blob: e780aa1675c8aecc2df19961d07310aa1a2e65bc [file] [log] [blame]
/*******************************************************************************************[Vec.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Vec_h
#define Vec_h
#include <cstdlib>
#include <cassert>
#include <new>
//=================================================================================================
// Automatically resizable arrays
//
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
template<class T>
class vec {
T* data;
int sz;
int cap;
void init(int size, const T& pad);
void grow(int min_cap);
// Don't allow copying (error prone):
vec<T>& operator = (vec<T>& other) { assert(0); return *this; }
vec (vec<T>& other) { assert(0); }
static inline int imin(int x, int y) {
int mask = (x-y) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
static inline int imax(int x, int y) {
int mask = (y-x) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
public:
// Types:
typedef int Key;
typedef T Datum;
// Constructors:
vec(void) : data(NULL) , sz(0) , cap(0) { }
vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'free()')
~vec(void) { clear(true); }
// Ownership of underlying array:
T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; }
operator T* (void) { return data; } // (unsafe but convenient)
operator const T* (void) const { return data; }
// Size operations:
int size (void) const { return sz; }
void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
void shrink_(int nelems) { assert(nelems <= sz); sz -= nelems; }
void pop (void) { sz--, data[sz].~T(); }
void growTo (int size);
void growTo (int size, const T& pad);
void clear (bool dealloc = false);
void capacity (int size) { grow(size); }
// Stack interface:
#if 1
void push (void) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(); sz++; }
//void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(elem); sz++; }
void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } data[sz++] = elem; }
void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
#else
void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; }
void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; }
#endif
const T& last (void) const { return data[sz-1]; }
T& last (void) { return data[sz-1]; }
// Vector interface:
const T& operator [] (int index) const { return data[index]; }
T& operator [] (int index) { return data[index]; }
// Duplicatation (preferred instead):
void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (&copy[i]) T(data[i]); }
void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
};
template<class T>
void vec<T>::grow(int min_cap) {
if (min_cap <= cap) return;
if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2;
else do cap = (cap*3+1) >> 1; while (cap < min_cap);
data = (T*)realloc(data, cap * sizeof(T)); }
template<class T>
void vec<T>::growTo(int size, const T& pad) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T(pad);
sz = size; }
template<class T>
void vec<T>::growTo(int size) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T();
sz = size; }
template<class T>
void vec<T>::clear(bool dealloc) {
if (data != NULL){
for (int i = 0; i < sz; i++) data[i].~T();
sz = 0;
if (dealloc) free(data), data = NULL, cap = 0; } }
#endif