blob: da50a73fa2d3429a897f78228011fc3fc932a4ea [file] [log] [blame]
/*!
***************************************************************************
* \file transform8x8.c
*
* \brief
* 8x8 transform functions
*
* \author
* Main contributors (see contributors.h for copyright, address and affiliation details)
* - Yuri Vatis <vatis@hhi.de>
* - Jan Muenster <muenster@hhi.de>
* - Lowell Winger <lwinger@lsil.com>
* \date
* 12. October 2003
**************************************************************************
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include "global.h"
#include "image.h"
#include "mb_access.h"
#include "elements.h"
#include "cabac.h"
#include "vlc.h"
#include "minmax.h"
#include "transform8x8.h"
#include "macroblock.h"
#include "symbol.h"
int cofAC8x8_chroma[2][4][2][18];
static int diff64[64];
const int quant_coef8[6][8][8] =
{
{
{13107, 12222, 16777, 12222, 13107, 12222, 16777, 12222},
{12222, 11428, 15481, 11428, 12222, 11428, 15481, 11428},
{16777, 15481, 20972, 15481, 16777, 15481, 20972, 15481},
{12222, 11428, 15481, 11428, 12222, 11428, 15481, 11428},
{13107, 12222, 16777, 12222, 13107, 12222, 16777, 12222},
{12222, 11428, 15481, 11428, 12222, 11428, 15481, 11428},
{16777, 15481, 20972, 15481, 16777, 15481, 20972, 15481},
{12222, 11428, 15481, 11428, 12222, 11428, 15481, 11428}
},
{
{11916, 11058, 14980, 11058, 11916, 11058, 14980, 11058},
{11058, 10826, 14290, 10826, 11058, 10826, 14290, 10826},
{14980, 14290, 19174, 14290, 14980, 14290, 19174, 14290},
{11058, 10826, 14290, 10826, 11058, 10826, 14290, 10826},
{11916, 11058, 14980, 11058, 11916, 11058, 14980, 11058},
{11058, 10826, 14290, 10826, 11058, 10826, 14290, 10826},
{14980, 14290, 19174, 14290, 14980, 14290, 19174, 14290},
{11058, 10826, 14290, 10826, 11058, 10826, 14290, 10826}
},
{
{10082, 9675, 12710, 9675, 10082, 9675, 12710, 9675},
{9675, 8943, 11985, 8943, 9675, 8943, 11985, 8943},
{12710, 11985, 15978, 11985, 12710, 11985, 15978, 11985},
{9675, 8943, 11985, 8943, 9675, 8943, 11985, 8943},
{10082, 9675, 12710, 9675, 10082, 9675, 12710, 9675},
{9675, 8943, 11985, 8943, 9675, 8943, 11985, 8943},
{12710, 11985, 15978, 11985, 12710, 11985, 15978, 11985},
{9675, 8943, 11985, 8943, 9675, 8943, 11985, 8943}
},
{
{9362, 8931, 11984, 8931, 9362, 8931, 11984, 8931},
{8931, 8228, 11259, 8228, 8931, 8228, 11259, 8228},
{11984, 11259, 14913, 11259, 11984, 11259, 14913, 11259},
{8931, 8228, 11259, 8228, 8931, 8228, 11259, 8228},
{9362, 8931, 11984, 8931, 9362, 8931, 11984, 8931},
{8931, 8228, 11259, 8228, 8931, 8228, 11259, 8228},
{11984, 11259, 14913, 11259, 11984, 11259, 14913, 11259},
{8931, 8228, 11259, 8228, 8931, 8228, 11259, 8228}
},
{
{8192, 7740, 10486, 7740, 8192, 7740, 10486, 7740},
{7740, 7346, 9777, 7346, 7740, 7346, 9777, 7346},
{10486, 9777, 13159, 9777, 10486, 9777, 13159, 9777},
{7740, 7346, 9777, 7346, 7740, 7346, 9777, 7346},
{8192, 7740, 10486, 7740, 8192, 7740, 10486, 7740},
{7740, 7346, 9777, 7346, 7740, 7346, 9777, 7346},
{10486, 9777, 13159, 9777, 10486, 9777, 13159, 9777},
{7740, 7346, 9777, 7346, 7740, 7346, 9777, 7346}
},
{
{7282, 6830, 9118, 6830, 7282, 6830, 9118, 6830},
{6830, 6428, 8640, 6428, 6830, 6428, 8640, 6428},
