter<'a, Edge<Option<E>, Ix>>>, |
| } |
| |
| impl<'a, E, Ix> Iterator for EdgeReferences<'a, E, Ix> |
| where |
| Ix: IndexType, |
| { |
| type Item = EdgeReference<'a, E, Ix>; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| self.iter.ex_find_map(|(i, edge)| { |
| edge.weight.as_ref().map(move |weight| EdgeReference { |
| index: edge_index(i), |
| node: edge.node, |
| weight, |
| }) |
| }) |
| } |
| } |
| |
| impl<'a, E, Ix> DoubleEndedIterator for EdgeReferences<'a, E, Ix> |
| where |
| Ix: IndexType, |
| { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.ex_rfind_map(|(i, edge)| { |
| edge.weight.as_ref().map(move |weight| EdgeReference { |
| index: edge_index(i), |
| node: edge.node, |
| weight, |
| }) |
| }) |
| } |
| } |
| |
| /// An iterator over either the nodes without edges to them or from them. |
| pub struct Externals<'a, N: 'a, Ty, Ix: IndexType = DefaultIx> { |
| iter: iter::Enumerate<slice::Iter<'a, Node<Option<N>, Ix>>>, |
| dir: Direction, |
| ty: PhantomData<Ty>, |
| } |
| |
| impl<'a, N: 'a, Ty, Ix> Iterator for Externals<'a, N, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| type Item = NodeIndex<Ix>; |
| fn next(&mut self) -> Option<NodeIndex<Ix>> { |
| let k = self.dir.index(); |
| loop { |
| match self.iter.next() { |
| None => return None, |
| Some((index, node)) => { |
| if node.weight.is_some() |
| && node.next[k] == EdgeIndex::end() |
| && (Ty::is_directed() || node.next[1 - k] == EdgeIndex::end()) |
| { |
| return Some(NodeIndex::new(index)); |
| } else { |
| continue; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| /// Iterator over the neighbors of a node. |
| /// |
| /// Iterator element type is `NodeIndex`. |
| pub struct Neighbors<'a, E: 'a, Ix: 'a = DefaultIx> { |
| /// starting node to skip over |
| skip_start: NodeIndex<Ix>, |
| edges: &'a [Edge<Option<E>, Ix>], |
| next: [EdgeIndex<Ix>; 2], |
| } |
| |
| impl<'a, E, Ix> Neighbors<'a, E, Ix> |
| where |
| Ix: IndexType, |
| { |
| /// Return a “walker” object that can be used to step through the |
| /// neighbors and edges from the origin node. |
| /// |
| /// Note: The walker does not borrow from the graph, this is to allow mixing |
| /// edge walking with mutating the graph's weights. |
| pub fn detach(&self) -> WalkNeighbors<Ix> { |
| WalkNeighbors { |
| inner: super::WalkNeighbors { |
| skip_start: self.skip_start, |
| next: self.next, |
| }, |
| } |
| } |
| } |
| |
| impl<'a, E, Ix> Iterator for Neighbors<'a, E, Ix> |
| where |
| Ix: IndexType, |
| { |
| type Item = NodeIndex<Ix>; |
| |
| fn next(&mut self) -> Option<NodeIndex<Ix>> { |
| // First any outgoing edges |
| match self.edges.get(self.next[0].index()) { |
| None => {} |
| Some(edge) => { |
| debug_assert!(edge.weight.is_some()); |
| self.next[0] = edge.next[0]; |
| return Some(edge.node[1]); |
| } |
| } |
| // Then incoming edges |
| // For an "undirected" iterator (traverse both incoming |
| // and outgoing edge lists), make sure we don't double |
| // count selfloops by skipping them in the incoming list. |
| while let Some(edge) = self.edges.get(self.next[1].index()) { |
| debug_assert!(edge.weight.is_some()); |
| self.next[1] = edge.next[1]; |
| if edge.node[0] != self.skip_start { |
| return Some(edge.node[0]); |
| } |
| } |
| None |
| } |
| } |
| |
