| #![cfg(feature="quickcheck")] |
| #[macro_use] extern crate quickcheck; |
| extern crate rand; |
| extern crate petgraph; |
| #[macro_use] extern crate defmac; |
| |
| extern crate odds; |
| extern crate itertools; |
| |
| mod utils; |
| |
| use utils::Small; |
| |
| use odds::prelude::*; |
| use std::collections::HashSet; |
| use std::hash::Hash; |
| |
| use rand::Rng; |
| use itertools::assert_equal; |
| use itertools::cloned; |
| |
| use petgraph::prelude::*; |
| use petgraph::{ |
| EdgeType, |
| }; |
| use petgraph::dot::{Dot, Config}; |
| use petgraph::algo::{ |
| condensation, |
| min_spanning_tree, |
| is_cyclic_undirected, |
| is_cyclic_directed, |
| is_isomorphic, |
| is_isomorphic_matching, |
| toposort, |
| kosaraju_scc, |
| tarjan_scc, |
| dijkstra, |
| bellman_ford, |
| }; |
| use petgraph::visit::{Topo, Reversed}; |
| use petgraph::visit::{ |
| IntoNodeReferences, |
| IntoEdgeReferences, |
| NodeIndexable, |
| EdgeRef, |
| }; |
| use petgraph::data::FromElements; |
| use petgraph::graph::{IndexType, node_index, edge_index}; |
| use petgraph::graphmap::{ |
| NodeTrait, |
| }; |
| |
| fn mst_graph<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) -> Graph<N, E, Undirected, Ix> |
| where Ty: EdgeType, |
| Ix: IndexType, |
| N: Clone, E: Clone + PartialOrd, |
| { |
| Graph::from_elements(min_spanning_tree(&g)) |
| } |
| |
| use std::fmt; |
| |
| quickcheck! { |
| fn mst_directed(g: Small<Graph<(), u32>>) -> bool { |
| // filter out isolated nodes |
| let no_singles = g.filter_map( |
| |nx, w| g.neighbors_undirected(nx).next().map(|_| w), |
| |_, w| Some(w)); |
| for i in no_singles.node_indices() { |
| assert!(no_singles.neighbors_undirected(i).count() > 0); |
| } |
| assert_eq!(no_singles.edge_count(), g.edge_count()); |
| let mst = mst_graph(&no_singles); |
| assert!(!is_cyclic_undirected(&mst)); |
| true |
| } |
| } |
| |
| quickcheck! { |
| fn mst_undirected(g: Graph<(), u32, Undirected>) -> bool { |
| // filter out isolated nodes |
| let no_singles = g.filter_map( |
| |nx, w| g.neighbors_undirected(nx).next().map(|_| w), |
| |_, w| Some(w)); |
| for i in no_singles.node_indices() { |
| assert!(no_singles.neighbors_undirected(i).count() > 0); |
| } |
| assert_eq!(no_singles.edge_count(), g.edge_count()); |
| let mst = mst_graph(&no_singles); |
| assert!(!is_cyclic_undirected(&mst)); |
| true |
| } |
| } |
| |
| quickcheck! { |
| fn reverse_undirected(g: Small<UnGraph<(), ()>>) -> bool { |
| let mut h = (*g).clone(); |
| h.reverse(); |
| is_isomorphic(&g, &h) |
| } |
| } |
| |
| fn assert_graph_consistent<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) |
| where Ty: EdgeType, |
| Ix: IndexType, |
| { |
| assert_eq!(g.node_count(), g.node_indices().count()); |
| assert_eq!(g.edge_count(), g.edge_indices().count()); |
| for edge in g.raw_edges() { |
| assert!(g.find_edge(edge.source(), edge.target()).is_some(), |
| "Edge not in graph! {:?} to {:?}", edge.source(), edge.target()); |
| } |
| } |
| |
| #[test] |
| fn reverse_directed() { |
| fn prop<Ty: EdgeType>(mut g: Graph<(), (), Ty>) -> bool { |
| let node_outdegrees = g.node_indices() |
| .map(|i| g.neighbors_directed(i, Outgoing).count()) |
| .collect::<Vec<_>>(); |
| let node_indegrees = g.node_indices() |
| .map(|i| g.neighbors_directed(i, Incoming).count()) |
| .collect::<Vec<_>>(); |
| |
| g.reverse(); |
| let new_outdegrees = g.node_indices() |
| .map(|i| g.neighbors_directed(i, Outgoing).count()) |