{9118, 8640, 11570, 8640, 9118, 8640, 11570, 8640},
{6830, 6428, 8640, 6428, 6830, 6428, 8640, 6428},
{7282, 6830, 9118, 6830, 7282, 6830, 9118, 6830},
{6830, 6428, 8640, 6428, 6830, 6428, 8640, 6428},
{9118, 8640, 11570, 8640, 9118, 8640, 11570, 8640},
{6830, 6428, 8640, 6428, 6830, 6428, 8640, 6428}
}
};
const int dequant_coef8[6][8][8] =
{
{
{20, 19, 25, 19, 20, 19, 25, 19},
{19, 18, 24, 18, 19, 18, 24, 18},
{25, 24, 32, 24, 25, 24, 32, 24},
{19, 18, 24, 18, 19, 18, 24, 18},
{20, 19, 25, 19, 20, 19, 25, 19},
{19, 18, 24, 18, 19, 18, 24, 18},
{25, 24, 32, 24, 25, 24, 32, 24},
{19, 18, 24, 18, 19, 18, 24, 18}
},
{
{22, 21, 28, 21, 22, 21, 28, 21},
{21, 19, 26, 19, 21, 19, 26, 19},
{28, 26, 35, 26, 28, 26, 35, 26},
{21, 19, 26, 19, 21, 19, 26, 19},
{22, 21, 28, 21, 22, 21, 28, 21},
{21, 19, 26, 19, 21, 19, 26, 19},
{28, 26, 35, 26, 28, 26, 35, 26},
{21, 19, 26, 19, 21, 19, 26, 19}
},
{
{26, 24, 33, 24, 26, 24, 33, 24},
{24, 23, 31, 23, 24, 23, 31, 23},
{33, 31, 42, 31, 33, 31, 42, 31},
{24, 23, 31, 23, 24, 23, 31, 23},
{26, 24, 33, 24, 26, 24, 33, 24},
{24, 23, 31, 23, 24, 23, 31, 23},
{33, 31, 42, 31, 33, 31, 42, 31},
{24, 23, 31, 23, 24, 23, 31, 23}
},
{
{28, 26, 35, 26, 28, 26, 35, 26},
{26, 25, 33, 25, 26, 25, 33, 25},
{35, 33, 45, 33, 35, 33, 45, 33},
{26, 25, 33, 25, 26, 25, 33, 25},
{28, 26, 35, 26, 28, 26, 35, 26},
{26, 25, 33, 25, 26, 25, 33, 25},
{35, 33, 45, 33, 35, 33, 45, 33},
{26, 25, 33, 25, 26, 25, 33, 25}
},
{
{32, 30, 40, 30, 32, 30, 40, 30},
{30, 28, 38, 28, 30, 28, 38, 28},
{40, 38, 51, 38, 40, 38, 51, 38},
{30, 28, 38, 28, 30, 28, 38, 28},
{32, 30, 40, 30, 32, 30, 40, 30},
{30, 28, 38, 28, 30, 28, 38, 28},
{40, 38, 51, 38, 40, 38, 51, 38},
{30, 28, 38, 28, 30, 28, 38, 28}
},
{
{36, 34, 46, 34, 36, 34, 46, 34},
{34, 32, 43, 32, 34, 32, 43, 32},
{46, 43, 58, 43, 46, 43, 58, 43},
{34, 32, 43, 32, 34, 32, 43, 32},
{36, 34, 46, 34, 36, 34, 46, 34},
{34, 32, 43, 32, 34, 32, 43, 32},
{46, 43, 58, 43, 46, 43, 58, 43},
{34, 32, 43, 32, 34, 32, 43, 32}
}
};
//! single scan pattern
const byte SNGL_SCAN8x8[64][2] = {
{0,0}, {1,0}, {0,1}, {0,2}, {1,1}, {2,0}, {3,0}, {2,1},
{1,2}, {0,3}, {0,4}, {1,3}, {2,2}, {3,1}, {4,0}, {5,0},
{4,1}, {3,2}, {2,3}, {1,4}, {0,5}, {0,6}, {1,5}, {2,4},
{3,3}, {4,2}, {5,1}, {6,0}, {7,0}, {6,1}, {5,2}, {4,3},
{3,4}, {2,5}, {1,6}, {0,7}, {1,7}, {2,6}, {3,5}, {4,4},
{5,3}, {6,2}, {7,1}, {7,2}, {6,3}, {5,4}, {4,5}, {3,6},
{2,7}, {3,7}, {4,6}, {5,5}, {6,4}, {7,3}, {7,4}, {6,5},
{5,6}, {4,7}, {5,7}, {6,6}, {7,5}, {7,6}, {6,7}, {7,7}
};
//! field scan pattern
const byte FIELD_SCAN8x8[64][2] = { // 8x8
{0,0}, {0,1}, {0,2}, {1,0}, {1,1}, {0,3}, {0,4}, {1,2},
{2,0}, {1,3}, {0,5}, {0,6}, {0,7}, {1,4}, {2,1}, {3,0},
{2,2}, {1,5}, {1,6}, {1,7}, {2,3}, {3,1}, {4,0}, {3,2},
{2,4}, {2,5}, {2,6}, {2,7}, {3,3}, {4,1}, {5,0}, {4,2},
{3,4}, {3,5}, {3,6}, {3,7}, {4,3}, {5,1}, {6,0}, {5,2},
{4,4}, {4,5}, {4,6}, {4,7}, {5,3}, {6,1}, {6,2}, {5,4},
{5,5}, {5,6}, {5,7}, {6,3}, {7,0}, {7,1}, {6,4}, {6,5},
{6,6}, {6,7}, {7,2}, {7,3}, {7,4}, {7,5}, {7,6}, {7,7}
};
//! array used to find expensive coefficients
const byte COEFF_COST8x8[2][64] =
{
{3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,
1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9}
};
/*!
