blob: 1f0befa749c18a226739fb7c2cebb3bacee2fa53 [file] [log] [blame]
#![feature(core)]
extern crate petgraph;
use std::iter::AdditiveIterator;
use petgraph::{
Graph,
Bfs,
Dfs,
Incoming,
Outgoing,
Directed,
Undirected,
};
use petgraph::parse::DisplayDot;
use petgraph::algo::{
min_spanning_tree,
is_cyclic_undirected,
};
use petgraph::graph::NodeIndex;
use petgraph::visit::{
//Reversed,
//AsUndirected,
};
use petgraph::algo::{
dijkstra,
};
#[test]
fn undirected()
{
let mut og = Graph::new_undirected();
let a = og.add_node(0);
let b = og.add_node(1);
let c = og.add_node(2);
let d = og.add_node(3);
let _ = og.add_edge(a, b, 0);
let _ = og.add_edge(a, c, 1);
og.add_edge(c, a, 2);
og.add_edge(a, a, 3);
og.add_edge(b, c, 4);
og.add_edge(b, a, 5);
og.add_edge(a, d, 6);
assert_eq!(og.node_count(), 4);
assert_eq!(og.edge_count(), 7);
assert!(og.find_edge(a, b).is_some());
assert!(og.find_edge(d, a).is_some());
assert!(og.find_edge(a, a).is_some());
for edge in og.raw_edges().iter() {
assert!(og.find_edge(edge.source(), edge.target()).is_some());
assert!(og.find_edge(edge.target(), edge.source()).is_some());
}
assert_eq!(og.neighbors(b).collect::<Vec<_>>(), vec![a, c, a]);
og.remove_node(a);
assert_eq!(og.neighbors(b).collect::<Vec<_>>(), vec![c]);
assert_eq!(og.node_count(), 3);
assert_eq!(og.edge_count(), 1);
assert!(og.find_edge(a, b).is_none());
assert!(og.find_edge(d, a).is_none());
assert!(og.find_edge(a, a).is_none());
assert!(og.find_edge(b, c).is_some());
}
#[test]
fn dfs() {
let mut gr = Graph::new();
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
let k = gr.add_node("K");
// Z is disconnected.
let _ = gr.add_node("Z");
gr.add_edge(h, i, 1.);
gr.add_edge(h, j, 3.);
gr.add_edge(i, j, 1.);
gr.add_edge(i, k, 2.);
println!("{}", DisplayDot::new(&gr));
/*
assert_eq!(DfsIter::new(&gr, h).count(), 4);
assert_eq!(DfsIter::new(&Reversed(&gr), h).count(), 1);
assert_eq!(DfsIter::new(&Reversed(&gr), k).count(), 3);
assert_eq!(DfsIter::new(&gr, i).count(), 3);
assert_eq!(DfsIter::new(&AsUndirected(&gr), i).count(), 4);
*/
}
#[test]
fn bfs() {
let mut gr = Graph::new();
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
let k = gr.add_node("K");
// Z is disconnected.
let _ = gr.add_node("Z");
gr.add_edge(h, i, 1.);
gr.add_edge(h, j, 3.);
gr.add_edge(i, j, 1.);
gr.add_edge(i, k, 2.);
/*
assert_eq!(BfsIter::new(&gr, h).count(), 4);
assert_eq!(BfsIter::new(&Reversed(&gr), h).count(), 1);
assert_eq!(BfsIter::new(&Reversed(&gr), k).count(), 3);
assert_eq!(BfsIter::new(&gr, i).count(), 3);
assert_eq!(BfsIter::new(&AsUndirected(&gr), i).count(), 4);
*/
let mut bfs = Bfs::new(&gr, h);
let nx = bfs.next(&gr);
assert_eq!(nx, Some(h));
let nx1 = bfs.next(&gr);
assert!(nx1 == Some(i) || nx1 == Some(j));
let nx2 = bfs.next(&gr);
assert!(nx2 == Some(i) || nx2 == Some(j));
assert!(nx1 != nx2);
let nx = bfs.next(&gr);
assert_eq!(nx, Some(k));
assert_eq!(bfs.next(&gr), None);
}
#[test]
fn mst() {
let mut gr = Graph::<_,_>::new();
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
let d = gr.add_node("D");
let e = gr.add_node("E");
let f = gr.add_node("F");
let g = gr.add_node("G");
gr.add_edge(a, b, 7.);
gr.add_edge(a, d, 5.);
gr.add_edge(d, b, 9.);
gr.add_edge(b, c, 8.);
gr.add_edge(b, e, 7.);
gr.add_edge(c, e, 5.);
gr.add_edge(d, e, 15.);
gr.add_edge(d, f, 6.);
gr.add_edge(f, e, 8.);
gr.add_edge(f, g, 11.);
gr.add_edge(e, g, 9.);
// add a disjoint part
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
gr.add_edge(h, i, 1.);
gr.add_edge(h, j, 3.);
gr.add_edge(i, j, 1.);
println!("{}", DisplayDot::new(&gr));
let mst = min_spanning_tree(&gr);
println!("{}", DisplayDot::new(&mst));
println!("MST is:\n{:?}", mst);
assert!(mst.node_count() == gr.node_count());
// |E| = |N| - 2 because there are two disconnected components.