| .collect::<Vec<_>>(); |
| let new_indegrees = g.node_indices() |
| .map(|i| g.neighbors_directed(i, Incoming).count()) |
| .collect::<Vec<_>>(); |
| assert_eq!(node_outdegrees, new_indegrees); |
| assert_eq!(node_indegrees, new_outdegrees); |
| assert_graph_consistent(&g); |
| true |
| } |
| quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); |
| } |
| |
| #[test] |
| fn graph_retain_nodes() { |
| fn prop<Ty: EdgeType>(mut g: Graph<i32, i32, Ty>) -> bool { |
| // Remove all negative nodes, these should be randomly spread |
| let og = g.clone(); |
| let nodes = g.node_count(); |
| let num_negs = g.raw_nodes().iter().filter(|n| n.weight < 0).count(); |
| let mut removed = 0; |
| g.retain_nodes(|g, i| { |
| let keep = g[i] >= 0; |
| if !keep { |
| removed += 1; |
| } |
| keep |
| }); |
| let num_negs_post = g.raw_nodes().iter().filter(|n| n.weight < 0).count(); |
| let num_pos_post = g.raw_nodes().iter().filter(|n| n.weight >= 0).count(); |
| assert_eq!(num_negs_post, 0); |
| assert_eq!(removed, num_negs); |
| assert_eq!(num_negs + g.node_count(), nodes); |
| assert_eq!(num_pos_post, g.node_count()); |
| |
| // check against filter_map |
| let filtered = og.filter_map(|_, w| if *w >= 0 { Some(*w) } else { None }, |
| |_, w| Some(*w)); |
| assert_eq!(g.node_count(), filtered.node_count()); |
| /* |
| println!("Iso of graph with nodes={}, edges={}", |
| g.node_count(), g.edge_count()); |
| */ |
| assert!(is_isomorphic_matching(&filtered, &g, PartialEq::eq, PartialEq::eq)); |
| |
| true |
| } |
| quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); |
| quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool); |
| } |
| |
| #[test] |
| fn graph_retain_edges() { |
| fn prop<Ty: EdgeType>(mut g: Graph<(), i32, Ty>) -> bool { |
| // Remove all negative edges, these should be randomly spread |
| let og = g.clone(); |
| let edges = g.edge_count(); |
| let num_negs = g.raw_edges().iter().filter(|n| n.weight < 0).count(); |
| let mut removed = 0; |
| g.retain_edges(|g, i| { |
| let keep = g[i] >= 0; |
| if !keep { |
| removed += 1; |
| } |
| keep |
| }); |
| let num_negs_post = g.raw_edges().iter().filter(|n| n.weight < 0).count(); |
| let num_pos_post = g.raw_edges().iter().filter(|n| n.weight >= 0).count(); |
| assert_eq!(num_negs_post, 0); |
| assert_eq!(removed, num_negs); |
| assert_eq!(num_negs + g.edge_count(), edges); |
| assert_eq!(num_pos_post, g.edge_count()); |
| if og.edge_count() < 30 { |
| // check against filter_map |
| let filtered = og.filter_map( |
| |_, w| Some(*w), |
| |_, w| if *w >= 0 { Some(*w) } else { None }); |
| assert_eq!(g.node_count(), filtered.node_count()); |
| assert!(is_isomorphic(&filtered, &g)); |
| } |
| true |
| } |
| quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool); |
| quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool); |
| } |
| |
| #[test] |
| fn stable_graph_retain_edges() { |
| fn prop<Ty: EdgeType>(mut g: StableGraph<(), i32, Ty>) -> bool { |
| // Remove all negative edges, these should be randomly spread |
| let og = g.clone(); |
| let edges = g.edge_count(); |
| let num_negs = g.edge_references().filter(|n| *n.weight() < 0).count(); |
| let mut removed = 0; |
| g.retain_edges(|g, i| { |
| let keep = g[i] >= 0; |
| if !keep { |
| removed += 1; |
| } |
| keep |
| }); |
| let num_negs_post = g.edge_references().filter(|n| *n.weight() < 0).count(); |
| let num_pos_post = g.edge_references().filter(|n| *n.weight() >= 0).count(); |
