blob: 6891cf78e71077f90ace407b97c9e27808bb374c [file] [log] [blame]
#![cfg(feature = "graphmap")]
extern crate petgraph;
use std::collections::HashSet;
use std::fmt;
use petgraph::prelude::*;
use petgraph::visit::Walker;
use petgraph::algo::dijkstra;
use petgraph::dot::{Config, Dot};
#[test]
fn simple() {
//let root = TypedArena::<Node<_>>::new();
let mut gr = UnGraphMap::new();
//let node = |&: name: &'static str| Ptr(root.alloc(Node(name.to_string())));
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
let d = gr.add_node("D");
let e = gr.add_node("E");
let f = gr.add_node("F");
gr.add_edge(a, b, 7);
gr.add_edge(a, c, 9);
gr.add_edge(a, d, 14);
gr.add_edge(b, c, 10);
gr.add_edge(c, d, 2);
gr.add_edge(d, e, 9);
gr.add_edge(b, f, 15);
gr.add_edge(c, f, 11);
assert!(gr.add_edge(e, f, 5).is_none());
// duplicate edges
assert_eq!(gr.add_edge(f, b, 16), Some(15));
assert_eq!(gr.add_edge(f, e, 6), Some(5));
println!("{:?}", gr);
println!("{}", Dot::with_config(&gr, &[]));
assert_eq!(gr.node_count(), 6);
assert_eq!(gr.edge_count(), 9);
// check updated edge weight
assert_eq!(gr.edge_weight(e, f), Some(&6));
let scores = dijkstra(&gr, a, None, |e| *e.weight());
let mut scores: Vec<_> = scores.into_iter().collect();
scores.sort();
assert_eq!(
scores,
vec![
("A", 0),
("B", 7),
("C", 9),
("D", 11),
("E", 20),
("F", 20)
]
);
}
#[test]
fn remov() {
let mut g = UnGraphMap::new();
g.add_node(1);
g.add_node(2);
g.add_edge(1, 2, -1);
assert_eq!(g.edge_weight(1, 2), Some(&-1));
assert_eq!(g.edge_weight(2, 1), Some(&-1));
assert_eq!(g.neighbors(1).count(), 1);
let noexist = g.remove_edge(2, 3);
assert_eq!(noexist, None);
let exist = g.remove_edge(2, 1);
assert_eq!(exist, Some(-1));
assert_eq!(g.edge_count(), 0);
assert_eq!(g.edge_weight(1, 2), None);
assert_eq!(g.edge_weight(2, 1), None);
assert_eq!(g.neighbors(1).count(), 0);
}
#[test]
fn remove_directed() {
let mut g = GraphMap::<_, _, Directed>::with_capacity(0, 0);
g.add_edge(1, 2, -1);
println!("{:?}", g);
assert_eq!(g.edge_weight(1, 2), Some(&-1));
assert_eq!(g.edge_weight(2, 1), None);
assert_eq!(g.neighbors(1).count(), 1);
let noexist = g.remove_edge(2, 3);
assert_eq!(noexist, None);
let exist = g.remove_edge(2, 1);
assert_eq!(exist, None);
let exist = g.remove_edge(1, 2);
assert_eq!(exist, Some(-1));
println!("{:?}", g);
assert_eq!(g.edge_count(), 0);
assert_eq!(g.edge_weight(1, 2), None);
assert_eq!(g.edge_weight(2, 1), None);
assert_eq!(g.neighbors(1).count(), 0);
}
#[test]
fn dfs() {
let mut gr = UnGraphMap::default();
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
let k = gr.add_node("K");
// Z is disconnected.
