blob: cd5913f203026660ed3fd3b9b742b7a70a783bd2 [file] [log] [blame]
//! `GraphMap<N, E, Ty>` is a graph datastructure where node values are mapping
//! keys.
use std::cmp::Ordering;
use std::hash::{self, Hash};
use std::iter::{
Cloned,
DoubleEndedIterator,
};
use std::slice::{
Iter,
};
use std::fmt;
use std::ops::{Index, IndexMut, Deref};
use std::iter::FromIterator;
use std::marker::PhantomData;
use ordermap::OrderMap;
use ordermap::{
Iter as OrderMapIter, IterMut as OrderMapIterMut
};
use ordermap::Keys;
use {
EdgeType,
Directed,
Undirected,
Direction,
Incoming,
Outgoing,
};
use IntoWeightedEdge;
use visit::{IntoNodeIdentifiers, NodeCount, IntoNodeReferences, NodeIndexable};
use visit::{NodeCompactIndexable, IntoEdgeReferences, IntoEdges};
use graph::Graph;
use graph::node_index;
/// A `GraphMap` with undirected edges.
///
/// For example, an edge between *1* and *2* is equivalent to an edge between
/// *2* and *1*.
pub type UnGraphMap<N, E> = GraphMap<N, E, Undirected>;
/// A `GraphMap` with directed edges.
///
/// For example, an edge from *1* to *2* is distinct from an edge from *2* to
/// *1*.
pub type DiGraphMap<N, E> = GraphMap<N, E, Directed>;
/// `GraphMap<N, E, Ty>` is a graph datastructure using an associative array
/// of its node weights `N`.
///
/// It uses an combined adjacency list and sparse adjacency matrix
/// representation, using **O(|V| + |E|)** space, and allows testing for edge
/// existance in constant time.
///
/// `GraphMap` is parameterized over:
///
/// - Associated data `N` for nodes and `E` for edges, called *weights*.
/// - The node weight `N` must implement `Copy` and will be used as node
/// identifier, duplicated into several places in the data structure.
/// It must be suitable as a hash table key (implementing `Eq + Hash`).
/// The node type must also implement `Ord` so that the implementation can
/// order the pair (`a`, `b`) for an edge connecting any two nodes `a` and `b`.
/// - `E` can be of arbitrary type.
/// - Edge type `Ty` that determines whether the graph edges are directed or
/// undirected.
///
/// You can use the type aliases `UnGraphMap` and `DiGraphMap` for convenience.
///
/// `GraphMap` does not allow parallel edges, but self loops are allowed.
///
/// Depends on crate feature `graphmap` (default).
#[derive(Clone)]
pub struct GraphMap<N, E, Ty> {
nodes: OrderMap<N, Vec<(N, CompactDirection)>>,
edges: OrderMap<(N, N), E>,
ty: PhantomData<Ty>,
}
impl<N: Eq + Hash + fmt::Debug, E: fmt::Debug, Ty: EdgeType> fmt::Debug for GraphMap<N, E, Ty> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.nodes.fmt(f)
}
}
/// A trait group for `GraphMap`'s node identifier.
pub trait NodeTrait : Copy + Ord + Hash {}
impl<N> NodeTrait for N where N: Copy + Ord + Hash {}
// non-repr(usize) version of Direction
#[derive(Copy, Clone, Debug, PartialEq)]
enum CompactDirection {
Outgoing,
Incoming,
}
impl From<Direction> for CompactDirection {
fn from(d: Direction) -> Self {
match d {
Outgoing => CompactDirection::Outgoing,
Incoming => CompactDirection::Incoming,
}
}
}
impl PartialEq<Direction> for CompactDirection {
fn eq(&self, rhs: &Direction) -> bool {
(*self as usize) == (*rhs as usize)
}
}
impl<N, E, Ty> GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
/// Create a new `GraphMap`
pub fn new() -> Self {
Self::default()
}
/// Create a new `GraphMap` with estimated capacity.
pub fn with_capacity(nodes: usize, edges: usize) -> Self {
GraphMap {
nodes: OrderMap::with_capacity(nodes),
edges: OrderMap::with_capacity(edges),
ty: PhantomData,
}
}
/// Return the current node and edge capacity of the graph.
pub fn capacity(&self) -> (usize, usize) {
(self.nodes.capacity(), self.edges.capacity())
}
/// Use their natual order to map the node pair (a, b) to a canonical edge id.