| assert_eq!(num_negs_post, 0); |
| assert_eq!(removed, num_negs); |
| assert_eq!(num_negs + g.edge_count(), edges); |
| assert_eq!(num_pos_post, g.edge_count()); |
| if og.edge_count() < 30 { |
| // check against filter_map |
| let filtered = og.filter_map( |
| |_, w| Some(*w), |
| |_, w| if *w >= 0 { Some(*w) } else { None }); |
| assert_eq!(g.node_count(), filtered.node_count()); |
| } |
| true |
| } |
| quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>) -> bool); |
| quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>) -> bool); |
| } |
| |
| #[test] |
| fn isomorphism_1() { |
| // using small weights so that duplicates are likely |
| fn prop<Ty: EdgeType>(g: Small<Graph<i8, i8, Ty>>) -> bool { |
| let mut rng = rand::thread_rng(); |
| // several trials of different isomorphisms of the same graph |
| // mapping of node indices |
| let mut map = g.node_indices().collect::<Vec<_>>(); |
| let mut ng = Graph::<_, _, Ty>::with_capacity(g.node_count(), g.edge_count()); |
| for _ in 0..1 { |
| rng.shuffle(&mut map); |
| ng.clear(); |
| |
| for _ in g.node_indices() { |
| ng.add_node(0); |
| } |
| // Assign node weights |
| for i in g.node_indices() { |
| ng[map[i.index()]] = g[i]; |
| } |
| // Add edges |
| for i in g.edge_indices() { |
| let (s, t) = g.edge_endpoints(i).unwrap(); |
| ng.add_edge(map[s.index()], |
| map[t.index()], |
| g[i]); |
| } |
| if g.node_count() < 20 && g.edge_count() < 50 { |
| assert!(is_isomorphic(&g, &ng)); |
| } |
| assert!(is_isomorphic_matching(&g, &ng, PartialEq::eq, PartialEq::eq)); |
| } |
| true |
| } |
| quickcheck::quickcheck(prop::<Undirected> as fn(_) -> bool); |
| quickcheck::quickcheck(prop::<Directed> as fn(_) -> bool); |
| } |
| |
| #[test] |
| fn isomorphism_modify() { |
| // using small weights so that duplicates are likely |
| fn prop<Ty: EdgeType>(g: Small<Graph<i16, i8, Ty>>, node: u8, edge: u8) -> bool { |
| println!("graph {:#?}", g); |
| let mut ng = (*g).clone(); |
| let i = node_index(node as usize); |
| let j = edge_index(edge as usize); |
| if i.index() < g.node_count() { |
| ng[i] = (g[i] == 0) as i16; |
| } |
| if j.index() < g.edge_count() { |
| ng[j] = (g[j] == 0) as i8; |
| } |
| if i.index() < g.node_count() || j.index() < g.edge_count() { |
| assert!(!is_isomorphic_matching(&g, &ng, PartialEq::eq, PartialEq::eq)); |
| } else { |
| assert!(is_isomorphic_matching(&g, &ng, PartialEq::eq, PartialEq::eq)); |
| } |
| true |
| } |
| quickcheck::quickcheck(prop::<Undirected> as fn(_, _, _) -> bool); |
| quickcheck::quickcheck(prop::<Directed> as fn(_, _, _) -> bool); |
| } |
| |
| #[test] |
| fn graph_remove_edge() { |
| fn prop<Ty: EdgeType>(mut g: Graph<(), (), Ty>, a: u8, b: u8) -> bool { |
| let a = node_index(a as usize); |
| let b = node_index(b as usize); |
| let edge = g.find_edge(a, b); |
| if !g.is_directed() { |
| assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); |
| } |
| if let Some(ex) = edge { |
| assert!(g.remove_edge(ex).is_some()); |
| } |
| assert_graph_consistent(&g); |
| assert!(g.find_edge(a, b).is_none()); |
| assert!(g.neighbors(a).find(|x| *x == b).is_none()); |
| if !g.is_directed() { |
| assert!(g.neighbors(b).find(|x| *x == a).is_none()); |
| } |
| true |
| } |
| quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>, _, _) -> bool); |
| quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>, _, _) -> bool); |
| } |
| |
| #[cfg(feature = "stable_graph")] |
| #[test] |
