blob: bf433c2c63b651ceb6ed5d096a1483ef8ed1dfff [file] [log] [blame]
/*!
*****************************************************************************
*
* \file rtp.c
*
* \brief
* Functions to handle RTP headers and packets per RFC1889 and RTP NAL spec
* Functions support little endian systems only (Intel, not Motorola/Sparc)
*
* \date
* 30 September 2001
*
* \author
* Stephan Wenger stewe@cs.tu-berlin.de
*****************************************************************************/
#include <stdlib.h>
#include <assert.h>
#include <memory.h>
#include "global.h"
#include "rtp.h"
#ifdef WIN32
#include <Winsock2.h>
#else
#include <netinet/in.h>
#endif
// A little trick to avoid those horrible #if TRACE all over the source code
#if TRACE
#define SYMTRACESTRING(s) strncpy(sym.tracestring,s,TRACESTRING_SIZE)
#else
#define SYMTRACESTRING(s) // to nothing
#endif
int CurrentRTPTimestamp = 0; //! The RTP timestamp of the current packet,
//! incremented with all P and I frames
int CurrentRTPSequenceNumber = 0; //! The RTP sequence number of the current packet
//! incremented by one for each sent packet
FILE *f;
/*!
*****************************************************************************
*
* \brief
* ComposeRTPpacket composes the complete RTP packet using the various
* structure members of the RTPpacket_t structure
*
* \return
* 0 in case of success
* negative error code in case of failure
*
* \par Parameters
* Caller is responsible to allocate enough memory for the generated packet
* in parameter->packet. Typically a malloc of 12+paylen bytes is sufficient
*
* \par Side effects
* none
*
* \note
* Function contains assert() tests for debug purposes (consistency checks
* for RTP header fields
*
* \date
* 30 Spetember 2001
*
* \author
* Stephan Wenger stewe@cs.tu-berlin.de
*****************************************************************************/
int ComposeRTPPacket (RTPpacket_t *p)
{
unsigned int temp32;
unsigned short temp16;
// Consistency checks through assert, only used for debug purposes
assert (p->v == 2);
assert (p->p == 0);
assert (p->x == 0);
assert (p->cc == 0); // mixer designers need to change this one
assert (p->m == 0 || p->m == 1);
assert (p->pt < 128);
assert (p->seq < 65536);
assert (p->payload != NULL);
assert (p->paylen < 65536 - 40); // 2**16 -40 for IP/UDP/RTP header
assert (p->packet != NULL);
// Compose RTP header, little endian
p->packet[0] = (byte)
( ((p->v & 0x03) << 6)
| ((p->p & 0x01) << 5)
| ((p->x & 0x01) << 4)
| ((p->cc & 0x0F) << 0) );
p->packet[1] = (byte)
( ((p->m & 0x01) << 7)
| ((p->pt & 0x7F) << 0) );
// sequence number, msb first
temp16 = htons((unsigned short)p->seq);
memcpy (&p->packet[2], &temp16, 2); // change to shifts for unified byte sex
//declare a temporary variable to perform network byte order converson
temp32 = htonl(p->timestamp);
memcpy (&p->packet[4], &temp32, 4); // change to shifts for unified byte sex
temp32 = htonl(p->ssrc);
memcpy (&p->packet[8], &temp32, 4);// change to shifts for unified byte sex
// Copy payload
memcpy (&p->packet[12], p->payload, p->paylen);
p->packlen = p->paylen+12;
return 0;
}
/*!
*****************************************************************************
*
* \brief
* WriteRTPPacket writes the supplied RTP packet to the output file
*
* \return
* 0 in case of access
* <0 in case of write failure (typically fatal)
*
* \param p
* the RTP packet to be written (after ComposeRTPPacket() )
* \param f
* output file
*
* \date
* October 23, 2001
*
* \author
* Stephan Wenger stewe@cs.tu-berlin.de
*****************************************************************************/
int WriteRTPPacket (RTPpacket_t *p, FILE *f)
{
int intime = -1;
assert (f != NULL);
assert (p != NULL);
if (1 != fwrite (&p->packlen, 4, 1, f))
return -1;
if (1 != fwrite (&intime, 4, 1, f))
return -1;
if (1 != fwrite (p->packet, p->packlen, 1, f))
return -1;
return 0;
}
/*!