#[inline]
fn edge_key(a: N, b: N) -> (N, N) {
if Ty::is_directed() {
(a, b)
} else {
if a <= b { (a, b) } else { (b, a) }
}
}
/// Whether the graph has directed edges.
pub fn is_directed(&self) -> bool {
Ty::is_directed()
}
/// Create a new `GraphMap` from an iterable of edges.
///
/// Node values are taken directly from the list.
/// Edge weights `E` may either be specified in the list,
/// or they are filled with default values.
///
/// Nodes are inserted automatically to match the edges.
///
/// ```
/// use petgraph::graphmap::UnGraphMap;
///
/// // Create a new undirected GraphMap.
/// // Use a type hint to have `()` be the edge weight type.
/// let gr = UnGraphMap::<_, ()>::from_edges(&[
/// (0, 1), (0, 2), (0, 3),
/// (1, 2), (1, 3),
/// (2, 3),
/// ]);
/// ```
pub fn from_edges<I>(iterable: I) -> Self
where I: IntoIterator,
I::Item: IntoWeightedEdge<E, NodeId=N>
{
Self::from_iter(iterable)
}
/// Return the number of nodes in the graph.
pub fn node_count(&self) -> usize {
self.nodes.len()
}
/// Return the number of edges in the graph.
pub fn edge_count(&self) -> usize {
self.edges.len()
}
/// Remove all nodes and edges
pub fn clear(&mut self) {
self.nodes.clear();
self.edges.clear();
}
/// Add node `n` to the graph.
pub fn add_node(&mut self, n: N) -> N {
self.nodes.entry(n).or_insert(Vec::new());
n
}
/// Return `true` if node `n` was removed.
pub fn remove_node(&mut self, n: N) -> bool {
let links = match self.nodes.swap_remove(&n) {
None => return false,
Some(sus) => sus,
};
for (succ, _) in links {
// remove all successor links
self.remove_single_edge(&succ, &n, Incoming);
// Remove all edge values
self.edges.swap_remove(&Self::edge_key(n, succ));
}
true
}
/// Return `true` if the node is contained in the graph.
pub fn contains_node(&self, n: N) -> bool {
self.nodes.contains_key(&n)
}
/// Add an edge connecting `a` and `b` to the graph, with associated
/// data `weight`. For a directed graph, the edge is directed from `a`
/// to `b`.
///
/// Inserts nodes `a` and/or `b` if they aren't already part of the graph.
///
/// Return `None` if the edge did not previously exist, otherwise,
/// the associated data is updated and the old value is returned
/// as `Some(old_weight)`.
///
/// ```
/// // Create a GraphMap with directed edges, and add one edge to it
/// use petgraph::graphmap::DiGraphMap;
///
/// let mut g = DiGraphMap::new();
/// g.add_edge("x", "y", -1);
/// assert_eq!(g.node_count(), 2);
/// assert_eq!(g.edge_count(), 1);
/// assert!(g.contains_edge("x", "y"));
/// assert!(!g.contains_edge("y", "x"));
/// ```
pub fn add_edge(&mut self, a: N, b: N, weight: E) -> Option<E> {
if let old @ Some(_) = self.edges.insert(Self::edge_key(a, b), weight) {
old
} else {
// insert in the adjacency list if it's a new edge
self.nodes.entry(a)
.or_insert_with(|| Vec::with_capacity(1))
.push((b, CompactDirection::Outgoing));
if a != b {
// self loops don't have the Incoming entry
self.nodes.entry(b)
.or_insert_with(|| Vec::with_capacity(1))
.push((a, CompactDirection::Incoming));
}
None
}
}
/// Remove edge relation from a to b
///
/// Return `true` if it did exist.