*************************************************************************************
* \brief
* 8x8 Intra mode decision for a macroblock
*************************************************************************************
*/
int Mode_Decision_for_new_Intra8x8Macroblock (double lambda, int *min_cost)
{
int cbp=0, b8, cost8x8;
*min_cost = (int)floor(6.0 * lambda + 0.4999);
for (b8=0; b8<4; b8++)
{
if (Mode_Decision_for_new_8x8IntraBlocks (b8, lambda, &cost8x8))
{
cbp |= (1<<b8);
}
*min_cost += cost8x8;
}
return cbp;
}
/*!
*************************************************************************************
* \brief
* 8x8 Intra mode decision for a macroblock
*************************************************************************************
*/
int Mode_Decision_for_new_8x8IntraBlocks (int b8, double lambda, int *min_cost)
{
int ipmode, best_ipmode = 0, i, j, k, y, cost, dummy;
int c_nz, nonzero = 0;
imgpel rec8x8[8][8];
double rdcost = 0.0;
int block_x = 8*(b8 & 0x01);
int block_y = 8*(b8 >> 1);
int pic_pix_x = img->pix_x+block_x;
int pic_pix_y = img->pix_y+block_y;
int pic_opix_x = img->opix_x+block_x;
int pic_opix_y = img->opix_y+block_y;
int pic_block_x = pic_pix_x/4;
int pic_block_y = pic_pix_y/4;
double min_rdcost = 1e30;
imgpel **imgY_orig = imgY_org;
extern int ****cofAC8x8;
int fadjust8x8[2][16][16];
int left_available, up_available, all_available;
signed char upMode;
signed char leftMode;
int mostProbableMode;
PixelPos left_block;
PixelPos top_block;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
getLuma4x4Neighbour(img->current_mb_nr, block_x - 1, block_y, &left_block);
getLuma4x4Neighbour(img->current_mb_nr, block_x, block_y - 1, &top_block);
if (input->UseConstrainedIntraPred)
{
top_block.available = top_block.available ? img->intra_block [top_block.mb_addr] : 0;
left_block.available = left_block.available ? img->intra_block [left_block.mb_addr] : 0;
}
if(b8 >> 1)
upMode = top_block.available ? img->ipredmode8x8[top_block.pos_y ][top_block.pos_x ] : -1;
else
upMode = top_block.available ? img->ipredmode [top_block.pos_y ][top_block.pos_x ] : -1;
if(b8 & 0x01)
leftMode = left_block.available ? img->ipredmode8x8[left_block.pos_y][left_block.pos_x] : -1;
else
leftMode = left_block.available ? img->ipredmode[left_block.pos_y][left_block.pos_x] : -1;
mostProbableMode = (upMode < 0 || leftMode < 0) ? DC_PRED : upMode < leftMode ? upMode : leftMode;
*min_cost = INT_MAX;
//===== INTRA PREDICTION FOR 8x8 BLOCK =====
intrapred_luma8x8 (pic_pix_x, pic_pix_y, &left_available, &up_available, &all_available);
//===== LOOP OVER ALL 8x8 INTRA PREDICTION MODES =====
for (ipmode=0; ipmode<NO_INTRA_PMODE; ipmode++)
{
if( (ipmode==DC_PRED) ||
((ipmode==VERT_PRED||ipmode==VERT_LEFT_PRED||ipmode==DIAG_DOWN_LEFT_PRED) && up_available ) ||
((ipmode==HOR_PRED||ipmode==HOR_UP_PRED) && left_available ) ||
(all_available) )
{
if (!input->rdopt)
{
for (k=j=0; j<8; j++)
for (i=0; i<8; i++, k++)
{
diff64[k] = imgY_orig[pic_opix_y+j][pic_opix_x+i] - img->mprr_3[ipmode][j][i];
}
cost = (ipmode == mostProbableMode) ? 0 : (int)floor(4 * lambda );
cost += distortion8x8 (diff64);
if (cost < *min_cost)
{
best_ipmode = ipmode;
*min_cost = cost;
}
}
else
{
// get prediction and prediction error
for (j=0; j<8; j++)
{
memcpy(&img->mpr[block_y+j][block_x],img->mprr_3[ipmode][j], 8 * sizeof(imgpel));
for (i=0; i<8; i++)
{
img->m7[j][i] = imgY_orig[pic_opix_y+j][pic_opix_x+i] - img->mprr_3[ipmode][j][i];
