blob: c4bdde4b7449cb935c5fe1bd0ccc2a8d9e2eac27 [file] [log] [blame]
use std::marker;
use std::collections::BitVec;
use super::{
EdgeType,
Incoming,
};
use super::graph::{
Graph,
IndexType,
NodeIndex,
};
use super::visit::GetAdjacencyMatrix;
#[derive(Debug)]
struct Vf2State<Ty, Ix> {
/// The current mapping M(s) of nodes from G0 → G1 and G1 → G0,
/// NodeIndex::end() for no mapping.
mapping: Vec<NodeIndex<Ix>>,
/// out[i] is non-zero if i is in either M_0(s) or Tout_0(s)
/// These are all the next vertices that are not mapped yet, but
/// have an outgoing edge from the mapping.
out: Vec<usize>,
/// ins[i] is non-zero if i is in either M_0(s) or Tin_0(s)
/// These are all the incoming vertices, those not mapped yet, but
/// have an edge from them into the mapping.
/// Unused if graph is undirected -- it's identical with out in that case.
ins: Vec<usize>,
out_size: usize,
ins_size: usize,
adjacency_matrix: BitVec,
generation: usize,
_etype: marker::PhantomData<Ty>,
}
impl<Ty, Ix> Vf2State<Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
{
pub fn new<N, E>(g: &Graph<N, E, Ty, Ix>) -> Self
{
let c0 = g.node_count();
let mut state = Vf2State {
mapping: Vec::with_capacity(c0),
out: Vec::with_capacity(c0),
ins: Vec::with_capacity(c0 * (g.is_directed() as usize)),
out_size: 0,
ins_size: 0,
adjacency_matrix: g.adjacency_matrix(),
generation: 0,
_etype: marker::PhantomData,
};
for _ in (0..c0) {
state.mapping.push(NodeIndex::end());
state.out.push(0);
if <Ty as EdgeType>::is_directed() {
state.ins.push(0);
}
}
state
}
/// Return **true** if we have a complete mapping
pub fn is_complete(&self) -> bool
{
self.generation == self.mapping.len()
}
/// Add mapping **from** <-> **to** to the state.
pub fn push_mapping<N, E>(&mut self, from: NodeIndex<Ix>, to: NodeIndex<Ix>,
g: &Graph<N, E, Ty, Ix>)
{
self.generation += 1;
let s = self.generation;
self.mapping[from.index()] = to;
// update T0 & T1 ins/outs
// T0out: Node in G0 not in M0 but successor of a node in M0.
// st.out[0]: Node either in M0 or successor of M0
for ix in g.neighbors(from) {
if self.out[ix.index()] == 0 {
self.out[ix.index()] = s;
}
self.out_size += 1;
}
if g.is_directed() {
for ix in g.neighbors_directed(from, Incoming) {
if self.ins[ix.index()] == 0 {
self.ins[ix.index()] = s;
}
}
self.ins_size += 1;
}
}
/// Restore the state to before the last added mapping
pub fn pop_mapping<N, E>(&mut self, from: NodeIndex<Ix>,
g: &Graph<N, E, Ty, Ix>)
{
let s = self.generation;
self.generation -= 1;
// undo (n, m) mapping
self.mapping[from.index()] = NodeIndex::end();
// unmark in ins and outs
for ix in g.neighbors(from) {
if self.out[ix.index()] == s {
self.out[ix.index()] = 0;
}
self.out_size -= 1;
}
if g.is_directed() {
for ix in g.neighbors_directed(from, Incoming) {
if self.ins[ix.index()] == s {
self.ins[ix.index()] = 0;
}
}
self.ins_size -= 1;
}
}
/// Find the next (least) node in the Tout set.
pub fn next_out_index(&self, from_index: usize) -> Option<usize>
{
self.out[from_index..].iter()
.enumerate()
.filter(|&(index, elt)| *elt > 0 && self.mapping[from_index + index] == NodeIndex::end())
.next()
.map(|(index, _)| index)
}
/// Find the next (least) node in the Tin set.
pub fn next_in_index(&self, from_index: usize) -> Option<usize>
{
if !<Ty as EdgeType>::is_directed() {
return None
}
self.ins[from_index..].iter()
.enumerate()
.filter(|&(index, elt)| *elt > 0 && self.mapping[from_index + index] == NodeIndex::end())
.next()
.map(|(index, _)| index)
}
/// Find the next (least) node in the N - M set.
pub fn next_rest_index(&self, from_index: usize) -> Option<usize>
{
self.mapping[from_index..].iter()
.enumerate()
.filter(|&(_, elt)| *elt == NodeIndex::end())
.next()
.map(|(index, _)| index)
}
}
/// Return **true** if the graphs **g0** and **g1** are isomorphic.
///
/// Using the VF2 algorithm.
///
/// Not implemented: Vertex or edge weight matching.