| fn stable_graph_remove_edge() { |
| fn prop<Ty: EdgeType>(mut g: StableGraph<(), (), Ty>, a: u8, b: u8) -> bool { |
| let a = node_index(a as usize); |
| let b = node_index(b as usize); |
| let edge = g.find_edge(a, b); |
| if !g.is_directed() { |
| assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); |
| } |
| if let Some(ex) = edge { |
| assert!(g.remove_edge(ex).is_some()); |
| } |
| //assert_graph_consistent(&g); |
| assert!(g.find_edge(a, b).is_none()); |
| assert!(g.neighbors(a).find(|x| *x == b).is_none()); |
| if !g.is_directed() { |
| assert!(g.find_edge(b, a).is_none()); |
| assert!(g.neighbors(b).find(|x| *x == a).is_none()); |
| } |
| true |
| } |
| quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _, _) -> bool); |
| quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _, _) -> bool); |
| } |
| |
| #[cfg(feature = "stable_graph")] |
| #[test] |
| fn stable_graph_add_remove_edges() { |
| fn prop<Ty: EdgeType>(mut g: StableGraph<(), (), Ty>, edges: Vec<(u8, u8)>) -> bool { |
| for &(a, b) in &edges { |
| let a = node_index(a as usize); |
| let b = node_index(b as usize); |
| let edge = g.find_edge(a, b); |
| |
| if edge.is_none() && g.contains_node(a) && g.contains_node(b) { |
| let _index = g.add_edge(a, b, ()); |
| continue; |
| } |
| |
| if !g.is_directed() { |
| assert_eq!(edge.is_some(), g.find_edge(b, a).is_some()); |
| } |
| if let Some(ex) = edge { |
| assert!(g.remove_edge(ex).is_some()); |
| } |
| //assert_graph_consistent(&g); |
| assert!(g.find_edge(a, b).is_none(), "failed to remove edge {:?} from graph {:?}", (a, b), g); |
| assert!(g.neighbors(a).find(|x| *x == b).is_none()); |
| if !g.is_directed() { |
| assert!(g.find_edge(b, a).is_none()); |
| assert!(g.neighbors(b).find(|x| *x == a).is_none()); |
| } |
| } |
| true |
| } |
| quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _) -> bool); |
| quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _) -> bool); |
| } |
| |
| fn assert_graphmap_consistent<N, E, Ty>(g: &GraphMap<N, E, Ty>) |
| where Ty: EdgeType, |
| N: NodeTrait + fmt::Debug, |
| { |
| for (a, b, _weight) in g.all_edges() { |
| assert!(g.contains_edge(a, b), |
| "Edge not in graph! {:?} to {:?}", a, b); |
| assert!(g.neighbors(a).find(|x| *x == b).is_some(), |
| "Edge {:?} not in neighbor list for {:?}", (a, b), a); |
| if !g.is_directed() { |
| assert!(g.neighbors(b).find(|x| *x == a).is_some(), |
| "Edge {:?} not in neighbor list for {:?}", (b, a), b); |
| } |
| } |
| } |
| |
| #[test] |
| fn graphmap_remove() { |
| fn prop<Ty: EdgeType>(mut g: GraphMap<i8, (), Ty>, a: i8, b: i8) -> bool { |
| //if g.edge_count() > 20 { return true; } |
| assert_graphmap_consistent(&g); |
| let contains = g.contains_edge(a, b); |
| if !g.is_directed() { |
| assert_eq!(contains, g.contains_edge(b, a)); |
| } |
| assert_eq!(g.remove_edge(a, b).is_some(), contains); |
| assert!(!g.contains_edge(a, b) && |
| g.neighbors(a).find(|x| *x == b).is_none()); |
| //(g.is_directed() || g.neighbors(b).find(|x| *x == a).is_none())); |
| assert!(g.remove_edge(a, b).is_none()); |
| assert_graphmap_consistent(&g); |
| true |
| } |
| quickcheck::quickcheck(prop as fn(DiGraphMap<_, _>, _, _) -> bool); |
| quickcheck::quickcheck(prop as fn(UnGraphMap<_, _>, _, _) -> bool); |
| } |
| |
| #[test] |
| fn graphmap_add_remove() { |
| fn prop(mut g: UnGraphMap<i8, ()>, a: i8, b: i8) -> bool { |
| assert_eq!(g.contains_edge(a, b), g.add_edge(a, b, ()).is_some()); |