let z = gr.add_node("Z");
gr.add_edge(h, i, 1.);
gr.add_edge(h, j, 3.);
gr.add_edge(i, j, 1.);
gr.add_edge(i, k, 2.);
println!("{:?}", gr);
{
let mut cnt = 0;
let mut dfs = Dfs::new(&gr, h);
while let Some(_) = dfs.next(&gr) {
cnt += 1;
}
assert_eq!(cnt, 4);
}
{
let mut cnt = 0;
let mut dfs = Dfs::new(&gr, z);
while let Some(_) = dfs.next(&gr) {
cnt += 1;
}
assert_eq!(cnt, 1);
}
assert_eq!(Dfs::new(&gr, h).iter(&gr).count(), 4);
assert_eq!(Dfs::new(&gr, i).iter(&gr).count(), 4);
assert_eq!(Dfs::new(&gr, z).iter(&gr).count(), 1);
}
#[test]
fn edge_iterator() {
let mut gr = UnGraphMap::new();
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
let k = gr.add_node("K");
gr.add_edge(h, i, 1);
gr.add_edge(h, j, 2);
gr.add_edge(i, j, 3);
gr.add_edge(i, k, 4);
let real_edges: HashSet<_> = gr.all_edges().map(|(a, b, &w)| (a, b, w)).collect();
let expected_edges: HashSet<_> =
vec![("H", "I", 1), ("H", "J", 2), ("I", "J", 3), ("I", "K", 4)]
.into_iter()
.collect();
assert_eq!(real_edges, expected_edges);
}
#[test]
fn from_edges() {
let gr =
GraphMap::<_, _, Undirected>::from_edges(&[("a", "b", 1), ("a", "c", 2), ("c", "d", 3)]);
assert_eq!(gr.node_count(), 4);
assert_eq!(gr.edge_count(), 3);
assert_eq!(gr[("a", "c")], 2);
let gr = GraphMap::<_, (), Undirected>::from_edges(&[
(0, 1),
(0, 2),
(0, 3),
(1, 2),
(1, 3),
(2, 3),
]);
assert_eq!(gr.node_count(), 4);
assert_eq!(gr.edge_count(), 6);
assert_eq!(gr.neighbors(0).count(), 3);
assert_eq!(gr.neighbors(1).count(), 3);
assert_eq!(gr.neighbors(2).count(), 3);
assert_eq!(gr.neighbors(3).count(), 3);
println!("{:?}", Dot::with_config(&gr, &[Config::EdgeNoLabel]));
}
#[test]
fn graphmap_directed() {
//let root = TypedArena::<Node<_>>::new();
let mut gr = DiGraphMap::<_, ()>::with_capacity(0, 0);
//let node = |&: name: &'static str| Ptr(root.alloc(Node(name.to_string())));
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
let d = gr.add_node("D");
let e = gr.add_node("E");
let edges = [(a, b), (a, c), (a, d), (b, c), (c, d), (d, e), (b, b)];
gr.extend(&edges);
// Add reverse edges -- ok!
assert!(gr.add_edge(e, d, ()).is_none());
// duplicate edge - no
assert!(!gr.add_edge(a, b, ()).is_none());
// duplicate self loop - no
assert!(!gr.add_edge(b, b, ()).is_none());
println!("{:#?}", gr);
}
fn assert_sccs_eq<N>(mut res: Vec<Vec<N>>, mut answer: Vec<Vec<N>>)
where
N: Ord + fmt::Debug,
{
// normalize the result and compare with the answer.
for scc in &mut res {
scc.sort();
}
res.sort();
for scc in &mut answer {
scc.sort();
}
answer.sort();
assert_eq!(res, answer);
}
#[test]
fn scc() {
let gr: GraphMap<_, u32, Directed> = GraphMap::from_edges(&[
(6, 0, 0),
(0, 3, 1),
(3, 6, 2),
(8, 6, 3),
(8, 2, 4),
(2, 5, 5),
(5, 8, 6),
(7, 5, 7),
(1, 7, 8),
(7, 4, 9),
(4, 1, 10),
]);
assert_sccs_eq(
petgraph::algo::kosaraju_scc(&gr),
vec![vec![0, 3, 6], vec![1, 4, 7], vec![2, 5, 8]],
);
}
#[test]
fn test_into_graph() {
let gr: GraphMap<_, u32, Directed> = GraphMap::from_edges(&[
(6, 0, 0),
(0, 3, 1),
(3, 6, 2),
(8, 6, 3),
(8, 2, 4),
(2, 5, 5),
(5, 8, 6),
(7, 5, 7),
(1, 7, 8),
(7, 4, 9),
(4, 1, 10),
]);
let graph: Graph<_, _, _> = gr.clone().into_graph();
println!("{}", Dot::new(&gr));
println!("{}", Dot::new(&graph));
// node weigths in `graph` are node identifiers in `gr`.
for edge in graph.edge_references() {
let a = edge.source();
let b = edge.target();
let aw = graph[a];
let bw = graph[b];
assert_eq!(&gr[(aw, bw)], edge.weight());
}
}
#[test]
fn test_all_edges_mut() {
// graph with edge weights equal to in+out
let mut graph: GraphMap<_, u32, Directed> =
GraphMap::from_edges(&[(0, 1, 1), (1, 2, 3), (2, 0, 2)]);
// change it so edge weight is equal to 2 * (in+out)
for (start, end, weight) in graph.all_edges_mut() {
*weight = (start + end) * 2;
}
// test it
for (start, end, weight) in graph.all_edges() {
assert_eq!((start + end) * 2, *weight);
}
}
#[test]
fn neighbors_incoming_includes_self_loops() {
let mut graph = DiGraphMap::new();
graph.add_node(());
graph.add_edge((), (), ());
let mut neighbors = graph.neighbors_directed((), Incoming);
assert_eq!(neighbors.next(), Some(()));
assert_eq!(neighbors.next(), None);
}
#[test]
fn undirected_neighbors_includes_self_loops() {
let mut graph = UnGraphMap::new();
graph.add_node(());
graph.add_edge((), (), ());
let mut neighbors = graph.neighbors(());
assert_eq!(neighbors.next(), Some(()));
assert_eq!(neighbors.next(), None);
}
#[test]
fn self_loops_can_be_removed() {
let mut graph = DiGraphMap::new();
graph.add_node(());
graph.add_edge((), (), ());
graph.remove_edge((), ());
assert_eq!(graph.neighbors_directed((), Outgoing).next(), None);
assert_eq!(graph.neighbors_directed((), Incoming).next(), None);
}