fn remove_single_edge(&mut self, a: &N, b: &N, dir: Direction) -> bool {
match self.nodes.get_mut(a) {
None => false,
Some(sus) => {
if Ty::is_directed() {
match sus.iter().position(|elt| elt == &(*b, CompactDirection::from(dir))) {
Some(index) => { sus.swap_remove(index); true }
None => false,
}
} else {
match sus.iter().position(|elt| &elt.0 == b) {
Some(index) => { sus.swap_remove(index); true }
None => false,
}
}
}
}
}
/// Remove edge from `a` to `b` from the graph and return the edge weight.
///
/// Return `None` if the edge didn't exist.
///
/// ```
/// // Create a GraphMap with undirected edges, and add and remove an edge.
/// use petgraph::graphmap::UnGraphMap;
///
/// let mut g = UnGraphMap::new();
/// g.add_edge("x", "y", -1);
///
/// let edge_data = g.remove_edge("y", "x");
/// assert_eq!(edge_data, Some(-1));
/// assert_eq!(g.edge_count(), 0);
/// ```
pub fn remove_edge(&mut self, a: N, b: N) -> Option<E> {
let exist1 = self.remove_single_edge(&a, &b, Outgoing);
let exist2 = if a != b {
self.remove_single_edge(&b, &a, Incoming)
} else { exist1 };
let weight = self.edges.remove(&Self::edge_key(a, b));
debug_assert!(exist1 == exist2 && exist1 == weight.is_some());
weight
}
/// Return `true` if the edge connecting `a` with `b` is contained in the graph.
pub fn contains_edge(&self, a: N, b: N) -> bool {
self.edges.contains_key(&Self::edge_key(a, b))
}
/// Return an iterator over the nodes of the graph.
///
/// Iterator element type is `N`.
pub fn nodes(&self) -> Nodes<N> {
Nodes{iter: self.nodes.keys().cloned()}
}
/// Return an iterator of all nodes with an edge starting from `a`.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `N`.
pub fn neighbors(&self, a: N) -> Neighbors<N, Ty> {
Neighbors {
iter: match self.nodes.get(&a) {
Some(neigh) => neigh.iter(),
None => [].iter(),
},
ty: self.ty,
}
}
/// Return an iterator of all neighbors that have an edge between them and
/// `a`, in the specified direction.
/// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
///
/// - `Directed`, `Outgoing`: All edges from `a`.
/// - `Directed`, `Incoming`: All edges to `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `N`.
pub fn neighbors_directed(&self, a: N, dir: Direction)
-> NeighborsDirected<N, Ty>
{
NeighborsDirected {
iter: match self.nodes.get(&a) {
Some(neigh) => neigh.iter(),
None => [].iter(),
},
dir: dir,
ty: self.ty,
}
}
/// Return an iterator of target nodes with an edge starting from `a`,
/// paired with their respective edge weights.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `(N, &E)`.
pub fn edges(&self, from: N) -> Edges<N, E, Ty> {
Edges {
from: from,
iter: self.neighbors(from),
edges: &self.edges,
}
}
/// Return a reference to the edge weight connecting `a` with `b`, or
/// `None` if the edge does not exist in the graph.
pub fn edge_weight(&self, a: N, b: N) -> Option<&E> {
self.edges.get(&Self::edge_key(a, b))
}
/// Return a mutable reference to the edge weight connecting `a` with `b`, or
/// `None` if the edge does not exist in the graph.
pub fn edge_weight_mut(&mut self, a: N, b: N) -> Option<&mut E> {
self.edges.get_mut(&Self::edge_key(a, b))
}
/// Return an iterator over all edges of the graph with their weight in arbitrary order.
///
/// Iterator element type is `(N, N, &E)`
pub fn all_edges(&self) -> AllEdges<N, E, Ty> {
AllEdges {
inner: self.edges.iter(),
ty: self.ty,
}
}
/// Return an iterator over all edges of the graph in arbitrary order, with a mutable reference
/// to their weight.
