blob: c9c5a469dcff6f1e6640fbfcbf01c8bded3b042e [file] [log] [blame]
//! Graph algorithms.
//!
//! It is a goal to gradually migrate the algorithms to be based on graph traits
//! so that they are generally applicable. For now, some of these still require
//! the `Graph` type.
pub mod dominators;
use std::cmp::min;
use std::collections::{BinaryHeap, HashMap};
use crate::prelude::*;
use super::graph::IndexType;
use super::unionfind::UnionFind;
use super::visit::{
GraphBase, GraphRef, IntoEdgeReferences, IntoEdges, IntoNeighbors, IntoNeighborsDirected,
IntoNodeIdentifiers, NodeCompactIndexable, NodeCount, NodeIndexable, Reversed, VisitMap,
Visitable,
};
use super::EdgeType;
use crate::data::Element;
use crate::scored::MinScored;
use crate::visit::Walker;
use crate::visit::{Data, IntoNodeReferences, NodeRef};
pub use super::astar::astar;
pub use super::dijkstra::dijkstra;
pub use super::isomorphism::{is_isomorphic, is_isomorphic_matching};
pub use super::simple_paths::all_simple_paths;
/// \[Generic\] Return the number of connected components of the graph.
///
/// For a directed graph, this is the *weakly* connected components.
/// # Example
/// ```rust
/// use petgraph::Graph;
/// use petgraph::algo::connected_components;
/// use petgraph::prelude::*;
///
/// let mut graph : Graph<(),(),Directed>= Graph::new();
/// let a = graph.add_node(()); // node with no weight
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// let g = graph.add_node(());
/// let h = graph.add_node(());
///
/// graph.extend_with_edges(&[
/// (a, b),
/// (b, c),
/// (c, d),
/// (d, a),
/// (e, f),
/// (f, g),
/// (g, h),
/// (h, e)
/// ]);
/// // a ----> b e ----> f
/// // ^ | ^ |
/// // | v | v
/// // d <---- c h <---- g
///
/// assert_eq!(connected_components(&graph),2);
/// graph.add_edge(b,e,());
/// assert_eq!(connected_components(&graph),1);
/// ```
pub fn connected_components<G>(g: G) -> usize
where
G: NodeCompactIndexable + IntoEdgeReferences,
{
let mut vertex_sets = UnionFind::new(g.node_bound());
for edge in g.edge_references() {
let (a, b) = (edge.source(), edge.target());
// union the two vertices of the edge
vertex_sets.union(g.to_index(a), g.to_index(b));
}
let mut labels = vertex_sets.into_labeling();
labels.sort();
labels.dedup();
labels.len()
}
/// \[Generic\] Return `true` if the input graph contains a cycle.
///
/// Always treats the input graph as if undirected.
pub fn is_cyclic_undirected<G>(g: G) -> bool
where
G: NodeIndexable + IntoEdgeReferences,
{
let mut edge_sets = UnionFind::new(g.node_bound());
for edge in g.edge_references() {
let (a, b) = (edge.source(), edge.target());
// union the two vertices of the edge
// -- if they were already the same, then we have a cycle
if !edge_sets.union(g.to_index(a), g.to_index(b)) {
return true;
}
}
false
}
/// \[Generic\] Perform a topological sort of a directed graph.
///
/// If the graph was acyclic, return a vector of nodes in topological order:
/// each node is ordered before its successors.
/// Otherwise, it will return a `Cycle` error. Self loops are also cycles.
///
/// To handle graphs with cycles, use the scc algorithms or `DfsPostOrder`
/// instead of this function.
///
/// If `space` is not `None`, it is used instead of creating a new workspace for
/// graph traversal. The implementation is iterative.