}
}
//===== store the coding state =====
//store_coding_state_cs_cm();
// get and check rate-distortion cost
if ((rdcost = RDCost_for_8x8IntraBlocks (&c_nz, b8, ipmode, lambda, min_rdcost, mostProbableMode)) < min_rdcost)
{
//--- set coefficients ---
for(k=0; k<4; k++) // do 4x now
{
for (j=0; j<2; j++)
memcpy(cofAC8x8[b8][k][j],img->cofAC[b8][k][j], 65 * sizeof(int));
}
//--- set reconstruction ---
for (y=0; y<8; y++)
{
memcpy(rec8x8[y],&enc_picture->imgY[pic_pix_y+y][pic_pix_x], 8 * sizeof(imgpel));
}
if (img->AdaptiveRounding)
{
for (j=block_y; j<block_y + 8; j++)
memcpy(&fadjust8x8[1][j][block_x],&img->fadjust8x8[1][j][block_x], 8 * sizeof(int));
}
//--- flag if dct-coefficients must be coded ---
nonzero = c_nz;
//--- set best mode update minimum cost ---
min_rdcost = rdcost;
best_ipmode = ipmode;
}
reset_coding_state_cs_cm();
}
}
}
//===== set intra mode prediction =====
img->ipredmode8x8[pic_block_y][pic_block_x] = (signed char) best_ipmode;
currMB->intra_pred_modes8x8[4*b8] = (mostProbableMode == best_ipmode)
? -1
: (best_ipmode < mostProbableMode ? best_ipmode : best_ipmode-1);
for(j = img->mb_y*4+(b8 >> 1)*2; j < img->mb_y*4+(b8 >> 1)*2 + 2; j++) //loop 4x4s in the subblock for 8x8 prediction setting
memset(&img->ipredmode8x8[j][img->mb_x*4+(b8 & 0x01)*2], best_ipmode, 2 * sizeof(char));
if (!input->rdopt)
{
// get prediction and prediction error
for (j=0; j<8; j++)
{
memcpy(&img->mpr[block_y+j][block_x],img->mprr_3[best_ipmode][j], 8 * sizeof(imgpel));
for (i=0; i<8; i++)
{
img->m7[j][i] = imgY_orig[pic_opix_y+j][pic_opix_x+i] - img->mprr_3[best_ipmode][j][i];
}
}
nonzero = dct_luma8x8 (b8, &dummy, 1);
}
else
{
//===== restore coefficients =====
for(k=0; k<4; k++) // do 4x now
{
for (j=0; j<2; j++)
memcpy(img->cofAC[b8][k][j],cofAC8x8[b8][k][j], 65 * sizeof(int));
}
if (img->AdaptiveRounding)
{
for (j=0; j<8; j++)
memcpy(&img->fadjust8x8[1][block_y+j][block_x], &fadjust8x8[1][block_y+j][block_x], 8 * sizeof(int));
}
//===== restore reconstruction and prediction (needed if single coeffs are removed) =====
for (y=0; y<8; y++)
{
memcpy(&enc_picture->imgY[pic_pix_y+y][pic_pix_x], rec8x8[y], 8 * sizeof(imgpel));
memcpy(&img->mpr[block_y+y][block_x], img->mprr_3[best_ipmode][y], 8 * sizeof(imgpel));
}
}
return nonzero;
}
// Notation for comments regarding prediction and predictors.
// The pels of the 4x4 block are labelled a..p. The predictor pels above
// are labelled A..H, from the left I..P, and from above left X, as follows:
//
// Z A B C D E F G H I J K L M N O P
// Q a1 b1 c1 d1 e1 f1 g1 h1
// R a2 b2 c2 d2 e2 f2 g2 h2
// S a3 b3 c3 d3 e3 f3 g3 h3
// T a4 b4 c4 d4 e4 f4 g4 h4
// U a5 b5 c5 d5 e5 f5 g5 h5
// V a6 b6 c6 d6 e6 f6 g6 h6
// W a7 b7 c7 d7 e7 f7 g7 h7
// X a8 b8 c8 d8 e8 f8 g8 h8
// Predictor array index definitions
#define P_Z (PredPel[0])
#define P_A (PredPel[1])
#define P_B (PredPel[2])
#define P_C (PredPel[3])
#define P_D (PredPel[4])
#define P_E (PredPel[5])
#define P_F (PredPel[6])
#define P_G (PredPel[7])
#define P_H (PredPel[8])
#define P_I (PredPel[9])
#define P_J (PredPel[10])
#define P_K (PredPel[11])
#define P_L (PredPel[12])
#define P_M (PredPel[13])
#define P_N (PredPel[14])
#define P_O (PredPel[15])
#define P_P (PredPel[16])
#define P_Q (PredPel[17])
#define P_R (PredPel[18])
#define P_S (PredPel[19])
#define P_T (PredPel[20])
#define P_U (PredPel[21])
#define P_V (PredPel[22])
#define P_W (PredPel[23])
#define P_X (PredPel[24])
/*!