assert!(mst.edge_count() == gr.node_count() - 2);
// check the exact edges are there
assert!(mst.find_edge(a, b).is_some());
assert!(mst.find_edge(a, d).is_some());
assert!(mst.find_edge(b, e).is_some());
assert!(mst.find_edge(e, c).is_some());
assert!(mst.find_edge(e, g).is_some());
assert!(mst.find_edge(d, f).is_some());
assert!(mst.find_edge(h, i).is_some());
assert!(mst.find_edge(i, j).is_some());
assert!(mst.find_edge(d, b).is_none());
assert!(mst.find_edge(b, c).is_none());
}
#[test]
fn selfloop() {
let mut gr = Graph::new();
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
gr.add_edge(a, b, 7.);
gr.add_edge(c, a, 6.);
let sed = gr.add_edge(a, a, 2.);
assert!(gr.find_edge(a, b).is_some());
assert!(gr.find_edge(b, a).is_none());
assert!(gr.find_edge_undirected(b, a).is_some());
assert!(gr.find_edge(a, a).is_some());
println!("{:?}", gr);
gr.remove_edge(sed);
assert!(gr.find_edge(a, a).is_none());
println!("{:?}", gr);
}
#[test]
fn cyclic() {
let mut gr = Graph::new();
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
assert!(!is_cyclic_undirected(&gr));
gr.add_edge(a, b, 7.);
gr.add_edge(c, a, 6.);
assert!(!is_cyclic_undirected(&gr));
{
let e = gr.add_edge(a, a, 0.);
assert!(is_cyclic_undirected(&gr));
gr.remove_edge(e);
assert!(!is_cyclic_undirected(&gr));
}
{
let e = gr.add_edge(b, c, 0.);
assert!(is_cyclic_undirected(&gr));
gr.remove_edge(e);
assert!(!is_cyclic_undirected(&gr));
}
let d = gr.add_node("D");
let e = gr.add_node("E");
gr.add_edge(b, d, 0.);
gr.add_edge(d, e, 0.);
assert!(!is_cyclic_undirected(&gr));
gr.add_edge(c, e, 0.);
assert!(is_cyclic_undirected(&gr));
}
#[test]
fn multi() {
let mut gr = Graph::new();
let a = gr.add_node("a");
let b = gr.add_node("b");
gr.add_edge(a, b, ());
gr.add_edge(a, b, ());
assert_eq!(gr.edge_count(), 2);
}
#[test]
fn update_edge()
{
{
let mut gr = Graph::new();
let a = gr.add_node("a");
let b = gr.add_node("b");
let e = gr.update_edge(a, b, 1);
let f = gr.update_edge(a, b, 2);
let _ = gr.update_edge(b, a, 3);
assert_eq!(gr.edge_count(), 2);
assert_eq!(e, f);
assert_eq!(*gr.edge_weight(f).unwrap(), 2);
}
{
let mut gr = Graph::new_undirected();
let a = gr.add_node("a");
let b = gr.add_node("b");
let e = gr.update_edge(a, b, 1);
let f = gr.update_edge(b, a, 2);
assert_eq!(gr.edge_count(), 1);
assert_eq!(e, f);
assert_eq!(*gr.edge_weight(f).unwrap(), 2);
}
}
#[test]
fn dijk() {
let mut g = Graph::new_undirected();
let a = g.add_node("A");
let b = g.add_node("B");
let c = g.add_node("C");
let d = g.add_node("D");
let e = g.add_node("E");
let f = g.add_node("F");
g.add_edge(a, b, 7);
g.add_edge(c, a, 9);
g.add_edge(a, d, 14);
g.add_edge(b, c, 10);
g.add_edge(d, c, 2);
g.add_edge(d, e, 9);
g.add_edge(b, f, 15);
g.add_edge(c, f, 11);
g.add_edge(e, f, 6);
println!("{:?}", g);
/*
for no in BfsIter::new(&g, a) {
println!("Visit {:?} = {:?}", no, g.node_weight(no));
}
*/
let scores = dijkstra(&g, a, None, |gr, n| gr.edges(n).map(|(n, &e)| (n, e)));
let mut scores: Vec<_> = scores.into_iter().map(|(n, s)| (g[n], s)).collect();
scores.sort();
assert_eq!(scores,
vec![("A", 0), ("B", 7), ("C", 9), ("D", 11), ("E", 20), ("F", 20)]);
let scores = dijkstra(&g, a, Some(c), |gr, n| gr.edges(n).map(|(n, &e)| (n, e)));
assert_eq!(scores[c], 9);
}
#[test]
fn without()
{
let mut og = Graph::new_undirected();