*****************************************************************************
*
* \brief
* int RTPWriteNALU write a NALU to the RTP file
*
* \return
* Number of bytes written to output file
*
* \par Side effects
* Packet written, RTPSequenceNumber and RTPTimestamp updated
*
* \date
* December 13, 2002
*
* \author
* Stephan Wenger stewe@cs.tu-berlin.de
*****************************************************************************/
int WriteRTPNALU (NALU_t *n)
{
RTPpacket_t *p;
assert (f != NULL);
assert (n != NULL);
assert (n->len < 65000);
n->buf[0] = (byte)
(n->forbidden_bit << 7 |
n->nal_reference_idc << 5 |
n->nal_unit_type );
// Set RTP structure elements and alloca() memory foor the buffers
if ((p = (RTPpacket_t *) malloc (sizeof (RTPpacket_t))) == NULL)
no_mem_exit ("RTPWriteNALU-1");
if ((p->packet = malloc (MAXRTPPACKETSIZE)) == NULL)
no_mem_exit ("RTPWriteNALU-2");
if ((p->payload = malloc (MAXRTPPACKETSIZE)) == NULL)
no_mem_exit ("RTPWriteNALU-3");
p->v=2;
p->p=0;
p->x=0;
p->cc=0;
p->m=(n->startcodeprefix_len==4)&1; // a long startcode of Annex B sets marker bit of RTP
// Not exactly according to the RTP paylaod spec, but
// good enough for now (hopefully).
//! For error resilience work, we need the correct
//! marker bit. Introduce a nalu->marker and set it in
//! terminate_slice()?
p->pt=H264PAYLOADTYPE;
p->seq=CurrentRTPSequenceNumber++;
p->timestamp=CurrentRTPTimestamp;
p->ssrc=H264SSRC;
p->paylen = n->len;
memcpy (p->payload, n->buf, n->len);
// Generate complete RTP packet
if (ComposeRTPPacket (p) < 0)
{
printf ("Cannot compose RTP packet, exit\n");
exit (-1);
}
if (WriteRTPPacket (p, f) < 0)
{
printf ("Cannot write %d bytes of RTP packet to outfile, exit\n", p->packlen);
exit (-1);
}
free (p->packet);
free (p->payload);
free (p);
return (n->len * 8);
}
/*!
********************************************************************************************
* \brief
* RTPUpdateTimestamp: patches the RTP timestamp depending on the TR
*
* \param
* tr: TRof the following NALUs
*
* \return
* none.
*
********************************************************************************************
*/
void RTPUpdateTimestamp (int tr)
{
int delta;
static int oldtr = -1;
if (oldtr == -1) // First invocation
{
CurrentRTPTimestamp = 0; //! This is a violation of the security req. of
//! RTP (random timestamp), but easier to debug
oldtr = 0;
return;
}
/*! The following code assumes a wrap around of TR at 256, and
needs to be changed as soon as this is no more true.
The support for B frames is a bit tricky, because it is not easy to distinguish
between a natural wrap-around of the tr, and the intentional going back of the
tr because of a B frame. It is solved here by a heuristic means: It is assumed that
B frames are never "older" than 10 tr ticks. Everything higher than 10 is considered
a wrap around.
*/
delta = tr - oldtr;
if (delta < -10) // wrap-around
delta+=256;
CurrentRTPTimestamp += delta * RTP_TR_TIMESTAMP_MULT;
oldtr = tr;
}
/*!
********************************************************************************************
* \brief
* Opens the output file for the RTP packet stream
*
* \param Filename
* The filename of the file to be opened
*
* \return
* none. Function terminates the program in case of an error
*
********************************************************************************************
*/
void OpenRTPFile (char *Filename)
{
if ((f = fopen (Filename, "wb")) == NULL)
{
printf ("Fatal: cannot open bitstream file '%s', exit (-1)\n", Filename);
exit (-1);
}
}
/*!
********************************************************************************************
* \brief
* Closes the output file for the RTP packet stream
*
* \return
* none. Function terminates the program in case of an error
*
********************************************************************************************
*/
void CloseRTPFile ()
{
fclose(f);
}
#if 0
/*!