pub fn toposort<G>(
g: G,
space: Option<&mut DfsSpace<G::NodeId, G::Map>>,
) -> Result<Vec<G::NodeId>, Cycle<G::NodeId>>
where
G: IntoNeighborsDirected + IntoNodeIdentifiers + Visitable,
{
// based on kosaraju scc
with_dfs(g, space, |dfs| {
dfs.reset(g);
let mut finished = g.visit_map();
let mut finish_stack = Vec::new();
for i in g.node_identifiers() {
if dfs.discovered.is_visited(&i) {
continue;
}
dfs.stack.push(i);
while let Some(&nx) = dfs.stack.last() {
if dfs.discovered.visit(nx) {
// First time visiting `nx`: Push neighbors, don't pop `nx`
for succ in g.neighbors(nx) {
if succ == nx {
// self cycle
return Err(Cycle(nx));
}
if !dfs.discovered.is_visited(&succ) {
dfs.stack.push(succ);
}
}
} else {
dfs.stack.pop();
if finished.visit(nx) {
// Second time: All reachable nodes must have been finished
finish_stack.push(nx);
}
}
}
}
finish_stack.reverse();
dfs.reset(g);
for &i in &finish_stack {
dfs.move_to(i);
let mut cycle = false;
while let Some(j) = dfs.next(Reversed(g)) {
if cycle {
return Err(Cycle(j));
}
cycle = true;
}
}
Ok(finish_stack)
})
}
/// \[Generic\] Return `true` if the input directed graph contains a cycle.
///
/// This implementation is recursive; use `toposort` if an alternative is
/// needed.
pub fn is_cyclic_directed<G>(g: G) -> bool
where
G: IntoNodeIdentifiers + IntoNeighbors + Visitable,
{
use crate::visit::{depth_first_search, DfsEvent};
depth_first_search(g, g.node_identifiers(), |event| match event {
DfsEvent::BackEdge(_, _) => Err(()),
_ => Ok(()),
})
.is_err()
}
type DfsSpaceType<G> = DfsSpace<<G as GraphBase>::NodeId, <G as Visitable>::Map>;
/// Workspace for a graph traversal.
#[derive(Clone, Debug)]
pub struct DfsSpace<N, VM> {
dfs: Dfs<N, VM>,
}
impl<N, VM> DfsSpace<N, VM>
where
N: Copy + PartialEq,
VM: VisitMap<N>,
{
pub fn new<G>(g: G) -> Self
where
G: GraphRef + Visitable<NodeId = N, Map = VM>,
{
DfsSpace { dfs: Dfs::empty(g) }
}
}
impl<N, VM> Default for DfsSpace<N, VM>
where
VM: VisitMap<N> + Default,
{
fn default() -> Self {
DfsSpace {
dfs: Dfs {
stack: <_>::default(),
discovered: <_>::default(),
},
}
}
}
/// Create a Dfs if it's needed
fn with_dfs<G, F, R>(g: G, space: Option<&mut DfsSpaceType<G>>, f: F) -> R
where
G: GraphRef + Visitable,
F: FnOnce(&mut Dfs<G::NodeId, G::Map>) -> R,
{
let mut local_visitor;
let dfs = if let Some(v) = space {
&mut v.dfs
} else {
local_visitor = Dfs::empty(g);
&mut local_visitor
};
f(dfs)
}
/// \[Generic\] Check if there exists a path starting at `from` and reaching `to`.
///
/// If `from` and `to` are equal, this function returns true.
///
/// If `space` is not `None`, it is used instead of creating a new workspace for
/// graph traversal.
pub fn has_path_connecting<G>(
g: G,
from: G::NodeId,
to: G::NodeId,
space: Option<&mut DfsSpace<G::NodeId, G::Map>>,
) -> bool
where
G: IntoNeighbors + Visitable,
{
with_dfs(g, space, |dfs| {
dfs.reset(g);
dfs.move_to(from);
dfs.iter(g).any(|x| x == to)
})
}
/// Renamed to `kosaraju_scc`.
#[deprecated(note = "renamed to kosaraju_scc")]
pub fn scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where
G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
{
kosaraju_scc(g)
}
/// \[Generic\] Compute the *strongly connected components* using [Kosaraju's algorithm][1].
///
/// [1]: https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
///
/// Return a vector where each element is a strongly connected component (scc).
/// The order of node ids within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// For an undirected graph, the sccs are simply the connected components.
///
/// This implementation is iterative and does two passes over the nodes.
pub fn kosaraju_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where
G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
{
let mut dfs = DfsPostOrder::empty(g);
// First phase, reverse dfs pass, compute finishing times.