let a = og.add_node(0);
let b = og.add_node(1);
let c = og.add_node(2);
let d = og.add_node(3);
let _ = og.add_edge(a, b, 0);
let _ = og.add_edge(a, c, 1);
let v: Vec<NodeIndex> = og.without_edges(Outgoing).collect();
assert_eq!(v, vec![d]);
let mut og = Graph::new();
let a = og.add_node(0);
let b = og.add_node(1);
let c = og.add_node(2);
let d = og.add_node(3);
let _ = og.add_edge(a, b, 0);
let _ = og.add_edge(a, c, 1);
let init: Vec<NodeIndex> = og.without_edges(Incoming).collect();
let term: Vec<NodeIndex> = og.without_edges(Outgoing).collect();
assert_eq!(init, vec![a, d]);
assert_eq!(term, vec![b, c, d]);
}
#[test]
fn toposort() {
let mut gr = Graph::<_,_>::new();
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
let d = gr.add_node("D");
let e = gr.add_node("E");
let f = gr.add_node("F");
let g = gr.add_node("G");
gr.add_edge(a, b, 7.0);
gr.add_edge(a, d, 5.);
gr.add_edge(d, b, 9.);
gr.add_edge(b, c, 8.);
gr.add_edge(b, e, 7.);
gr.add_edge(c, e, 5.);
gr.add_edge(d, e, 15.);
gr.add_edge(d, f, 6.);
gr.add_edge(f, e, 8.);
gr.add_edge(f, g, 11.);
gr.add_edge(e, g, 9.);
// add a disjoint part
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
gr.add_edge(h, i, 1.);
gr.add_edge(h, j, 3.);
gr.add_edge(i, j, 1.);
let order = petgraph::algo::toposort(&gr);
println!("{:?}", order);
assert_eq!(order.len(), gr.node_count());
// check all the edges of the graph
for edge in gr.raw_edges().iter() {
let a = edge.source();
let b = edge.target();
let ai = order.iter().position(|x| *x == a);
let bi = order.iter().position(|x| *x == b);
println!("Check that {:?} is before {:?}", a, b);
assert!(ai < bi);
}
}
#[test]
fn is_cyclic_directed() {
let mut gr = Graph::<_,_>::new();
let a = gr.add_node("A");
let b = gr.add_node("B");
let c = gr.add_node("C");
let d = gr.add_node("D");
let e = gr.add_node("E");
let f = gr.add_node("F");
let g = gr.add_node("G");
gr.add_edge(a, b, 7.0);
gr.add_edge(a, d, 5.);
gr.add_edge(d, b, 9.);
gr.add_edge(b, c, 8.);
gr.add_edge(b, e, 7.);
gr.add_edge(c, e, 5.);
gr.add_edge(d, e, 15.);
gr.add_edge(d, f, 6.);
gr.add_edge(f, e, 8.);
gr.add_edge(f, g, 11.);
gr.add_edge(e, g, 9.);
assert!(!petgraph::algo::is_cyclic_directed(&gr));
// add a disjoint part
let h = gr.add_node("H");
let i = gr.add_node("I");
let j = gr.add_node("J");
gr.add_edge(h, i, 1.);
gr.add_edge(h, j, 3.);
gr.add_edge(i, j, 1.);
assert!(!petgraph::algo::is_cyclic_directed(&gr));
gr.add_edge(g, e, 0.);
assert!(petgraph::algo::is_cyclic_directed(&gr));
}
#[test]
fn scc() {
let n = NodeIndex::new;
let mut gr = Graph::new();
gr.add_node(0);
gr.add_node(1);
gr.add_node(2);
gr.add_node(3);
gr.add_node(4);
gr.add_node(5);
gr.add_node(6);
gr.add_node(7);
gr.add_node(8);
gr.add_edge(n(6), n(0), ());
gr.add_edge(n(0), n(3), ());
gr.add_edge(n(3), n(6), ());
gr.add_edge(n(8), n(6), ());
gr.add_edge(n(8), n(2), ());
gr.add_edge(n(2), n(5), ());
gr.add_edge(n(5), n(8), ());
gr.add_edge(n(7), n(5), ());
gr.add_edge(n(1), n(7), ());
gr.add_edge(n(7), n(4), ());
gr.add_edge(n(4), n(1), ());
let mut sccs = petgraph::algo::scc(&gr);
assert_eq!(sccs.iter().map(|v| v.len()).sum(), gr.node_count());
let scc_answer = vec![
vec![n(0), n(3), n(6)],
vec![n(1), n(4), n(7)],
vec![n(2), n(5), n(8)]];
// normalize the result and compare with the answer.