| g.remove_edge(a, b); |
| !g.contains_edge(a, b) && |
| g.neighbors(a).find(|x| *x == b).is_none() && |
| g.neighbors(b).find(|x| *x == a).is_none() |
| } |
| quickcheck::quickcheck(prop as fn(_, _, _) -> bool); |
| } |
| |
| fn sort_sccs<T: Ord>(v: &mut [Vec<T>]) { |
| for scc in &mut *v { |
| scc.sort(); |
| } |
| v.sort(); |
| } |
| |
| quickcheck! { |
| fn graph_sccs(g: Graph<(), ()>) -> bool { |
| let mut sccs = kosaraju_scc(&g); |
| let mut tsccs = tarjan_scc(&g); |
| sort_sccs(&mut sccs); |
| sort_sccs(&mut tsccs); |
| if sccs != tsccs { |
| println!("{:?}", |
| Dot::with_config(&g, &[Config::EdgeNoLabel, |
| Config::NodeIndexLabel])); |
| println!("Sccs {:?}", sccs); |
| println!("Sccs (Tarjan) {:?}", tsccs); |
| return false; |
| } |
| true |
| } |
| } |
| |
| quickcheck! { |
| fn kosaraju_scc_is_topo_sort(g: Graph<(), ()>) -> bool { |
| let tsccs = kosaraju_scc(&g); |
| let firsts = vec(tsccs.iter().rev().map(|v| v[0])); |
| subset_is_topo_order(&g, &firsts) |
| } |
| } |
| |
| quickcheck! { |
| fn tarjan_scc_is_topo_sort(g: Graph<(), ()>) -> bool { |
| let tsccs = tarjan_scc(&g); |
| let firsts = vec(tsccs.iter().rev().map(|v| v[0])); |
| subset_is_topo_order(&g, &firsts) |
| } |
| } |
| |
| |
| quickcheck! { |
| // Reversed edges gives the same sccs (when sorted) |
| fn graph_reverse_sccs(g: Graph<(), ()>) -> bool { |
| let mut sccs = kosaraju_scc(&g); |
| let mut tsccs = kosaraju_scc(Reversed(&g)); |
| sort_sccs(&mut sccs); |
| sort_sccs(&mut tsccs); |
| if sccs != tsccs { |
| println!("{:?}", |
| Dot::with_config(&g, &[Config::EdgeNoLabel, |
| Config::NodeIndexLabel])); |
| println!("Sccs {:?}", sccs); |
| println!("Sccs (Reversed) {:?}", tsccs); |
| return false; |
| } |
| true |
| } |
| } |
| |
| quickcheck! { |
| // Reversed edges gives the same sccs (when sorted) |
| fn graphmap_reverse_sccs(g: DiGraphMap<u16, ()>) -> bool { |
| let mut sccs = kosaraju_scc(&g); |
| let mut tsccs = kosaraju_scc(Reversed(&g)); |
| sort_sccs(&mut sccs); |
| sort_sccs(&mut tsccs); |
| if sccs != tsccs { |
| println!("{:?}", |
| Dot::with_config(&g, &[Config::EdgeNoLabel, |
| Config::NodeIndexLabel])); |
| println!("Sccs {:?}", sccs); |
| println!("Sccs (Reversed) {:?}", tsccs); |
| return false; |
| } |
| true |
| } |
| } |
| |
| #[test] |
| fn graph_condensation_acyclic() { |
| fn prop(g: Graph<(), ()>) -> bool { |
| !is_cyclic_directed(&condensation(g, /* make_acyclic */ true)) |
| } |
| quickcheck::quickcheck(prop as fn(_) -> bool); |
| } |
| |
| #[derive(Debug, Clone)] |
| struct DAG<N: Default + Clone + Send + 'static>(Graph<N, ()>); |
| |
| impl<N: Default + Clone + Send + 'static> quickcheck::Arbitrary for DAG<N> { |
| fn arbitrary<G: quickcheck::Gen>(g: &mut G) -> Self { |
| let nodes = usize::arbitrary(g); |
| if nodes == 0 { |
| return DAG(Graph::with_capacity(0, 0)); |
| } |
| let split = g.gen_range(0., 1.); |
| let max_width = f64::sqrt(nodes as f64) as usize; |
| let tall = (max_width as f64 * split) as usize; |
| let fat = max_width - tall; |
| |
| let edge_prob = 1. - (1. - g.gen_range(0., 1.)) * (1. - g.gen_range(0., 1.)); |
| let edges = ((nodes as f64).powi(2) * edge_prob) as usize; |
| let mut gr = Graph::with_capacity(nodes, edges); |
| let mut nodes = 0; |
| for _ in 0..tall { |
| let cur_nodes = g.gen_range(0, fat); |
| for _ in 0..cur_nodes { |
| gr.add_node(N::default()); |
| } |
| for j in 0..nodes { |
| for k in 0..cur_nodes { |
| if g.gen_range(0., 1.) < edge_prob { |
