blob: 3a40e7c781d89833f373ee2ba5087894f812c2c1 [file] [log] [blame]
use crate::{Incoming};
use super::{IntoNeighbors, IntoNeighborsDirected, Visitable, VisitMap};
use super::{GraphRef, Reversed, IntoNodeIdentifiers};
use std::collections::VecDeque;
/// Visit nodes of a graph in a depth-first-search (DFS) emitting nodes in
/// preorder (when they are first discovered).
///
/// The traversal starts at a given node and only traverses nodes reachable
/// from it.
///
/// `Dfs` is not recursive.
///
/// `Dfs` does not itself borrow the graph, and because of this you can run
/// a traversal over a graph while still retaining mutable access to it, if you
/// use it like the following example:
///
/// ```
/// use petgraph::Graph;
/// use petgraph::visit::Dfs;
///
/// let mut graph = Graph::<_,()>::new();
/// let a = graph.add_node(0);
///
/// let mut dfs = Dfs::new(&graph, a);
/// while let Some(nx) = dfs.next(&graph) {
/// // we can access `graph` mutably here still
/// graph[nx] += 1;
/// }
///
/// assert_eq!(graph[a], 1);
/// ```
///
/// **Note:** The algorithm may not behave correctly if nodes are removed
/// during iteration. It may not necessarily visit added nodes or edges.
#[derive(Clone, Debug)]
pub struct Dfs<N, VM> {
/// The stack of nodes to visit
pub stack: Vec<N>,
/// The map of discovered nodes
pub discovered: VM,
}
impl<N, VM> Dfs<N, VM>
where N: Copy + PartialEq,
VM: VisitMap<N>,
{
/// Create a new **Dfs**, using the graph's visitor map, and put **start**
/// in the stack of nodes to visit.
pub fn new<G>(graph: G, start: N) -> Self
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
let mut dfs = Dfs::empty(graph);
dfs.move_to(start);
dfs
}
/// Create a `Dfs` from a vector and a visit map
pub fn from_parts(stack: Vec<N>, discovered: VM) -> Self {
Dfs {
stack: stack,
discovered: discovered,
}
}
/// Clear the visit state
pub fn reset<G>(&mut self, graph: G)
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
graph.reset_map(&mut self.discovered);
self.stack.clear();
}
/// Create a new **Dfs** using the graph's visitor map, and no stack.
pub fn empty<G>(graph: G) -> Self
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
Dfs {
stack: Vec::new(),
discovered: graph.visit_map(),
}
}
/// Keep the discovered map, but clear the visit stack and restart
/// the dfs from a particular node.
pub fn move_to(&mut self, start: N)
{
self.discovered.visit(start);
self.stack.clear();
self.stack.push(start);
}
/// Return the next node in the dfs, or **None** if the traversal is done.
pub fn next<G>(&mut self, graph: G) -> Option<N>
where G: IntoNeighbors<NodeId=N>,
{
if let Some(node) = self.stack.pop() {
for succ in graph.neighbors(node) {
if self.discovered.visit(succ) {
self.stack.push(succ);
}
}
return Some(node);
}
None
}
}
/// Visit nodes in a depth-first-search (DFS) emitting nodes in postorder
/// (each node after all its descendants have been emitted).
///
/// `DfsPostOrder` is not recursive.
///
/// The traversal starts at a given node and only traverses nodes reachable
/// from it.
#[derive(Clone, Debug)]
pub struct DfsPostOrder<N, VM> {
/// The stack of nodes to visit
pub stack: Vec<N>,
/// The map of discovered nodes
pub discovered: VM,
/// The map of finished nodes
pub finished: VM,
}
impl<N, VM> DfsPostOrder<N, VM>
where N: Copy + PartialEq,
VM: VisitMap<N>,
{
/// Create a new `DfsPostOrder` using the graph's visitor map, and put
/// `start` in the stack of nodes to visit.
pub fn new<G>(graph: G, start: N) -> Self
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
let mut dfs = Self::empty(graph);
dfs.move_to(start);
dfs
}
/// Create a new `DfsPostOrder` using the graph's visitor map, and no stack.