// http://stackoverflow.com/a/26780899/161659
let mut finish_order = Vec::with_capacity(0);
for i in g.node_identifiers() {
if dfs.discovered.is_visited(&i) {
continue;
}
dfs.move_to(i);
while let Some(nx) = dfs.next(Reversed(g)) {
finish_order.push(nx);
}
}
let mut dfs = Dfs::from_parts(dfs.stack, dfs.discovered);
dfs.reset(g);
let mut sccs = Vec::new();
// Second phase
// Process in decreasing finishing time order
for i in finish_order.into_iter().rev() {
if dfs.discovered.is_visited(&i) {
continue;
}
// Move to the leader node `i`.
dfs.move_to(i);
let mut scc = Vec::new();
while let Some(nx) = dfs.next(g) {
scc.push(nx);
}
sccs.push(scc);
}
sccs
}
/// \[Generic\] Compute the *strongly connected components* using [Tarjan's algorithm][1].
///
/// [1]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
///
/// Return a vector where each element is a strongly connected component (scc).
/// The order of node ids within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// For an undirected graph, the sccs are simply the connected components.
///
/// This implementation is recursive and does one pass over the nodes.
pub fn tarjan_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
where
G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable,
{
#[derive(Copy, Clone, Debug)]
struct NodeData {
index: Option<usize>,
lowlink: usize,
on_stack: bool,
}
#[derive(Debug)]
struct Data<'a, G>
where
G: NodeIndexable,
G::NodeId: 'a,
{
index: usize,
nodes: Vec<NodeData>,
stack: Vec<G::NodeId>,
sccs: &'a mut Vec<Vec<G::NodeId>>,
}
fn scc_visit<G>(v: G::NodeId, g: G, data: &mut Data<G>)
where
G: IntoNeighbors + NodeIndexable,
{
macro_rules! node {
($node:expr) => {
data.nodes[g.to_index($node)]
};
}
if node![v].index.is_some() {
// already visited
return;
}
let v_index = data.index;
node![v].index = Some(v_index);
node![v].lowlink = v_index;
node![v].on_stack = true;
data.stack.push(v);
data.index += 1;
for w in g.neighbors(v) {
match node![w].index {
None => {
scc_visit(w, g, data);
node![v].lowlink = min(node![v].lowlink, node![w].lowlink);
}
Some(w_index) => {
if node![w].on_stack {
// Successor w is in stack S and hence in the current SCC
let v_lowlink = &mut node![v].lowlink;
*v_lowlink = min(*v_lowlink, w_index);
}
}
}
}
// If v is a root node, pop the stack and generate an SCC
if let Some(v_index) = node![v].index {
if node![v].lowlink == v_index {
let mut cur_scc = Vec::new();
loop {
let w = data.stack.pop().unwrap();
node![w].on_stack = false;
cur_scc.push(w);
if g.to_index(w) == g.to_index(v) {
break;
}
}
data.sccs.push(cur_scc);
}
}
}
let mut sccs = Vec::new();
{
let map = vec![
NodeData {
index: None,
lowlink: !0,
on_stack: false
};
g.node_bound()
];
let mut data = Data {
index: 0,
nodes: map,
stack: Vec::new(),
sccs: &mut sccs,
};
for n in g.node_identifiers() {
scc_visit(n, g, &mut data);
}
}
sccs
}
/// [Graph] Condense every strongly connected component into a single node and return the result.
///
/// If `make_acyclic` is true, self-loops and multi edges are ignored, guaranteeing that
/// the output is acyclic.