*****************************************************************************
*
* \brief
* int aggregationRTPWriteBits (int marker) write the Slice header for the RTP NAL
*
* \return
* Number of bytes written to output file
*
* \param marker
* marker bit,
*
* \par Side effects
* Packet written, RTPSequenceNumber and RTPTimestamp updated
*
* \date
* September 10, 2002
*
* \author
* Dong Tian tian@cs.tut.fi
*****************************************************************************/
int aggregationRTPWriteBits (int Marker, int PacketType, int subPacketType, void * bitstream,
int BitStreamLenInByte, FILE *out)
{
RTPpacket_t *p;
int offset;
// printf( "writing aggregation packet...\n");
assert (out != NULL);
assert (BitStreamLenInByte < 65000);
assert (bitstream != NULL);
assert ((PacketType&0xf) == 4);
// Set RTP structure elements and alloca() memory foor the buffers
p = (RTPpacket_t *) alloca (sizeof (RTPpacket_t));
p->packet=alloca (MAXRTPPACKETSIZE);
p->payload=alloca (MAXRTPPACKETSIZE);
p->v=2;
p->p=0;
p->x=0;
p->cc=0;
p->m=Marker&1;
p->pt=H264PAYLOADTYPE;
p->seq=CurrentRTPSequenceNumber++;
p->timestamp=CurrentRTPTimestamp;
p->ssrc=H264SSRC;
offset = 0;
p->payload[offset++] = PacketType; // This is the first byte of the compound packet
// FIRST, write the sei message to aggregation packet, if it is available
if ( HaveAggregationSEI() )
{
p->payload[offset++] = sei_message[AGGREGATION_SEI].subPacketType; // this is the first byte of the first subpacket
*(short*)&(p->payload[offset]) = sei_message[AGGREGATION_SEI].payloadSize;
offset += 2;
memcpy (&p->payload[offset], sei_message[AGGREGATION_SEI].data, sei_message[AGGREGATION_SEI].payloadSize);
offset += sei_message[AGGREGATION_SEI].payloadSize;
clear_sei_message(AGGREGATION_SEI);
}
// SECOND, write other payload to the aggregation packet
// to do ...
// LAST, write the slice data to the aggregation packet
p->payload[offset++] = subPacketType; // this is the first byte of the second subpacket
*(short*)&(p->payload[offset]) = BitStreamLenInByte;
offset += 2;
memcpy (&p->payload[offset], bitstream, BitStreamLenInByte);
offset += BitStreamLenInByte;
p->paylen = offset; // 1 +3 +seiPayload.payloadSize +3 +BitStreamLenInByte
// Now the payload is ready, we can ...
// Generate complete RTP packet
if (ComposeRTPPacket (p) < 0)
{
printf ("Cannot compose RTP packet, exit\n");
exit (-1);
}
if (WriteRTPPacket (p, out) < 0)
{
printf ("Cannot write %d bytes of RTP packet to outfile, exit\n", p->packlen);
exit (-1);
}
return (p->packlen);
}
/*!
*****************************************************************************
* \isAggregationPacket
* \brief
* Determine if current packet is normal packet or compound packet (aggregation
* packet)
*
* \return
* return TRUE, if it is compound packet.
* return FALSE, otherwise.
*
* \date
* September 10, 2002
*
* \author
* Dong Tian tian@cs.tut.fi
*****************************************************************************/
Boolean isAggregationPacket()
{
if (HaveAggregationSEI())
{
return TRUE;
}
// Until Sept 2002, the JM will produce aggregation packet only for some SEI messages
return FALSE;
}
/*!
*****************************************************************************
* \PrepareAggregationSEIMessage
* \brief
* Prepare the aggregation sei message.
*
* \date
* September 10, 2002
*
* \author
* Dong Tian tian@cs.tut.fi
*****************************************************************************/
void PrepareAggregationSEIMessage()
{
Boolean has_aggregation_sei_message = FALSE;
// prepare the sei message here
// write the spare picture sei payload to the aggregation sei message
if (seiHasSparePicture && img->type != B_SLICE)
{
FinalizeSpareMBMap();
assert(seiSparePicturePayload.data->byte_pos == seiSparePicturePayload.payloadSize);
write_sei_message(AGGREGATION_SEI, seiSparePicturePayload.data->streamBuffer, seiSparePicturePayload.payloadSize, SEI_SPARE_PICTURE);
has_aggregation_sei_message = TRUE;
}
// write the sub sequence information sei paylaod to the aggregation sei message
if (seiHasSubseqInfo)
{
FinalizeSubseqInfo(img->layer);
write_sei_message(AGGREGATION_SEI, seiSubseqInfo[img->layer].data->streamBuffer, seiSubseqInfo[img->layer].payloadSize, SEI_SUBSEQ_INFORMATION);
ClearSubseqInfoPayload(img->layer);
has_aggregation_sei_message = TRUE;
}
