blob: 16fa6895fa4c51106b3bd3278c1ec3cb440b45e9 [file] [log] [blame]
//! **UnionFind\<K\>** is a disjoint-set data structure.
use std::num::Int;
use super::graph::IndexType;
/// **UnionFind\<K\>** is a disjoint-set data structure. It tracks set membership of *n* elements
/// indexed from *0* to *n - 1*. The scalar type is **K** which must be an unsigned integer type.
///
/// http://en.wikipedia.org/wiki/Disjoint-set_data_structure
///
/// Too awesome not to quote:
///
/// “The amortized time per operation is **O(α(n))** where **α(n)** is the
/// inverse of **f(x) = A(x, x)** with **A** being the extremely fast-growing Ackermann function.”
#[derive(Debug, Clone)]
pub struct UnionFind<K>
{
// For element at index *i*, store the index of its parent; the representative itself
// stores its own index. This forms equivalence classes which are the disjoint sets, each
// with a unique representative.
parent: Vec<K>,
// It is a balancing tree structure,
// so the ranks are logarithmic in the size of the container -- a byte is more than enough.
//
// Rank is separated out both to save space and to save cache in when searching in the parent
// vector.
rank: Vec<u8>,
}
#[inline]
fn to_uint<K: IndexType>(x: K) -> usize { x.index() }
#[inline]
unsafe fn get_unchecked<K>(xs: &[K], index: usize) -> &K
{
debug_assert!(index < xs.len());
xs.get_unchecked(index)
}
impl<K> UnionFind<K> where K: IndexType + Int
{
/// Create a new **UnionFind** of **n** disjoint sets.
pub fn new(n: usize) -> Self
{
let mut parent = Vec::with_capacity(n);
let mut rank = Vec::with_capacity(n);
for _ in 0..n {
rank.push(0)
}
// unroll the first iteration to avoid wraparound in i for K=u8, n=256.
let mut i: K = Int::zero();
if n > 0 {
parent.push(i);
}
for _ in 1..n {
i = i + Int::one();
parent.push(i);
}
UnionFind{parent: parent, rank: rank}
}
/// Return the representative for **x**.
///
/// **Panics** if **x** is out of bounds.
pub fn find(&self, x: K) -> K
{
assert!(to_uint(x) < self.parent.len());
unsafe {
let mut x = x;
loop {
// Use unchecked indexing because we can trust the internal set ids.
let xparent = *get_unchecked(&self.parent, to_uint(x));
if xparent == x {
break
}
x = xparent;
}
x
}
}
/// Return the representative for **x**.
///
/// Write back the found representative, flattening the internal
/// datastructure in the process and quicken future lookups.
///
/// **Panics** if **x** is out of bounds.
pub fn find_mut(&mut self, x: K) -> K
{
assert!(to_uint(x) < self.parent.len());
unsafe {
self.find_mut_recursive(x)
}
}
unsafe fn find_mut_recursive(&mut self, x: K) -> K
{
let xparent = *get_unchecked(&self.parent, to_uint(x));
if xparent != x {
let xrep = self.find_mut_recursive(xparent);
let xparent = self.parent.get_unchecked_mut(to_uint(x));
*xparent = xrep;
*xparent
} else {
xparent
}
}
/// Unify the two sets containing **x** and **y**.
///
/// Return **false** if the sets were already the same, **true** if they were unified.
///
/// **Panics** if **x** or **y** is out of bounds.
pub fn union(&mut self, x: K, y: K) -> bool
{
if x == y {
return false
}
let xrep = self.find_mut(x);
let yrep = self.find_mut(y);
if xrep == yrep {
return false
}
let xrepu = to_uint(xrep);
let yrepu = to_uint(yrep);
let xrank = self.rank[xrepu];
let yrank = self.rank[yrepu];
// The rank corresponds roughly to the depth of the treeset, so put the
// smaller set below the larger
if xrank < yrank {
self.parent[xrepu] = yrep;
} else if xrank > yrank {
self.parent[yrepu] = xrep;
} else {
// put y below x when equal.
self.parent[yrepu] = xrep;
self.rank[xrepu] += 1;
}
true
}
/// Return a vector mapping each element to its representative.
pub fn into_labeling(mut self) -> Vec<K>
{
// write in the labeling of each element
unsafe {
for ix in (0..self.parent.len()) {
let k = *get_unchecked(&self.parent, ix);
let xrep = self.find_mut_recursive(k);
*self.parent.get_unchecked_mut(ix) = xrep;
}
}
self.parent
}
}