/// # Example
/// ```rust
/// use petgraph::Graph;
/// use petgraph::algo::condensation;
/// use petgraph::prelude::*;
///
/// let mut graph : Graph<(),(),Directed> = Graph::new();
/// let a = graph.add_node(()); // node with no weight
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// let g = graph.add_node(());
/// let h = graph.add_node(());
///
/// graph.extend_with_edges(&[
/// (a, b),
/// (b, c),
/// (c, d),
/// (d, a),
/// (b, e),
/// (e, f),
/// (f, g),
/// (g, h),
/// (h, e)
/// ]);
///
/// // a ----> b ----> e ----> f
/// // ^ | ^ |
/// // | v | v
/// // d <---- c h <---- g
///
/// let condensed_graph = condensation(graph,false);
/// let A = NodeIndex::new(0);
/// let B = NodeIndex::new(1);
/// assert_eq!(condensed_graph.node_count(), 2);
/// assert_eq!(condensed_graph.edge_count(), 9);
/// assert_eq!(condensed_graph.neighbors(A).collect::<Vec<_>>(), vec![A, A, A, A]);
/// assert_eq!(condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A, B, B, B, B]);
/// ```
/// If `make_acyclic` is true, self-loops and multi edges are ignored:
///
/// ```rust
/// # use petgraph::Graph;
/// # use petgraph::algo::condensation;
/// # use petgraph::prelude::*;
/// #
/// # let mut graph : Graph<(),(),Directed> = Graph::new();
/// # let a = graph.add_node(()); // node with no weight
/// # let b = graph.add_node(());
/// # let c = graph.add_node(());
/// # let d = graph.add_node(());
/// # let e = graph.add_node(());
/// # let f = graph.add_node(());
/// # let g = graph.add_node(());
/// # let h = graph.add_node(());
/// #
/// # graph.extend_with_edges(&[
/// # (a, b),
/// # (b, c),
/// # (c, d),
/// # (d, a),
/// # (b, e),
/// # (e, f),
/// # (f, g),
/// # (g, h),
/// # (h, e)
/// # ]);
/// let acyclic_condensed_graph = condensation(graph, true);
/// let A = NodeIndex::new(0);
/// let B = NodeIndex::new(1);
/// assert_eq!(acyclic_condensed_graph.node_count(), 2);
/// assert_eq!(acyclic_condensed_graph.edge_count(), 1);
/// assert_eq!(acyclic_condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A]);
/// ```
pub fn condensation<N, E, Ty, Ix>(
g: Graph<N, E, Ty, Ix>,
make_acyclic: bool,
) -> Graph<Vec<N>, E, Ty, Ix>
where
Ty: EdgeType,
Ix: IndexType,
{
let sccs = kosaraju_scc(&g);
let mut condensed: Graph<Vec<N>, E, Ty, Ix> = Graph::with_capacity(sccs.len(), g.edge_count());
// Build a map from old indices to new ones.
let mut node_map = vec![NodeIndex::end(); g.node_count()];
for comp in sccs {
let new_nix = condensed.add_node(Vec::new());
for nix in comp {
node_map[nix.index()] = new_nix;
}
}
// Consume nodes and edges of the old graph and insert them into the new one.
let (nodes, edges) = g.into_nodes_edges();
for (nix, node) in nodes.into_iter().enumerate() {
condensed[node_map[nix]].push(node.weight);
}
for edge in edges {
let source = node_map[edge.source().index()];
let target = node_map[edge.target().index()];
if make_acyclic {
if source != target {
condensed.update_edge(source, target, edge.weight);
}
} else {
condensed.add_edge(source, target, edge.weight);
}
}
condensed
}
/// \[Generic\] Compute a *minimum spanning tree* of a graph.
///
/// The input graph is treated as if undirected.
///
/// Using Kruskal's algorithm with runtime **O(|E| log |E|)**. We actually
/// return a minimum spanning forest, i.e. a minimum spanning tree for each connected
/// component of the graph.
///
/// The resulting graph has all the vertices of the input graph (with identical node indices),
/// and **|V| - c** edges, where **c** is the number of connected components in `g`.
///
/// Use `from_elements` to create a graph from the resulting iterator.
pub fn min_spanning_tree<G>(g: G) -> MinSpanningTree<G>
where
G::NodeWeight: Clone,
G::EdgeWeight: Clone + PartialOrd,
G: IntoNodeReferences + IntoEdgeReferences + NodeIndexable,
{
// Initially each vertex is its own disjoint subgraph, track the connectedness
// of the pre-MST with a union & find datastructure.
let subgraphs = UnionFind::new(g.node_bound());
let edges = g.edge_references();
let mut sort_edges = BinaryHeap::with_capacity(edges.size_hint().0);
for edge in edges {
sort_edges.push(MinScored(
edge.weight().clone(),
(edge.source(), edge.target()),
));
}
MinSpanningTree {
graph: g,
node_ids: Some(g.node_references()),
subgraphs,
sort_edges,
node_map: HashMap::new(),
node_count: 0,
}
}
/// An iterator producing a minimum spanning forest of a graph.