///
/// Iterator element type is `(N, N, &mut E)`
pub fn all_edges_mut(&mut self) -> AllEdgesMut<N, E, Ty> {
AllEdgesMut {
inner: self.edges.iter_mut(),
ty: self.ty,
}
}
/// Return a `Graph` that corresponds to this `GraphMap`.
///
/// 1. Note that node and edge indices in the `Graph` have nothing in common
/// with the `GraphMap`s node weights `N`. The node weights `N` are used as
/// node weights in the resulting `Graph`, too.
/// 2. Note that the index type is user-chosen.
///
/// Computes in **O(|V| + |E|)** time (average).
///
/// **Panics** if the number of nodes or edges does not fit with
/// the resulting graph's index type.
pub fn into_graph<Ix>(self) -> Graph<N, E, Ty, Ix>
where Ix: ::graph::IndexType,
{
// assuming two successive iterations of the same hashmap produce the same order
let mut gr = Graph::with_capacity(self.node_count(), self.edge_count());
for (&node, _) in &self.nodes {
gr.add_node(node);
}
for ((a, b), edge_weight) in self.edges {
let (ai, _, _) = self.nodes.get_pair_index(&a).unwrap();
let (bi, _, _) = self.nodes.get_pair_index(&b).unwrap();
gr.add_edge(node_index(ai), node_index(bi), edge_weight);
}
gr
}
}
/// Create a new `GraphMap` from an iterable of edges.
impl<N, E, Ty, Item> FromIterator<Item> for GraphMap<N, E, Ty>
where Item: IntoWeightedEdge<E, NodeId=N>,
N: NodeTrait,
Ty: EdgeType,
{
fn from_iter<I>(iterable: I) -> Self
where I: IntoIterator<Item=Item>,
{
let iter = iterable.into_iter();
let (low, _) = iter.size_hint();
let mut g = Self::with_capacity(0, low);
g.extend(iter);
g
}
}
/// Extend the graph from an iterable of edges.
///
/// Nodes are inserted automatically to match the edges.
impl<N, E, Ty, Item> Extend<Item> for GraphMap<N, E, Ty>
where Item: IntoWeightedEdge<E, NodeId=N>,
N: NodeTrait,
Ty: EdgeType,
{
fn extend<I>(&mut self, iterable: I)
where I: IntoIterator<Item=Item>,
{
let iter = iterable.into_iter();
let (low, _) = iter.size_hint();
self.edges.reserve(low);
for elt in iter {
let (source, target, weight) = elt.into_weighted_edge();
self.add_edge(source, target, weight);
}
}
}
macro_rules! iterator_wrap {
($name: ident <$($typarm:tt),*> where { $($bounds: tt)* }
item: $item: ty,
iter: $iter: ty,
) => (
pub struct $name <$($typarm),*> where $($bounds)* {
iter: $iter,
}
impl<$($typarm),*> Iterator for $name <$($typarm),*>
where $($bounds)*
{
type Item = $item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
);
}
iterator_wrap! {
Nodes <'a, N> where { N: 'a + NodeTrait }
item: N,
iter: Cloned<Keys<'a, N, Vec<(N, CompactDirection)>>>,
}
pub struct Neighbors<'a, N, Ty = Undirected>
where N: 'a,
Ty: EdgeType,
{
iter: Iter<'a, (N, CompactDirection)>,
ty: PhantomData<Ty>,
}
impl<'a, N, Ty> Iterator for Neighbors<'a, N, Ty>
where N: NodeTrait,
Ty: EdgeType
{
type Item = N;
fn next(&mut self) -> Option<N> {
if Ty::is_directed() {
(&mut self.iter)
.filter_map(|&(n, dir)| if dir == Outgoing {
Some(n)
} else { None })
.next()
} else {
self.iter.next().map(|&(n, _)| n)
}
}
}
pub struct NeighborsDirected<'a, N, Ty>
where N: 'a,
Ty: EdgeType,
{
iter: Iter<'a, (N, CompactDirection)>,
dir: Direction,
ty: PhantomData<Ty>,
}
impl<'a, N, Ty> Iterator for NeighborsDirected<'a, N, Ty>
where N: NodeTrait,
Ty: EdgeType
{
type Item = N;
fn next(&mut self) -> Option<N> {
if Ty::is_directed() {
let self_dir = self.dir;
(&mut self.iter)
.filter_map(move |&(n, dir)| if dir == self_dir {
Some(n)
} else { None })
.next()
} else {
self.iter.next().map(|&(n, _)| n)