| gr.add_edge(NodeIndex::new(j), NodeIndex::new(k + nodes), ()); |
| } |
| } |
| } |
| nodes += cur_nodes; |
| } |
| DAG(gr) |
| } |
| |
| // shrink the graph by splitting it in two by a very |
| // simple algorithm, just even and odd node indices |
| fn shrink(&self) -> Box<Iterator<Item=Self>> { |
| let self_ = self.clone(); |
| Box::new((0..2).filter_map(move |x| { |
| let gr = self_.0.filter_map(|i, w| { |
| if i.index() % 2 == x { |
| Some(w.clone()) |
| } else { |
| None |
| } |
| }, |
| |_, w| Some(w.clone()) |
| ); |
| // make sure we shrink |
| if gr.node_count() < self_.0.node_count() { |
| Some(DAG(gr)) |
| } else { |
| None |
| } |
| })) |
| } |
| } |
| |
| fn is_topo_order<N>(gr: &Graph<N, (), Directed>, order: &[NodeIndex]) -> bool { |
| if gr.node_count() != order.len() { |
| println!("Graph ({}) and count ({}) had different amount of nodes.", gr.node_count(), order.len()); |
| return false; |
| } |
| // check all the edges of the graph |
| for edge in gr.raw_edges() { |
| let a = edge.source(); |
| let b = edge.target(); |
| let ai = order.find(&a).unwrap(); |
| let bi = order.find(&b).unwrap(); |
| if ai >= bi { |
| println!("{:?} > {:?} ", a, b); |
| return false; |
| } |
| } |
| true |
| } |
| |
| |
| fn subset_is_topo_order<N>(gr: &Graph<N, (), Directed>, order: &[NodeIndex]) -> bool { |
| if gr.node_count() < order.len() { |
| println!("Graph (len={}) had less nodes than order (len={})", gr.node_count(), order.len()); |
| return false; |
| } |
| // check all the edges of the graph |
| for edge in gr.raw_edges() { |
| let a = edge.source(); |
| let b = edge.target(); |
| if a == b { |
| continue; |
| } |
| // skip those that are not in the subset |
| let ai = match order.find(&a) { |
| Some(i) => i, |
| None => continue, |
| }; |
| let bi = match order.find(&b) { |
| Some(i) => i, |
| None => continue, |
| }; |
| if ai >= bi { |
| println!("{:?} > {:?} ", a, b); |
| return false; |
| } |
| } |
| true |
| } |
| |
| #[test] |
| fn full_topo() { |
| fn prop(DAG(gr): DAG<()>) -> bool { |
| let order = toposort(&gr, None).unwrap(); |
| is_topo_order(&gr, &order) |
| } |
| quickcheck::quickcheck(prop as fn(_) -> bool); |
| } |
| |
| #[test] |
| fn full_topo_generic() { |
| fn prop_generic(DAG(mut gr): DAG<usize>) -> bool { |
| assert!(!is_cyclic_directed(&gr)); |
| let mut index = 0; |
| let mut topo = Topo::new(&gr); |
| while let Some(nx) = topo.next(&gr) { |
| gr[nx] = index; |
| index += 1; |
| } |
| |
| let mut order = Vec::new(); |
| index = 0; |
| let mut topo = Topo::new(&gr); |
| while let Some(nx) = topo.next(&gr) { |
| order.push(nx); |
| assert_eq!(gr[nx], index); |
| index += 1; |
| } |
| if !is_topo_order(&gr, &order) { |
| println!("{:?}", gr); |
| return false; |
| } |
| |
| { |
| order.clear(); |
| let mut topo = Topo::new(&gr); |
| while let Some(nx) = topo.next(&gr) { |
| order.push(nx); |
| } |
| if !is_topo_order(&gr, &order) { |
| println!("{:?}", gr); |
| return false; |
| } |
| } |
| true |
| } |
| quickcheck::quickcheck(prop_generic as fn(_) -> bool); |
| } |
| |
| quickcheck! { |
| // checks that the distances computed by dijkstra satisfy the triangle |
| // inequality. |
| fn dijkstra_triangle_ineq(g: Graph<u32, u32>, node: usize) -> bool { |
| if g.node_count() == 0 { |
| return true; |
| } |
| let v = node_index(node % g.node_count()); |
| let distances = dijkstra(&g, v, None, |e| *e.weight()); |
| for v2 in distances.keys() { |