************************************************************************
* \brief
* Make intra 8x8 prediction according to all 9 prediction modes.
* The routine uses left and upper neighbouring points from
* previous coded blocks to do this (if available). Notice that
* inaccessible neighbouring points are signalled with a negative
* value in the predmode array .
*
* \par Input:
* Starting point of current 8x8 block image posision
*
* \par Output:
* none
************************************************************************
*/
void intrapred_luma8x8(int img_x,int img_y, int *left_available, int *up_available, int *all_available)
{
int i,j;
int s0;
static imgpel PredPel[25]; // array of predictor pels
imgpel **imgY = enc_picture->imgY; // For MB level frame/field coding tools -- set default to imgY
imgpel *imgYpel;
imgpel (*cur_pred)[8];
int ioff = (img_x & 15);
int joff = (img_y & 15);
int mb_nr=img->current_mb_nr;
PixelPos pix_a[8];
PixelPos pix_b, pix_c, pix_d;
int block_available_up;
int block_available_left;
int block_available_up_left;
int block_available_up_right;
for (i=0;i<8;i++)
{
getNeighbour(mb_nr, ioff -1 , joff +i , IS_LUMA, &pix_a[i]);
}
getNeighbour(mb_nr, ioff , joff -1 , IS_LUMA, &pix_b);
getNeighbour(mb_nr, ioff +8 , joff -1 , IS_LUMA, &pix_c);
getNeighbour(mb_nr, ioff -1 , joff -1 , IS_LUMA, &pix_d);
pix_c.available = pix_c.available &&!(ioff == 8 && joff == 8);
if (input->UseConstrainedIntraPred)
{
for (i=0, block_available_left=1; i<8;i++)
block_available_left &= pix_a[i].available ? img->intra_block[pix_a[i].mb_addr]: 0;
block_available_up = pix_b.available ? img->intra_block [pix_b.mb_addr] : 0;
block_available_up_right = pix_c.available ? img->intra_block [pix_c.mb_addr] : 0;
block_available_up_left = pix_d.available ? img->intra_block [pix_d.mb_addr] : 0;
}
else
{
block_available_left = pix_a[0].available;
block_available_up = pix_b.available;
block_available_up_right = pix_c.available;
block_available_up_left = pix_d.available;
}
*left_available = block_available_left;
*up_available = block_available_up;
*all_available = block_available_up && block_available_left && block_available_up_left;
i = (img_x & 15);
j = (img_y & 15);
// form predictor pels
// form predictor pels
if (block_available_up)
{
imgYpel = &imgY[pix_b.pos_y][pix_b.pos_x];
P_A = *(imgYpel++);
P_B = *(imgYpel++);
P_C = *(imgYpel++);
P_D = *(imgYpel++);
P_E = *(imgYpel++);
P_F = *(imgYpel++);
P_G = *(imgYpel++);
P_H = *(imgYpel);
}
else
{
P_A = P_B = P_C = P_D = P_E = P_F = P_G = P_H = img->dc_pred_value_luma;
}
if (block_available_up_right)
{
imgYpel = &imgY[pix_c.pos_y][pix_c.pos_x];
P_I = *(imgYpel++);
P_J = *(imgYpel++);
P_K = *(imgYpel++);
P_L = *(imgYpel++);
P_M = *(imgYpel++);
P_N = *(imgYpel++);
P_O = *(imgYpel++);
P_P = *(imgYpel);
}
else
{
P_I = P_J = P_K = P_L = P_M = P_N = P_O = P_P = P_H;
}
if (block_available_left)
{
P_Q = imgY[pix_a[0].pos_y][pix_a[0].pos_x];
P_R = imgY[pix_a[1].pos_y][pix_a[1].pos_x];
P_S = imgY[pix_a[2].pos_y][pix_a[2].pos_x];
P_T = imgY[pix_a[3].pos_y][pix_a[3].pos_x];