}
}
}
pub struct Edges<'a, N, E: 'a, Ty>
where N: 'a + NodeTrait,
Ty: EdgeType
{
from: N,
edges: &'a OrderMap<(N, N), E>,
iter: Neighbors<'a, N, Ty>,
}
impl<'a, N, E, Ty> Iterator for Edges<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, N, &'a E);
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next() {
None => None,
Some(b) => {
let a = self.from;
match self.edges.get(&GraphMap::<N, E, Ty>::edge_key(a, b)) {
None => unreachable!(),
Some(edge) => {
Some((a, b, edge))
}
}
}
}
}
}
impl<'a, N: 'a, E: 'a, Ty> IntoEdgeReferences for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type EdgeRef = (N, N, &'a E);
type EdgeReferences = AllEdges<'a, N, E, Ty>;
fn edge_references(self) -> Self::EdgeReferences {
self.all_edges()
}
}
pub struct AllEdges<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
inner: OrderMapIter<'a, (N, N), E>,
ty: PhantomData<Ty>,
}
impl<'a, N, E, Ty> Iterator for AllEdges<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, N, &'a E);
fn next(&mut self) -> Option<Self::Item>
{
match self.inner.next() {
None => None,
Some((&(a, b), v)) => Some((a, b, v))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
fn count(self) -> usize {
self.inner.count()
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.inner.nth(n).map(|(&(n1, n2), weight)| (n1, n2, weight))
}
fn last(self) -> Option<Self::Item> {
self.inner.last().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
impl<'a, N, E, Ty> DoubleEndedIterator for AllEdges<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.inner.next_back().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
pub struct AllEdgesMut<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
inner: OrderMapIterMut<'a, (N, N), E>,
ty: PhantomData<Ty>,
}
impl<'a, N, E, Ty> Iterator for AllEdgesMut<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, N, &'a mut E);
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
fn count(self) -> usize {
self.inner.count()
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.inner.nth(n).map(|(&(n1, n2), weight)| (n1, n2, weight))
}
fn last(self) -> Option<Self::Item> {
self.inner.last().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
impl<'a, N, E, Ty> DoubleEndedIterator for AllEdgesMut<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.inner.next_back().map(|(&(n1, n2), weight)| (n1, n2, weight))
}
}
impl<'a, N: 'a, E: 'a, Ty> IntoEdges for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type Edges = Edges<'a, N, E, Ty>;
fn edges(self, a: Self::NodeId) -> Self::Edges {
self.edges(a)
}
}
/// Index `GraphMap` by node pairs to access edge weights.
impl<N, E, Ty> Index<(N, N)> for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type Output = E;
fn index(&self, index: (N, N)) -> &E
{
let index = Self::edge_key(index.0, index.1);
self.edge_weight(index.0, index.1).expect("GraphMap::index: no such edge")
}
}
/// Index `GraphMap` by node pairs to access edge weights.
impl<N, E, Ty> IndexMut<(N, N)> for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn index_mut(&mut self, index: (N, N)) -> &mut E {
let index = Self::edge_key(index.0, index.1);
self.edge_weight_mut(index.0, index.1).expect("GraphMap::index: no such edge")
}
}
/// Create a new empty `GraphMap`.
impl<N, E, Ty> Default for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn default() -> Self { GraphMap::with_capacity(0, 0) }
}
/// A reference that is hashed and compared by its pointer value.