| /// A “walker” object that can be used to step through the edge list of a node. |
| /// |
| /// See [*.detach()*](struct.Neighbors.html#method.detach) for more information. |
| /// |
| /// The walker does not borrow from the graph, so it lets you step through |
| /// neighbors or incident edges while also mutating graph weights, as |
| /// in the following example: |
| /// |
| /// ``` |
| /// use petgraph::visit::Dfs; |
| /// use petgraph::Incoming; |
| /// use petgraph::stable_graph::StableGraph; |
| /// |
| /// let mut gr = StableGraph::new(); |
| /// let a = gr.add_node(0.); |
| /// let b = gr.add_node(0.); |
| /// let c = gr.add_node(0.); |
| /// gr.add_edge(a, b, 3.); |
| /// gr.add_edge(b, c, 2.); |
| /// gr.add_edge(c, b, 1.); |
| /// |
| /// // step through the graph and sum incoming edges into the node weight |
| /// let mut dfs = Dfs::new(&gr, a); |
| /// while let Some(node) = dfs.next(&gr) { |
| /// // use a detached neighbors walker |
| /// let mut edges = gr.neighbors_directed(node, Incoming).detach(); |
| /// while let Some(edge) = edges.next_edge(&gr) { |
| /// gr[node] += gr[edge]; |
| /// } |
| /// } |
| /// |
| /// // check the result |
| /// assert_eq!(gr[a], 0.); |
| /// assert_eq!(gr[b], 4.); |
| /// assert_eq!(gr[c], 2.); |
| /// ``` |
| pub struct WalkNeighbors<Ix> { |
| inner: super::WalkNeighbors<Ix>, |
| } |
| |
| impl<Ix: IndexType> Clone for WalkNeighbors<Ix> { |
| clone_fields!(WalkNeighbors, inner); |
| } |
| |
| impl<Ix: IndexType> WalkNeighbors<Ix> { |
| /// Step to the next edge and its endpoint node in the walk for graph `g`. |
| /// |
| /// The next node indices are always the others than the starting point |
| /// where the `WalkNeighbors` value was created. |
| /// For an `Outgoing` walk, the target nodes, |
| /// for an `Incoming` walk, the source nodes of the edge. |
| pub fn next<N, E, Ty: EdgeType>( |
| &mut self, |
| g: &StableGraph<N, E, Ty, Ix>, |
| ) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> { |
| self.inner.next(&g.g) |
| } |
| |
| pub fn next_node<N, E, Ty: EdgeType>( |
| &mut self, |
| g: &StableGraph<N, E, Ty, Ix>, |
| ) -> Option<NodeIndex<Ix>> { |
| self.next(g).map(|t| t.1) |
| } |
| |
| pub fn next_edge<N, E, Ty: EdgeType>( |
| &mut self, |
| g: &StableGraph<N, E, Ty, Ix>, |
| ) -> Option<EdgeIndex<Ix>> { |
| self.next(g).map(|t| t.0) |
| } |
| } |
| |
| /// Iterator over the node indices of a graph. |
| pub struct NodeIndices<'a, N: 'a, Ix: 'a = DefaultIx> { |
| iter: iter::Enumerate<slice::Iter<'a, Node<Option<N>, Ix>>>, |
| } |
| |
| impl<'a, N, Ix: IndexType> Iterator for NodeIndices<'a, N, Ix> { |
| type Item = NodeIndex<Ix>; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| self.iter.ex_find_map(|(i, node)| { |
| if node.weight.is_some() { |
| Some(node_index(i)) |
| } else { |
| None |
| } |
| }) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let (_, hi) = self.iter.size_hint(); |
| (0, hi) |
| } |
| } |
| |
| impl<'a, N, Ix: IndexType> DoubleEndedIterator for NodeIndices<'a, N, Ix> { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.ex_rfind_map(|(i, node)| { |
| if node.weight.is_some() { |
| Some(node_index(i)) |
| } else { |
| None |
| } |
| }) |
| } |
| } |
| |
| impl<N, E, Ty, Ix> NodeIndexable for StableGraph<N, E, Ty, Ix> |
| where |
| Ty: EdgeType, |
| Ix: IndexType, |
| { |