// write the sub sequence layer information sei paylaod to the aggregation sei message
if (seiHasSubseqLayerInfo && img->number == 0)
{
FinalizeSubseqLayerInfo();
write_sei_message(AGGREGATION_SEI, seiSubseqLayerInfo.data, seiSubseqLayerInfo.payloadSize, SEI_SUBSEQ_LAYER_CHARACTERISTICS);
seiHasSubseqLayerInfo = FALSE;
has_aggregation_sei_message = TRUE;
}
// write the sub sequence characteristics payload to the aggregation sei message
if (seiHasSubseqChar)
{
FinalizeSubseqChar();
write_sei_message(AGGREGATION_SEI, seiSubseqChar.data->streamBuffer, seiSubseqChar.payloadSize, SEI_SUBSEQ_CHARACTERISTICS);
ClearSubseqCharPayload();
has_aggregation_sei_message = TRUE;
}
// write the pan scan rectangle info sei playload to the aggregation sei message
if (seiHasPanScanRectInfo)
{
FinalizePanScanRectInfo();
write_sei_message(AGGREGATION_SEI, seiPanScanRectInfo.data->streamBuffer, seiPanScanRectInfo.payloadSize, SEI_PANSCAN_RECT);
ClearPanScanRectInfoPayload();
has_aggregation_sei_message = TRUE;
}
// write the arbitrary (unregistered) info sei playload to the aggregation sei message
if (seiHasUser_data_unregistered_info)
{
FinalizeUser_data_unregistered();
write_sei_message(AGGREGATION_SEI, seiUser_data_unregistered.data->streamBuffer, seiUser_data_unregistered.payloadSize, SEI_USER_DATA_UNREGISTERED);
ClearUser_data_unregistered();
has_aggregation_sei_message = TRUE;
}
// write the arbitrary (unregistered) info sei playload to the aggregation sei message
if (seiHasUser_data_registered_itu_t_t35_info)
{
FinalizeUser_data_registered_itu_t_t35();
write_sei_message(AGGREGATION_SEI, seiUser_data_registered_itu_t_t35.data->streamBuffer, seiUser_data_registered_itu_t_t35.payloadSize, SEI_USER_DATA_REGISTERED_ITU_T_T35);
ClearUser_data_registered_itu_t_t35();
has_aggregation_sei_message = TRUE;
}
//write RandomAccess info sei payload to the aggregation sei message
if (seiHasRandomAccess_info)
{
FinalizeRandomAccess();
write_sei_message(AGGREGATION_SEI, seiRandomAccess.data->streamBuffer, seiRandomAccess.payloadSize, SEI_RANDOM_ACCESS_POINT);
ClearRandomAccess();
has_aggregation_sei_message = TRUE;
}
// more aggregation sei payload is written here...
// JVT-D099 write the scene information SEI payload
if (seiHasSceneInformation)
{
FinalizeSceneInformation();
write_sei_message(AGGREGATION_SEI, seiSceneInformation.data->streamBuffer, seiSceneInformation.payloadSize, SEI_SCENE_INFORMATION);
has_aggregation_sei_message = TRUE;
}
// End JVT-D099
// after all the sei payload is written
if (has_aggregation_sei_message)
finalize_sei_message(AGGREGATION_SEI);
}
/*!
*****************************************************************************
* \begin_sub_sequence_rtp
* \brief
* do some initialization for sub-sequence under rtp
*
* \date
* September 10, 2002
*
* \author
* Dong Tian tian@cs.tut.fi
*****************************************************************************/
void begin_sub_sequence_rtp()
{
if ( input->of_mode != PAR_OF_RTP || input->NumFramesInELSubSeq == 0 )
return;
// begin to encode the base layer subseq
if ( IMG_NUMBER == 0 )
{
// printf("begin to encode the base layer subseq\n");
InitSubseqInfo(0);
if (1)
UpdateSubseqChar();
}
// begin to encode the enhanced layer subseq
if ( IMG_NUMBER % (input->NumFramesInELSubSeq+1) == 1 )
{
// printf("begin to encode the enhanced layer subseq\n");
InitSubseqInfo(1); // init the sub-sequence in the enhanced layer
// add_dependent_subseq(1);
if (1)
UpdateSubseqChar();
}
}
/*!
*****************************************************************************
* \end_sub_sequence_rtp
* \brief
* do nothing
*
* \date
* September 10, 2002
*
* \author
* Dong Tian tian@cs.tut.fi
*****************************************************************************/
void end_sub_sequence_rtp()
{
// end of the base layer:
if ( img->number == input->no_frames-1 )
{
// printf("end of encoding the base layer subseq\n");
CloseSubseqInfo(0);
// updateSubSequenceBox(0);
}
// end of the enhanced layer:
if ( ((IMG_NUMBER%(input->NumFramesInELSubSeq+1)==0) && (input->successive_Bframe != 0) && (IMG_NUMBER>0)) || // there are B frames
((IMG_NUMBER%(input->NumFramesInELSubSeq+1)==input->NumFramesInELSubSeq) && (input->successive_Bframe==0)) // there are no B frames
)
{
// printf("end of encoding the enhanced layer subseq\n");
CloseSubseqInfo(1);
// add_dependent_subseq(1);
// updateSubSequenceBox(1);
}
}
#endif