///
/// `Ptr` is used for certain configurations of `GraphMap`,
/// in particular in the combination where the node type for
/// `GraphMap` is something of type for example `Ptr(&Cell<T>)`,
/// with the `Cell<T>` being `TypedArena` allocated.
pub struct Ptr<'b, T: 'b>(pub &'b T);
impl<'b, T> Copy for Ptr<'b, T> {}
impl<'b, T> Clone for Ptr<'b, T>
{
fn clone(&self) -> Self { *self }
}
fn ptr_eq<T>(a: *const T, b: *const T) -> bool {
a == b
}
impl<'b, T> PartialEq for Ptr<'b, T>
{
/// Ptr compares by pointer equality, i.e if they point to the same value
fn eq(&self, other: &Ptr<'b, T>) -> bool {
ptr_eq(self.0, other.0)
}
}
impl<'b, T> PartialOrd for Ptr<'b, T>
{
fn partial_cmp(&self, other: &Ptr<'b, T>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<'b, T> Ord for Ptr<'b, T>
{
/// Ptr is ordered by pointer value, i.e. an arbitrary but stable and total order.
fn cmp(&self, other: &Ptr<'b, T>) -> Ordering {
let a = self.0 as *const _;
let b = other.0 as *const _;
a.cmp(&b)
}
}
impl<'b, T> Deref for Ptr<'b, T> {
type Target = T;
fn deref(&self) -> &T {
self.0
}
}
impl<'b, T> Eq for Ptr<'b, T> {}
impl<'b, T> Hash for Ptr<'b, T>
{
fn hash<H: hash::Hasher>(&self, st: &mut H)
{
let ptr = (self.0) as *const T;
ptr.hash(st)
}
}
impl<'b, T: fmt::Debug> fmt::Debug for Ptr<'b, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl<'a, N, E: 'a, Ty> IntoNodeIdentifiers for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type NodeIdentifiers = NodeIdentifiers<'a, N, E, Ty>;
fn node_identifiers(self) -> Self::NodeIdentifiers {
NodeIdentifiers {
iter: self.nodes.iter(),
ty: self.ty,
edge_ty: PhantomData,
}
}
}
impl<N, E, Ty> NodeCount for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn node_count(&self) -> usize {
(*self).node_count()
}
}
pub struct NodeIdentifiers<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
iter: OrderMapIter<'a, N, Vec<(N, CompactDirection)>>,
ty: PhantomData<Ty>,
edge_ty: PhantomData<E>,
}
impl<'a, N, E, Ty> Iterator for NodeIdentifiers<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = N;
fn next(&mut self) -> Option<Self::Item>
{
self.iter.next().map(|(&n, _)| n)
}
}
impl<'a, N, E, Ty> IntoNodeReferences for &'a GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
type NodeRef = (N, &'a N);
type NodeReferences = NodeReferences<'a, N, E, Ty>;
fn node_references(self) -> Self::NodeReferences {
NodeReferences {
iter: self.nodes.iter(),
ty: self.ty,
edge_ty: PhantomData,
}
}
}
pub struct NodeReferences<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
iter: OrderMapIter<'a, N, Vec<(N, CompactDirection)>>,
ty: PhantomData<Ty>,
edge_ty: PhantomData<E>,
}
impl<'a, N, E, Ty> Iterator for NodeReferences<'a, N, E, Ty>
where N: 'a + NodeTrait, E: 'a,
Ty: EdgeType,
{
type Item = (N, &'a N);
fn next(&mut self) -> Option<Self::Item>
{
self.iter.next().map(|(n, _)| (*n, n))
}
}
impl<N, E, Ty> NodeIndexable for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
fn node_bound(&self) -> usize { self.node_count() }
fn to_index(&self, ix: Self::NodeId) -> usize {
let (i, _, _) = self.nodes.get_pair_index(&ix).unwrap();
i
}
fn from_index(&self, ix: usize) -> Self::NodeId {
let (&key, _) = self.nodes.get_index(ix).unwrap();
key
}
}
impl<N, E, Ty> NodeCompactIndexable for GraphMap<N, E, Ty>
where N: NodeTrait,
Ty: EdgeType,
{
}