pub fn empty<G>(graph: G) -> Self
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
DfsPostOrder {
stack: Vec::new(),
discovered: graph.visit_map(),
finished: graph.visit_map(),
}
}
/// Clear the visit state
pub fn reset<G>(&mut self, graph: G)
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
graph.reset_map(&mut self.discovered);
graph.reset_map(&mut self.finished);
self.stack.clear();
}
/// Keep the discovered and finished map, but clear the visit stack and restart
/// the dfs from a particular node.
pub fn move_to(&mut self, start: N)
{
self.stack.clear();
self.stack.push(start);
}
/// Return the next node in the traversal, or `None` if the traversal is done.
pub fn next<G>(&mut self, graph: G) -> Option<N>
where G: IntoNeighbors<NodeId=N>,
{
while let Some(&nx) = self.stack.last() {
if self.discovered.visit(nx) {
// First time visiting `nx`: Push neighbors, don't pop `nx`
for succ in graph.neighbors(nx) {
if !self.discovered.is_visited(&succ) {
self.stack.push(succ);
}
}
} else {
self.stack.pop();
if self.finished.visit(nx) {
// Second time: All reachable nodes must have been finished
return Some(nx);
}
}
}
None
}
}
/// A breadth first search (BFS) of a graph.
///
/// The traversal starts at a given node and only traverses nodes reachable
/// from it.
///
/// `Bfs` is not recursive.
///
/// `Bfs` does not itself borrow the graph, and because of this you can run
/// a traversal over a graph while still retaining mutable access to it, if you
/// use it like the following example:
///
/// ```
/// use petgraph::Graph;
/// use petgraph::visit::Bfs;
///
/// let mut graph = Graph::<_,()>::new();
/// let a = graph.add_node(0);
///
/// let mut bfs = Bfs::new(&graph, a);
/// while let Some(nx) = bfs.next(&graph) {
/// // we can access `graph` mutably here still
/// graph[nx] += 1;
/// }
///
/// assert_eq!(graph[a], 1);
/// ```
///
/// **Note:** The algorithm may not behave correctly if nodes are removed
/// during iteration. It may not necessarily visit added nodes or edges.
#[derive(Clone)]
pub struct Bfs<N, VM> {
/// The queue of nodes to visit
pub stack: VecDeque<N>,
/// The map of discovered nodes
pub discovered: VM,
}
impl<N, VM> Bfs<N, VM>
where N: Copy + PartialEq,
VM: VisitMap<N>,
{
/// Create a new **Bfs**, using the graph's visitor map, and put **start**
/// in the stack of nodes to visit.
pub fn new<G>(graph: G, start: N) -> Self
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
let mut discovered = graph.visit_map();
discovered.visit(start);
let mut stack = VecDeque::new();
stack.push_front(start);
Bfs {
stack: stack,
discovered: discovered,
}
}
/// Return the next node in the bfs, or **None** if the traversal is done.
pub fn next<G>(&mut self, graph: G) -> Option<N>
where G: IntoNeighbors<NodeId=N>
{
if let Some(node) = self.stack.pop_front() {
for succ in graph.neighbors(node) {
if self.discovered.visit(succ) {
self.stack.push_back(succ);
}
}
return Some(node);
}
None
}
}
/// A topological order traversal for a graph.
///
/// **Note** that `Topo` only visits nodes that are not part of cycles,
/// i.e. nodes in a true DAG. Use other visitors like `DfsPostOrder` or
/// algorithms like kosaraju_scc to handle graphs with possible cycles.
#[derive(Clone)]
pub struct Topo<N, VM> {
tovisit: Vec<N>,
ordered: VM,
}
impl<N, VM> Topo<N, VM>
where N: Copy + PartialEq,
VM: VisitMap<N>,
{
/// Create a new `Topo`, using the graph's visitor map, and put all
/// initial nodes in the to visit list.
pub fn new<G>(graph: G) -> Self
where G: IntoNodeIdentifiers + IntoNeighborsDirected + Visitable<NodeId=N, Map=VM>,
{
let mut topo = Self::empty(graph);
topo.extend_with_initials(graph);
topo
}
fn extend_with_initials<G>(&mut self, g: G)
where G: IntoNodeIdentifiers + IntoNeighborsDirected<NodeId=N>,
{
// find all initial nodes (nodes without incoming edges)
self.tovisit.extend(g.node_identifiers()
.filter(move |&a| g.neighbors_directed(a, Incoming).next().is_none()));
}
/* Private until it has a use */
/// Create a new `Topo`, using the graph's visitor map with *no* starting
/// index specified.