| let dv2 = distances[v2]; |
| // triangle inequality: |
| // d(v,u) <= d(v,v2) + w(v2,u) |
| for edge in g.edges(*v2) { |
| let u = edge.target(); |
| let w = edge.weight(); |
| if distances.contains_key(&u) && distances[&u] > dv2 + w { |
| return false; |
| } |
| } |
| } |
| true |
| } |
| } |
| |
| fn set<I>(iter: I) -> HashSet<I::Item> |
| where I: IntoIterator, |
| I::Item: Hash + Eq, |
| { |
| iter.into_iter().collect() |
| } |
| |
| |
| quickcheck! { |
| fn dfs_visit(gr: Graph<(), ()>, node: usize) -> bool { |
| use petgraph::visit::{Visitable, VisitMap}; |
| use petgraph::visit::DfsEvent::*; |
| use petgraph::visit::{Time, depth_first_search}; |
| if gr.node_count() == 0 { |
| return true; |
| } |
| let start_node = node_index(node % gr.node_count()); |
| |
| let invalid_time = Time(!0); |
| let mut discover_time = vec![invalid_time; gr.node_count()]; |
| let mut finish_time = vec![invalid_time; gr.node_count()]; |
| let mut has_tree_edge = gr.visit_map(); |
| let mut edges = HashSet::new(); |
| depth_first_search(&gr, Some(start_node).into_iter().chain(gr.node_indices()), |
| |evt| { |
| match evt { |
| Discover(n, t) => discover_time[n.index()] = t, |
| Finish(n, t) => finish_time[n.index()] = t, |
| TreeEdge(u, v) => { |
| // v is an ancestor of u |
| assert!(has_tree_edge.visit(v), "Two tree edges to {:?}!", v); |
| assert!(discover_time[v.index()] == invalid_time); |
| assert!(discover_time[u.index()] != invalid_time); |
| assert!(finish_time[u.index()] == invalid_time); |
| edges.insert((u, v)); |
| } |
| BackEdge(u, v) => { |
| // u is an ancestor of v |
| assert!(discover_time[v.index()] != invalid_time); |
| assert!(finish_time[v.index()] == invalid_time); |
| edges.insert((u, v)); |
| } |
| CrossForwardEdge(u, v) => { |
| edges.insert((u, v)); |
| } |
| } |
| }); |
| assert!(discover_time.iter().all(|x| *x != invalid_time)); |
| assert!(finish_time.iter().all(|x| *x != invalid_time)); |
| assert_eq!(edges.len(), gr.edge_count()); |
| assert_eq!(edges, set(gr.edge_references().map(|e| (e.source(), e.target())))); |
| true |
| } |
| } |
| |
| quickcheck! { |
| fn test_bellman_ford(gr: Graph<(), f32>) -> bool { |
| let mut gr = gr; |
| for elt in gr.edge_weights_mut() { |
| *elt = elt.abs(); |
| } |
| if gr.node_count() == 0 { |
| return true; |
| } |
| for (i, start) in gr.node_indices().enumerate() { |
| if i >= 10 { break; } // testing all is too slow |
| bellman_ford(&gr, start).unwrap(); |
| } |
| true |
| } |
| } |
| |
| quickcheck! { |
| fn test_bellman_ford_undir(gr: Graph<(), f32, Undirected>) -> bool { |
| let mut gr = gr; |
| for elt in gr.edge_weights_mut() { |
| *elt = elt.abs(); |
| } |
| if gr.node_count() == 0 { |
| return true; |
| } |
| for (i, start) in gr.node_indices().enumerate() { |
| if i >= 10 { break; } // testing all is too slow |
| bellman_ford(&gr, start).unwrap(); |
| } |
| true |
| } |
| } |
| |
| defmac!(iter_eq a, b => a.eq(b)); |
| defmac!(nodes_eq ref a, ref b => a.node_references().eq(b.node_references())); |
| defmac!(edgew_eq ref a, ref b => a.edge_references().eq(b.edge_references())); |
| defmac!(edges_eq ref a, ref b => |
| iter_eq!( |
| a.edge_references().map(|e| (e.source(), e.target())), |
| b.edge_references().map(|e| (e.source(), e.target())))); |
| |
| quickcheck! { |
| fn test_di_from(gr1: DiGraph<i32, i32>) -> () { |
| let sgr = StableGraph::from(gr1.clone()); |
| let gr2 = Graph::from(sgr); |
| |
| assert!(nodes_eq!(gr1, gr2)); |