| /// Return an upper bound of the node indices in the graph |
| fn node_bound(&self) -> usize { |
| self.node_indices().next_back().map_or(0, |i| i.index() + 1) |
| } |
| fn to_index(&self, ix: NodeIndex<Ix>) -> usize { |
| ix.index() |
| } |
| fn from_index(&self, ix: usize) -> Self::NodeId { |
| NodeIndex::new(ix) |
| } |
| } |
| |
| /// Iterator over the edge indices of a graph. |
| pub struct EdgeIndices<'a, E: 'a, Ix: 'a = DefaultIx> { |
| iter: iter::Enumerate<slice::Iter<'a, Edge<Option<E>, Ix>>>, |
| } |
| |
| impl<'a, E, Ix: IndexType> Iterator for EdgeIndices<'a, E, Ix> { |
| type Item = EdgeIndex<Ix>; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| self.iter.ex_find_map(|(i, node)| { |
| if node.weight.is_some() { |
| Some(edge_index(i)) |
| } else { |
| None |
| } |
| }) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let (_, hi) = self.iter.size_hint(); |
| (0, hi) |
| } |
| } |
| |
| impl<'a, E, Ix: IndexType> DoubleEndedIterator for EdgeIndices<'a, E, Ix> { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.ex_rfind_map(|(i, node)| { |
| if node.weight.is_some() { |
| Some(edge_index(i)) |
| } else { |
| None |
| } |
| }) |
| } |
| } |
| |
| #[test] |
| fn stable_graph() { |
| let mut gr = StableGraph::<_, _>::with_capacity(0, 0); |
| let a = gr.add_node(0); |
| let b = gr.add_node(1); |
| let c = gr.add_node(2); |
| let _ed = gr.add_edge(a, b, 1); |
| println!("{:?}", gr); |
| gr.remove_node(b); |
| println!("{:?}", gr); |
| let d = gr.add_node(3); |
| println!("{:?}", gr); |
| gr.check_free_lists(); |
| gr.remove_node(a); |
| gr.check_free_lists(); |
| gr.remove_node(c); |
| gr.check_free_lists(); |
| println!("{:?}", gr); |
| gr.add_edge(d, d, 2); |
| println!("{:?}", gr); |
| |
| let e = gr.add_node(4); |
| gr.add_edge(d, e, 3); |
| println!("{:?}", gr); |
| for neigh in gr.neighbors(d) { |
| println!("edge {:?} -> {:?}", d, neigh); |
| } |
| gr.check_free_lists(); |
| } |
| |
| #[test] |
| fn dfs() { |
| use crate::visit::Dfs; |
| |
| let mut gr = StableGraph::<_, _>::with_capacity(0, 0); |
| let a = gr.add_node("a"); |
| let b = gr.add_node("b"); |
| let c = gr.add_node("c"); |
| let d = gr.add_node("d"); |
| gr.add_edge(a, b, 1); |
| gr.add_edge(a, c, 2); |
| gr.add_edge(b, c, 3); |
| gr.add_edge(b, d, 4); |
| gr.add_edge(c, d, 5); |
| gr.add_edge(d, b, 6); |
| gr.add_edge(c, b, 7); |
| println!("{:?}", gr); |
| |
| let mut dfs = Dfs::new(&gr, a); |
| while let Some(next) = dfs.next(&gr) { |
| println!("dfs visit => {:?}, weight={:?}", next, &gr[next]); |
| } |
| } |
| |
| #[test] |
| fn test_retain_nodes() { |
| let mut gr = StableGraph::<_, _>::with_capacity(6, 6); |
| let a = gr.add_node("a"); |
| let f = gr.add_node("f"); |
| let b = gr.add_node("b"); |
| let c = gr.add_node("c"); |
| let d = gr.add_node("d"); |
| let e = gr.add_node("e"); |
| gr.add_edge(a, b, 1); |
| gr.add_edge(a, c, 2); |
| gr.add_edge(b, c, 3); |
| gr.add_edge(b, d, 4); |
| gr.add_edge(c, d, 5); |
| gr.add_edge(d, b, 6); |
| gr.add_edge(c, b, 7); |
| gr.add_edge(d, e, 8); |
| gr.remove_node(f); |
| |
| assert_eq!(gr.node_count(), 5); |
| assert_eq!(gr.edge_count(), 8); |
| gr.retain_nodes(|frozen_gr, ix| frozen_gr[ix] >= "c"); |
| assert_eq!(gr.node_count(), 3); |
| assert_eq!(gr.edge_count(), 2); |
| |
| gr.check_free_lists(); |
| } |