pub struct MinSpanningTree<G>
where
G: Data + IntoNodeReferences,
{
graph: G,
node_ids: Option<G::NodeReferences>,
subgraphs: UnionFind<usize>,
sort_edges: BinaryHeap<MinScored<G::EdgeWeight, (G::NodeId, G::NodeId)>>,
node_map: HashMap<usize, usize>,
node_count: usize,
}
impl<G> Iterator for MinSpanningTree<G>
where
G: IntoNodeReferences + NodeIndexable,
G::NodeWeight: Clone,
G::EdgeWeight: PartialOrd,
{
type Item = Element<G::NodeWeight, G::EdgeWeight>;
fn next(&mut self) -> Option<Self::Item> {
let g = self.graph;
if let Some(ref mut iter) = self.node_ids {
if let Some(node) = iter.next() {
self.node_map.insert(g.to_index(node.id()), self.node_count);
self.node_count += 1;
return Some(Element::Node {
weight: node.weight().clone(),
});
}
}
self.node_ids = None;
// Kruskal's algorithm.
// Algorithm is this:
//
// 1. Create a pre-MST with all the vertices and no edges.
// 2. Repeat:
//
// a. Remove the shortest edge from the original graph.
// b. If the edge connects two disjoint trees in the pre-MST,
// add the edge.
while let Some(MinScored(score, (a, b))) = self.sort_edges.pop() {
// check if the edge would connect two disjoint parts
let (a_index, b_index) = (g.to_index(a), g.to_index(b));
if self.subgraphs.union(a_index, b_index) {
let (&a_order, &b_order) =
match (self.node_map.get(&a_index), self.node_map.get(&b_index)) {
(Some(a_id), Some(b_id)) => (a_id, b_id),
_ => panic!("Edge references unknown node"),
};
return Some(Element::Edge {
source: a_order,
target: b_order,
weight: score,
});
}
}
None
}
}
/// An algorithm error: a cycle was found in the graph.
#[derive(Clone, Debug, PartialEq)]
pub struct Cycle<N>(N);
impl<N> Cycle<N> {
/// Return a node id that participates in the cycle
pub fn node_id(&self) -> N
where
N: Copy,
{
self.0
}
}
/// An algorithm error: a cycle of negative weights was found in the graph.
#[derive(Clone, Debug, PartialEq)]
pub struct NegativeCycle(());
/// \[Generic\] Compute shortest paths from node `source` to all other.
///
/// Using the [Bellman–Ford algorithm][bf]; negative edge costs are
/// permitted, but the graph must not have a cycle of negative weights
/// (in that case it will return an error).
///
/// On success, return one vec with path costs, and another one which points
/// out the predecessor of a node along a shortest path. The vectors
/// are indexed by the graph's node indices.
///
/// [bf]: https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
///
/// # Example
/// ```rust
/// use petgraph::Graph;
/// use petgraph::algo::bellman_ford;
/// use petgraph::prelude::*;
///
/// let mut g = Graph::new();
/// let a = g.add_node(()); // node with no weight
/// let b = g.add_node(());
/// let c = g.add_node(());
/// let d = g.add_node(());
/// let e = g.add_node(());
/// let f = g.add_node(());
/// g.extend_with_edges(&[
/// (0, 1, 2.0),
/// (0, 3, 4.0),
/// (1, 2, 1.0),
/// (1, 5, 7.0),
/// (2, 4, 5.0),
/// (4, 5, 1.0),
/// (3, 4, 1.0),
/// ]);
///
/// // Graph represented with the weight of each edge
/// //
/// // 2 1
/// // a ----- b ----- c
/// // | 4 | 7 |
/// // d f | 5
/// // | 1 | 1 |
/// // \------ e ------/
///
/// let path = bellman_ford(&g, a);
/// assert_eq!(path, Ok((vec![0.0 , 2.0, 3.0, 4.0, 5.0, 6.0],
/// vec![None, Some(a),Some(b),Some(a), Some(d), Some(e)]
/// ))
/// );
/// // Node f (indice 5) can be reach from a with a path costing 6.
/// // Predecessor of f is Some(e) which predecessor is Some(d) which predecessor is Some(a).