for sc in sccs.iter_mut() {
sc.sort();
}
// sort by minimum element
sccs.sort_by(|v, w| v[0].cmp(&w[0]));
assert_eq!(sccs, scc_answer);
// Test an undirected graph just for fun.
// Sccs are just connected components.
let mut hr = gr.into_edge_type::<Undirected>();
// Delete an edge to disconnect it
let ed = hr.find_edge(n(6), n(8)).unwrap();
assert!(hr.remove_edge(ed).is_some());
let mut sccs = petgraph::algo::scc(&hr);
let scc_undir_answer = vec![
vec![n(0), n(3), n(6)],
vec![n(1), n(2), n(4), n(5), n(7), n(8)]];
for sc in sccs.iter_mut() {
sc.sort();
sc.dedup();
}
sccs.sort_by(|v, w| v[0].cmp(&w[0]));
assert_eq!(sccs, scc_undir_answer);
}
#[test]
fn connected_comp()
{
let n = NodeIndex::new;
let mut gr = Graph::new();
gr.add_node(0);
gr.add_node(1);
gr.add_node(2);
gr.add_node(3);
gr.add_node(4);
gr.add_node(5);
gr.add_node(6);
gr.add_node(7);
gr.add_node(8);
gr.add_edge(n(6), n(0), ());
gr.add_edge(n(0), n(3), ());
gr.add_edge(n(3), n(6), ());
gr.add_edge(n(8), n(6), ());
gr.add_edge(n(8), n(2), ());
gr.add_edge(n(2), n(5), ());
gr.add_edge(n(5), n(8), ());
gr.add_edge(n(7), n(5), ());
gr.add_edge(n(1), n(7), ());
gr.add_edge(n(7), n(4), ());
gr.add_edge(n(4), n(1), ());
assert_eq!(petgraph::algo::connected_components(&gr), 1);
gr.add_node(9);
gr.add_node(10);
assert_eq!(petgraph::algo::connected_components(&gr), 3);
gr.add_edge(n(9), n(10), ());
assert_eq!(petgraph::algo::connected_components(&gr), 2);
let gr = gr.into_edge_type::<Undirected>();
assert_eq!(petgraph::algo::connected_components(&gr), 2);
}
#[should_panic]
#[test]
fn oob_index()
{
let mut gr = Graph::<_, ()>::new();
let a = gr.add_node(0);
let b = gr.add_node(1);
gr.remove_node(a);
gr[b];
}
#[test]
fn usize_index()
{
let mut gr = Graph::<_, _, Directed, usize>::with_capacity(0, 0);
let a = gr.add_node(0);
let b = gr.add_node(1);
let e = gr.add_edge(a, b, 1.2);
let mut dfs = Dfs::new(&gr, a);
while let Some(nx) = dfs.next(&gr) {
gr[nx] += 1;
}
assert_eq!(gr[a], 1);
assert_eq!(gr[b], 2);
assert_eq!(gr[e], 1.2);
}
#[test]
fn u8_index()
{
let mut gr = Graph::<_, (), Undirected, u8>::with_capacity(0, 0);
for _ in 0..255 {
gr.add_node(());
}
}
#[should_panic]
#[test]
fn u8_index_overflow()
{
let mut gr = Graph::<_, (), Undirected, u8>::with_capacity(0, 0);
for _ in 0..256 {
gr.add_node(());
}
}
#[should_panic]
#[test]
fn u8_index_overflow_edges()
{
let mut gr = Graph::<_, (), Undirected, u8>::with_capacity(0, 0);
let a = gr.add_node('a');
let b = gr.add_node('b');
for _ in 0..256 {
gr.add_edge(a, b, ());
}
}