///
/// ## References
///
/// * A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs
/// Luigi P. Cordella, Pasquale Foggia, Carlo Sansone,
/// and Mario Vento
pub fn is_isomorphic<N, E, Ty, Ix>(g0: &Graph<N, E, Ty, Ix>,
g1: &Graph<N, E, Ty, Ix>) -> bool where
Ty: EdgeType,
Ix: IndexType,
{
if g0.node_count() != g1.node_count() || g0.edge_count() != g1.edge_count() {
return false
}
/// Return Some(bool) if isomorphism is decided, else None.
fn try_match<N, E, Ty, Ix>(st: &mut [Vf2State<Ty, Ix>; 2],
g0: &Graph<N, E, Ty, Ix>,
g1: &Graph<N, E, Ty, Ix>) -> Option<bool> where
Ty: EdgeType,
Ix: IndexType,
{
let g = [g0, g1];
let graph_indices = 0..2;
let end = NodeIndex::end();
// if all are mapped -- we are done and have an iso
if st[0].is_complete() {
return Some(true)
}
// A "depth first" search of a valid mapping from graph 1 to graph 2
// F(s, n, m) -- evaluate state s and add mapping n <-> m
// Find least T1out node (in st.out[1] but not in M[1])
#[derive(Copy, Clone, PartialEq, Debug)]
enum OpenList {
Out,
In,
Other,
}
let mut open_list = OpenList::Out;
let mut to_index;
let mut from_index = None;
// Try the out list
to_index = st[1].next_out_index(0);
if to_index.is_some() {
from_index = st[0].next_out_index(0);
open_list = OpenList::Out;
}
// Try the in list
if to_index.is_none() || from_index.is_none() {
to_index = st[1].next_in_index(0);
if to_index.is_some() {
from_index = st[0].next_in_index(0);
open_list = OpenList::In;
}
}
// Try the other list -- disconnected graph
if to_index.is_none() || from_index.is_none() {
to_index = st[1].next_rest_index(0);
if to_index.is_some() {
from_index = st[0].next_rest_index(0);
open_list = OpenList::Other;
}
}
let (cand0, cand1) = match (from_index, to_index) {
(Some(n), Some(m)) => (n, m),
// No more candidates
_ => return None,
};
let mut nx = NodeIndex::new(cand0);
let mx = NodeIndex::new(cand1);
let mut first = true;
'candidates: loop {
if !first {
// Find the next node index to try on the `from` side of the mapping
let start = nx.index() + 1;
let cand0 = match open_list {
OpenList::Out => st[0].next_out_index(start),
OpenList::In => st[0].next_in_index(start),
OpenList::Other => st[0].next_rest_index(start),
}.map(|c| c + start); // compensate for start offset.
nx = match cand0 {
None => break, // no more candidates
Some(ix) => NodeIndex::new(ix),
};
debug_assert!(nx.index() >= start);
}
first = false;
let nodes = [nx, mx];
/*
print!("Mapping state: ");
for (index, nmap) in st.mapping[0].iter().enumerate() {
if *nmap == end {
continue;
}
print!("{} => {}, ", index, nmap.index());
}
println!("{} => {}", nx.index(), mx.index());
*/
// Check syntactic feasibility of mapping by ensuring adjacencies
// of nx map to adjacencies of mx.
//
// nx == map to => mx
//
// R_succ
//
// Check that every neighbor of nx is mapped to a neighbor of mx,
// then check the reverse, from mx to nx. Check that they have the same
// count of edges.
//
// Note: We want to check the lookahead measures here if we can,
// R_out: Equal for G0, G1: Card(Succ(G, n) ^ Tout); for both Succ and Pred
// R_in: Same with Tin
// R_new: Equal for G0, G1: Ñ n Pred(G, n); both Succ and Pred,
// Ñ is G0 - M - Tin - Tout
// last attempt to add these did not speed up any of the testcases
let mut succ_count = [0, 0];
for j in graph_indices.clone() {
for n_neigh in g[j].neighbors(nodes[j]) {
succ_count[j] += 1;
let m_neigh = st[j].mapping[n_neigh.index()];
if m_neigh == end {
continue;
}
let has_edge = g[1-j].is_adjacent(&st[1-j].adjacency_matrix, nodes[1-j], m_neigh);
if !has_edge {
continue 'candidates;
}
}
}
if succ_count[0] != succ_count[1] {
continue 'candidates;
}
// R_pred
if g[0].is_directed() {
let mut pred_count = [0, 0];
for j in graph_indices.clone() {
for n_neigh in g[j].neighbors_directed(nodes[j], Incoming) {
pred_count[j] += 1;
let m_neigh = st[j].mapping[n_neigh.index()];
if m_neigh == end {
continue;
}
let has_edge = g[1-j].is_adjacent(&st[1-j].adjacency_matrix, m_neigh, nodes[1-j]);
if !has_edge {
continue 'candidates;
}
}
}
if pred_count[0] != pred_count[1] {
continue 'candidates;
}
}
// Add mapping nx <-> mx to the state
for j in graph_indices.clone() {
st[j].push_mapping(nodes[j], nodes[1-j], g[j]);
}
// Check counts in Tin/Tout
if st[0].out_size == st[0].out_size ||
st[1].ins_size == st[1].ins_size
{
// Recurse
match try_match(st, g0, g1) {
None => {}
result => return result,
}
}
// Restore state.
for j in graph_indices.clone() {
st[j].pop_mapping(nodes[j], g[j]);
}
}
None
}
let mut st = [Vf2State::new(g0), Vf2State::new(g1)];
try_match(&mut st, g0, g1).unwrap_or(false)
}