P_U = imgY[pix_a[4].pos_y][pix_a[4].pos_x];
P_V = imgY[pix_a[5].pos_y][pix_a[5].pos_x];
P_W = imgY[pix_a[6].pos_y][pix_a[6].pos_x];
P_X = imgY[pix_a[7].pos_y][pix_a[7].pos_x];
}
else
{
P_Q = P_R = P_S = P_T = P_U = P_V = P_W = P_X = img->dc_pred_value_luma;
}
if (block_available_up_left)
{
P_Z = imgY[pix_d.pos_y][pix_d.pos_x];
}
else
{
P_Z = img->dc_pred_value_luma;
}
for(i=0;i<9;i++)
img->mprr_3[i][0][0]=-1;
LowPassForIntra8x8Pred(&(P_Z), block_available_up_left, block_available_up, block_available_left);
///////////////////////////////
// make DC prediction
///////////////////////////////
s0 = 0;
if (block_available_up && block_available_left)
{
// no edge
s0 = rshift_rnd_sf((P_A + P_B + P_C + P_D + P_E + P_F + P_G + P_H + P_Q + P_R + P_S + P_T + P_U + P_V + P_W + P_X), 4);
}
else if (!block_available_up && block_available_left)
{
// upper edge
s0 = rshift_rnd_sf((P_Q + P_R + P_S + P_T + P_U + P_V + P_W + P_X), 3);
}
else if (block_available_up && !block_available_left)
{
// left edge
s0 = rshift_rnd_sf((P_A + P_B + P_C + P_D + P_E + P_F + P_G + P_H), 3);
}
else //if (!block_available_up && !block_available_left)
{
// top left corner, nothing to predict from
s0 = img->dc_pred_value_luma;
}
// store DC prediction
cur_pred = img->mprr_3[DC_PRED];
for (j=0; j < 2*BLOCK_SIZE; j++)
{
for (i=0; i < 2*BLOCK_SIZE; i++)
{
cur_pred[i][j] = (imgpel) s0;
}
}
///////////////////////////////
// make horiz and vert prediction
///////////////////////////////
cur_pred = img->mprr_3[VERT_PRED];
for (i=0; i < 2*BLOCK_SIZE; i++)
{
cur_pred[0][i] =
cur_pred[1][i] =
cur_pred[2][i] =
cur_pred[3][i] =
cur_pred[4][i] =
cur_pred[5][i] =
cur_pred[6][i] =
cur_pred[7][i] = (imgpel)(&P_A)[i];
}
if(!block_available_up)
cur_pred[0][0]=-1;
cur_pred = img->mprr_3[HOR_PRED];
for (i=0; i < 2*BLOCK_SIZE; i++)
{
cur_pred[i][0] =
cur_pred[i][1] =
cur_pred[i][2] =
cur_pred[i][3] =
cur_pred[i][4] =
cur_pred[i][5] =
cur_pred[i][6] =
cur_pred[i][7] = (imgpel) (&P_Q)[i];
}
if(!block_available_left)
cur_pred[0][0]=-1;
///////////////////////////////////
// make diagonal down left prediction
///////////////////////////////////
if (block_available_up)
{
// Mode DIAG_DOWN_LEFT_PRED
cur_pred = img->mprr_3[DIAG_DOWN_LEFT_PRED];
cur_pred[0][0] = (imgpel) ((P_A + P_C + 2*(P_B) + 2) >> 2);
cur_pred[0][1] =
cur_pred[1][0] = (imgpel) ((P_B + P_D + 2*(P_C) + 2) >> 2);
cur_pred[0][2] =
cur_pred[1][1] =
cur_pred[2][0] = (imgpel) ((P_C + P_E + 2*(P_D) + 2) >> 2);
cur_pred[0][3] =
cur_pred[1][2] =
cur_pred[2][1] =
cur_pred[3][0] = (imgpel) ((P_D + P_F + 2*(P_E) + 2) >> 2);
cur_pred[0][4] =
cur_pred[1][3] =
cur_pred[2][2] =
cur_pred[3][1] =
cur_pred[4][0] = (imgpel) ((P_E + P_G + 2*(P_F) + 2) >> 2);
cur_pred[0][5] =
cur_pred[1][4] =
cur_pred[2][3] =
cur_pred[3][2] =
cur_pred[4][1] =
cur_pred[5][0] = (imgpel) ((P_F + P_H + 2*(P_G) + 2) >> 2);
cur_pred[0][6] =
cur_pred[1][5] =
cur_pred[2][4] =
cur_pred[3][3] =
cur_pred[4][2] =
cur_pred[5][1] =
cur_pred[6][0] = (imgpel) ((P_G + P_I + 2*(P_H) + 2) >> 2);
cur_pred[0][7] =
cur_pred[1][6] =
cur_pred[2][5] =
cur_pred[3][4] =