| assert!(edgew_eq!(gr1, gr2)); |
| assert!(edges_eq!(gr1, gr2)); |
| } |
| fn test_un_from(gr1: UnGraph<i32, i32>) -> () { |
| let sgr = StableGraph::from(gr1.clone()); |
| let gr2 = Graph::from(sgr); |
| |
| assert!(nodes_eq!(gr1, gr2)); |
| assert!(edgew_eq!(gr1, gr2)); |
| assert!(edges_eq!(gr1, gr2)); |
| } |
| |
| fn test_graph_from_stable_graph(gr1: StableDiGraph<usize, usize>) -> () { |
| let mut gr1 = gr1; |
| let gr2 = Graph::from(gr1.clone()); |
| |
| // renumber the stablegraph nodes and put the new index in the |
| // associated data |
| let mut index = 0; |
| for i in 0..gr1.node_bound() { |
| let ni = node_index(i); |
| if gr1.contains_node(ni) { |
| gr1[ni] = index; |
| index += 1; |
| } |
| } |
| if let Some(edge_bound) = gr1.edge_references().next_back() |
| .map(|ed| ed.id().index() + 1) |
| { |
| index = 0; |
| for i in 0..edge_bound { |
| let ni = edge_index(i); |
| if gr1.edge_weight(ni).is_some() { |
| gr1[ni] = index; |
| index += 1; |
| } |
| } |
| } |
| |
| assert_equal( |
| // Remap the stablegraph to compact indices |
| gr1.edge_references().map(|ed| (edge_index(*ed.weight()), gr1[ed.source()], gr1[ed.target()])), |
| gr2.edge_references().map(|ed| (ed.id(), ed.source().index(), ed.target().index())) |
| ); |
| } |
| |
| fn stable_di_graph_map_id(gr1: StableDiGraph<usize, usize>) -> () { |
| let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew); |
| assert!(nodes_eq!(gr1, gr2)); |
| assert!(edgew_eq!(gr1, gr2)); |
| assert!(edges_eq!(gr1, gr2)); |
| } |
| |
| fn stable_un_graph_map_id(gr1: StableUnGraph<usize, usize>) -> () { |
| let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew); |
| assert!(nodes_eq!(gr1, gr2)); |
| assert!(edgew_eq!(gr1, gr2)); |
| assert!(edges_eq!(gr1, gr2)); |
| } |
| |
| fn stable_di_graph_filter_map_id(gr1: StableDiGraph<usize, usize>) -> () { |
| let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew)); |
| assert!(nodes_eq!(gr1, gr2)); |
| assert!(edgew_eq!(gr1, gr2)); |
| assert!(edges_eq!(gr1, gr2)); |
| } |
| |
| fn test_stable_un_graph_filter_map_id(gr1: StableUnGraph<usize, usize>) -> () { |
| let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew)); |
| assert!(nodes_eq!(gr1, gr2)); |
| assert!(edgew_eq!(gr1, gr2)); |
| assert!(edges_eq!(gr1, gr2)); |
| } |
| |
| fn stable_di_graph_filter_map_remove(gr1: Small<StableDiGraph<i32, i32>>, |
| nodes: Vec<usize>, |
| edges: Vec<usize>) -> () |
| { |
| let gr2 = gr1.filter_map(|ix, &nw| { |
| if !nodes.contains(&ix.index()) { Some(nw) } else { None } |
| }, |
| |ix, &ew| { |
| if !edges.contains(&ix.index()) { Some(ew) } else { None } |
| }); |
| let check_nodes = &set(gr1.node_indices()) - &set(cloned(&nodes).map(node_index)); |
| let mut check_edges = &set(gr1.edge_indices()) - &set(cloned(&edges).map(edge_index)); |
| // remove all edges with endpoint in removed nodes |
| for edge in gr1.edge_references() { |
| if nodes.contains(&edge.source().index()) || |
| nodes.contains(&edge.target().index()) { |
| check_edges.remove(&edge.id()); |
| } |
| } |
| // assert maintained |
| for i in check_nodes { |
| assert_eq!(gr1[i], gr2[i]); |
| } |
| for i in check_edges { |
| assert_eq!(gr1[i], gr2[i]); |
| assert_eq!(gr1.edge_endpoints(i), gr2.edge_endpoints(i)); |
| } |
| |
| // assert removals |
| for i in nodes { |
| assert!(gr2.node_weight(node_index(i)).is_none()); |
| } |
| for i in edges { |
| assert!(gr2.edge_weight(edge_index(i)).is_none()); |
| } |
| } |
| } |