/// // Thus the path from a to f is a <-> d <-> e <-> f
///
/// let graph_with_neg_cycle = Graph::<(), f32, Undirected>::from_edges(&[
/// (0, 1, -2.0),
/// (0, 3, -4.0),
/// (1, 2, -1.0),
/// (1, 5, -25.0),
/// (2, 4, -5.0),
/// (4, 5, -25.0),
/// (3, 4, -1.0),
/// ]);
///
/// assert!(bellman_ford(&graph_with_neg_cycle, NodeIndex::new(0)).is_err());
/// ```
pub fn bellman_ford<G>(
g: G,
source: G::NodeId,
) -> Result<(Vec<G::EdgeWeight>, Vec<Option<G::NodeId>>), NegativeCycle>
where
G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable,
G::EdgeWeight: FloatMeasure,
{
let mut predecessor = vec![None; g.node_bound()];
let mut distance = vec![<_>::infinite(); g.node_bound()];
let ix = |i| g.to_index(i);
distance[ix(source)] = <_>::zero();
// scan up to |V| - 1 times.
for _ in 1..g.node_count() {
let mut did_update = false;
for i in g.node_identifiers() {
for edge in g.edges(i) {
let i = edge.source();
let j = edge.target();
let w = *edge.weight();
if distance[ix(i)] + w < distance[ix(j)] {
distance[ix(j)] = distance[ix(i)] + w;
predecessor[ix(j)] = Some(i);
did_update = true;
}
}
}
if !did_update {
break;
}
}
// check for negative weight cycle
for i in g.node_identifiers() {
for edge in g.edges(i) {
let j = edge.target();
let w = *edge.weight();
if distance[ix(i)] + w < distance[ix(j)] {
//println!("neg cycle, detected from {} to {}, weight={}", i, j, w);
return Err(NegativeCycle(()));
}
}
}
Ok((distance, predecessor))
}
/// Return `true` if the graph is bipartite. A graph is bipartite if it's nodes can be divided into
/// two disjoint and indepedent sets U and V such that every edge connects U to one in V. This
/// algorithm implements 2-coloring algorithm based on the BFS algorithm.
///
/// Always treats the input graph as if undirected.
pub fn is_bipartite_undirected<G, N, VM>(g: G, start: N) -> bool
where
G: GraphRef + Visitable<NodeId = N, Map = VM> + IntoNeighbors<NodeId = N>,
N: Copy + PartialEq + std::fmt::Debug,
VM: VisitMap<N>,
{
let mut red = g.visit_map();
red.visit(start);
let mut blue = g.visit_map();
let mut stack = ::std::collections::VecDeque::new();
stack.push_front(start);
while let Some(node) = stack.pop_front() {
let is_red = red.is_visited(&node);
let is_blue = blue.is_visited(&node);
assert!(is_red ^ is_blue);
for neighbour in g.neighbors(node) {
let is_neigbour_red = red.is_visited(&neighbour);
let is_neigbour_blue = blue.is_visited(&neighbour);
if (is_red && is_neigbour_red) || (is_blue && is_neigbour_blue) {
return false;
}
if !is_neigbour_red && !is_neigbour_blue {
//hasn't been visited yet
match (is_red, is_blue) {
(true, false) => {
blue.visit(neighbour);
}
(false, true) => {
red.visit(neighbour);
}
(_, _) => {
panic!("Invariant doesn't hold");
}
}
stack.push_back(neighbour);
}
}
}
true
}
use std::fmt::Debug;
use std::ops::Add;
/// Associated data that can be used for measures (such as length).
pub trait Measure: Debug + PartialOrd + Add<Self, Output = Self> + Default + Clone {}
impl<M> Measure for M where M: Debug + PartialOrd + Add<M, Output = M> + Default + Clone {}
/// A floating-point measure.
pub trait FloatMeasure: Measure + Copy {
fn zero() -> Self;
fn infinite() -> Self;
}
impl FloatMeasure for f32 {
fn zero() -> Self {
0.
}
fn infinite() -> Self {
1. / 0.
}
}
impl FloatMeasure for f64 {
fn zero() -> Self {
0.
}
fn infinite() -> Self {
1. / 0.
}
}