cur_pred[4][3] =
cur_pred[5][2] =
cur_pred[6][1] =
cur_pred[7][0] = (imgpel) ((P_H + P_J + 2*(P_I) + 2) >> 2);
cur_pred[1][7] =
cur_pred[2][6] =
cur_pred[3][5] =
cur_pred[4][4] =
cur_pred[5][3] =
cur_pred[6][2] =
cur_pred[7][1] = (imgpel) ((P_I + P_K + 2*(P_J) + 2) >> 2);
cur_pred[2][7] =
cur_pred[3][6] =
cur_pred[4][5] =
cur_pred[5][4] =
cur_pred[6][3] =
cur_pred[7][2] = (imgpel) ((P_J + P_L + 2*(P_K) + 2) >> 2);
cur_pred[3][7] =
cur_pred[4][6] =
cur_pred[5][5] =
cur_pred[6][4] =
cur_pred[7][3] = (imgpel) ((P_K + P_M + 2*(P_L) + 2) >> 2);
cur_pred[4][7] =
cur_pred[5][6] =
cur_pred[6][5] =
cur_pred[7][4] = (imgpel) ((P_L + P_N + 2*(P_M) + 2) >> 2);
cur_pred[5][7] =
cur_pred[6][6] =
cur_pred[7][5] = (imgpel) ((P_M + P_O + 2*(P_N) + 2) >> 2);
cur_pred[6][7] =
cur_pred[7][6] = (imgpel) ((P_N + P_P + 2*(P_O) + 2) >> 2);
cur_pred[7][7] = (imgpel) ((P_O + 3*(P_P) + 2) >> 2);
///////////////////////////////////
// make vertical left prediction
///////////////////////////////////
cur_pred = img->mprr_3[VERT_LEFT_PRED];
cur_pred[0][0] = (imgpel) ((P_A + P_B + 1) >> 1);
cur_pred[0][1] =
cur_pred[2][0] = (imgpel) ((P_B + P_C + 1) >> 1);
cur_pred[0][2] =
cur_pred[2][1] =
cur_pred[4][0] = (imgpel) ((P_C + P_D + 1) >> 1);
cur_pred[0][3] =
cur_pred[2][2] =
cur_pred[4][1] =
cur_pred[6][0] = (imgpel) ((P_D + P_E + 1) >> 1);
cur_pred[0][4] =
cur_pred[2][3] =
cur_pred[4][2] =
cur_pred[6][1] = (imgpel) ((P_E + P_F + 1) >> 1);
cur_pred[0][5] =
cur_pred[2][4] =
cur_pred[4][3] =
cur_pred[6][2] = (imgpel) ((P_F + P_G + 1) >> 1);
cur_pred[0][6] =
cur_pred[2][5] =
cur_pred[4][4] =
cur_pred[6][3] = (imgpel) ((P_G + P_H + 1) >> 1);
cur_pred[0][7] =
cur_pred[2][6] =
cur_pred[4][5] =
cur_pred[6][4] = (imgpel) ((P_H + P_I + 1) >> 1);
cur_pred[2][7] =
cur_pred[4][6] =
cur_pred[6][5] = (imgpel) ((P_I + P_J + 1) >> 1);
cur_pred[4][7] =
cur_pred[6][6] = (imgpel) ((P_J + P_K + 1) >> 1);
cur_pred[6][7] = (imgpel) ((P_K + P_L + 1) >> 1);
cur_pred[1][0] = (imgpel) ((P_A + P_C + 2*P_B + 2) >> 2);
cur_pred[1][1] =
cur_pred[3][0] = (imgpel) ((P_B + P_D + 2*P_C + 2) >> 2);
cur_pred[1][2] =
cur_pred[3][1] =
cur_pred[5][0] = (imgpel) ((P_C + P_E + 2*P_D + 2) >> 2);
cur_pred[1][3] =
cur_pred[3][2] =
cur_pred[5][1] =
cur_pred[7][0] = (imgpel) ((P_D + P_F + 2*P_E + 2) >> 2);
cur_pred[1][4] =
cur_pred[3][3] =
cur_pred[5][2] =
cur_pred[7][1] = (imgpel) ((P_E + P_G + 2*P_F + 2) >> 2);
cur_pred[1][5] =
cur_pred[3][4] =
cur_pred[5][3] =
cur_pred[7][2] = (imgpel) ((P_F + P_H + 2*P_G + 2) >> 2);
cur_pred[1][6] =
cur_pred[3][5] =
cur_pred[5][4] =
cur_pred[7][3] = (imgpel) ((P_G + P_I + 2*P_H + 2) >> 2);
cur_pred[1][7] =
cur_pred[3][6] =
cur_pred[5][5] =
cur_pred[7][4] = (imgpel) ((P_H + P_J + 2*P_I + 2) >> 2);
cur_pred[3][7] =
cur_pred[5][6] =
cur_pred[7][5] = (imgpel) ((P_I + P_K + 2*P_J + 2) >> 2);
cur_pred[5][7] =
cur_pred[7][6] = (imgpel) ((P_J + P_L + 2*P_K + 2) >> 2);
cur_pred[7][7] = (imgpel) ((P_K + P_M + 2*P_L + 2) >> 2);
}
///////////////////////////////////
// make diagonal down right prediction
///////////////////////////////////