fn empty<G>(graph: G) -> Self
where G: GraphRef + Visitable<NodeId=N, Map=VM>
{
Topo {
ordered: graph.visit_map(),
tovisit: Vec::new(),
}
}
/// Clear visited state, and put all initial nodes in the to visit list.
pub fn reset<G>(&mut self, graph: G)
where G: IntoNodeIdentifiers + IntoNeighborsDirected + Visitable<NodeId=N, Map=VM>,
{
graph.reset_map(&mut self.ordered);
self.tovisit.clear();
self.extend_with_initials(graph);
}
/// Return the next node in the current topological order traversal, or
/// `None` if the traversal is at the end.
///
/// *Note:* The graph may not have a complete topological order, and the only
/// way to know is to run the whole traversal and make sure it visits every node.
pub fn next<G>(&mut self, g: G) -> Option<N>
where G: IntoNeighborsDirected + Visitable<NodeId=N, Map=VM>,
{
// Take an unvisited element and find which of its neighbors are next
while let Some(nix) = self.tovisit.pop() {
if self.ordered.is_visited(&nix) {
continue;
}
self.ordered.visit(nix);
for neigh in g.neighbors(nix) {
// Look at each neighbor, and those that only have incoming edges
// from the already ordered list, they are the next to visit.
if Reversed(g).neighbors(neigh).all(|b| self.ordered.is_visited(&b)) {
self.tovisit.push(neigh);
}
}
return Some(nix);
}
None
}
}
/// A walker is a traversal state, but where part of the traversal
/// information is supplied manually to each next call.
///
/// This for example allows graph traversals that don't hold a borrow of the
/// graph they are traversing.
pub trait Walker<Context> {
type Item;
/// Advance to the next item
fn walk_next(&mut self, context: Context) -> Option<Self::Item>;
/// Create an iterator out of the walker and given `context`.
fn iter(self, context: Context) -> WalkerIter<Self, Context>
where Self: Sized,
Context: Clone,
{
WalkerIter {
walker: self,
context: context,
}
}
}
/// A walker and its context wrapped into an iterator.
#[derive(Clone, Debug)]
pub struct WalkerIter<W, C> {
walker: W,
context: C,
}
impl<W, C> WalkerIter<W, C>
where W: Walker<C>,
C: Clone,
{
pub fn context(&self) -> C {
self.context.clone()
}
pub fn inner_ref(&self) -> &W {
&self.walker
}
pub fn inner_mut(&mut self) -> &mut W {
&mut self.walker
}
}
impl<W, C> Iterator for WalkerIter<W, C>
where W: Walker<C>,
C: Clone,
{
type Item = W::Item;
fn next(&mut self) -> Option<Self::Item> {
self.walker.walk_next(self.context.clone())
}
}
impl<'a, C, W: ?Sized> Walker<C> for &'a mut W
where W: Walker<C>,
{
type Item = W::Item;
fn walk_next(&mut self, context: C) -> Option<Self::Item> {
(**self).walk_next(context)
}
}
impl<G> Walker<G> for Dfs<G::NodeId, G::Map>
where G: IntoNeighbors + Visitable
{
type Item = G::NodeId;
fn walk_next(&mut self, context: G) -> Option<Self::Item> {
self.next(context)
}
}
impl<G> Walker<G> for DfsPostOrder<G::NodeId, G::Map>
where G: IntoNeighbors + Visitable
{
type Item = G::NodeId;
fn walk_next(&mut self, context: G) -> Option<Self::Item> {
self.next(context)
}
}
impl<G> Walker<G> for Bfs<G::NodeId, G::Map>
where G: IntoNeighbors + Visitable
{
type Item = G::NodeId;
fn walk_next(&mut self, context: G) -> Option<Self::Item> {
self.next(context)
}
}
impl<G> Walker<G> for Topo<G::NodeId, G::Map>
where G: IntoNeighborsDirected + Visitable,
{
type Item = G::NodeId;
fn walk_next(&mut self, context: G) -> Option<Self::Item> {
self.next(context)
}
}