if (block_available_up && block_available_left && block_available_up_left)
{
// Mode DIAG_DOWN_RIGHT_PRED
cur_pred = img->mprr_3[DIAG_DOWN_RIGHT_PRED];
cur_pred[7][0] = (imgpel) ((P_X + P_V + 2*(P_W) + 2) >> 2);
cur_pred[6][0] =
cur_pred[7][1] = (imgpel) ((P_W + P_U + 2*(P_V) + 2) >> 2);
cur_pred[5][0] =
cur_pred[6][1] =
cur_pred[7][2] = (imgpel) ((P_V + P_T + 2*(P_U) + 2) >> 2);
cur_pred[4][0] =
cur_pred[5][1] =
cur_pred[6][2] =
cur_pred[7][3] = (imgpel) ((P_U + P_S + 2*(P_T) + 2) >> 2);
cur_pred[3][0] =
cur_pred[4][1] =
cur_pred[5][2] =
cur_pred[6][3] =
cur_pred[7][4] = (imgpel) ((P_T + P_R + 2*(P_S) + 2) >> 2);
cur_pred[2][0] =
cur_pred[3][1] =
cur_pred[4][2] =
cur_pred[5][3] =
cur_pred[6][4] =
cur_pred[7][5] = (imgpel) ((P_S + P_Q + 2*(P_R) + 2) >> 2);
cur_pred[1][0] =
cur_pred[2][1] =
cur_pred[3][2] =
cur_pred[4][3] =
cur_pred[5][4] =
cur_pred[6][5] =
cur_pred[7][6] = (imgpel) ((P_R + P_Z + 2*(P_Q) + 2) >> 2);
cur_pred[0][0] =
cur_pred[1][1] =
cur_pred[2][2] =
cur_pred[3][3] =
cur_pred[4][4] =
cur_pred[5][5] =
cur_pred[6][6] =
cur_pred[7][7] = (imgpel) ((P_Q + P_A + 2*(P_Z) + 2) >> 2);
cur_pred[0][1] =
cur_pred[1][2] =
cur_pred[2][3] =
cur_pred[3][4] =
cur_pred[4][5] =
cur_pred[5][6] =
cur_pred[6][7] = (imgpel) ((P_Z + P_B + 2*(P_A) + 2) >> 2);
cur_pred[0][2] =
cur_pred[1][3] =
cur_pred[2][4] =
cur_pred[3][5] =
cur_pred[4][6] =
cur_pred[5][7] = (imgpel) ((P_A + P_C + 2*(P_B) + 2) >> 2);
cur_pred[0][3] =
cur_pred[1][4] =
cur_pred[2][5] =
cur_pred[3][6] =
cur_pred[4][7] = (imgpel) ((P_B + P_D + 2*(P_C) + 2) >> 2);
cur_pred[0][4] =
cur_pred[1][5] =
cur_pred[2][6] =
cur_pred[3][7] = (imgpel) ((P_C + P_E + 2*(P_D) + 2) >> 2);
cur_pred[0][5] =
cur_pred[1][6] =
cur_pred[2][7] = (imgpel) ((P_D + P_F + 2*(P_E) + 2) >> 2);
cur_pred[0][6] =
cur_pred[1][7] = (imgpel) ((P_E + P_G + 2*(P_F) + 2) >> 2);
cur_pred[0][7] = (imgpel) ((P_F + P_H + 2*(P_G) + 2) >> 2);
///////////////////////////////////
// make vertical right prediction
///////////////////////////////////
cur_pred = img->mprr_3[VERT_RIGHT_PRED];
cur_pred[0][0] =
cur_pred[2][1] =
cur_pred[4][2] =
cur_pred[6][3] = (imgpel) ((P_Z + P_A + 1) >> 1);
cur_pred[0][1] =
cur_pred[2][2] =
cur_pred[4][3] =
cur_pred[6][4] = (imgpel) ((P_A + P_B + 1) >> 1);
cur_pred[0][2] =
cur_pred[2][3] =
cur_pred[4][4] =
cur_pred[6][5] = (imgpel) ((P_B + P_C + 1) >> 1);
cur_pred[0][3] =
cur_pred[2][4] =
cur_pred[4][5] =
cur_pred[6][6] = (imgpel) ((P_C + P_D + 1) >> 1);
cur_pred[0][4] =
cur_pred[2][5] =
cur_pred[4][6] =
cur_pred[6][7] = (imgpel) ((P_D + P_E + 1) >> 1);
cur_pred[0][5] =
cur_pred[2][6] =
cur_pred[4][7] = (imgpel) ((P_E + P_F + 1) >> 1);
cur_pred[0][6] =
cur_pred[2][7] = (imgpel) ((P_F + P_G + 1) >> 1);
cur_pred[0][7] = (imgpel) ((P_G + P_H + 1) >> 1);
cur_pred[1][0] =
cur_pred[3][1] =
cur_pred[5][2] =
cur_pred[7][3] = (imgpel) ((P_Q + P_A + 2*P_Z + 2) >> 2);
cur_pred[1][1] =
cur_pred[3][2] =
cur_pred[5][3] =
cur_pred[7][4] = (imgpel) ((P_Z + P_B + 2*P_A + 2) >> 2);
cur_pred[1][2] =
cur_pred[3][3] =
cur_pred[5][4] =
cur_pred[7][5] = (imgpel) ((P_A + P_C + 2*P_B + 2) >> 2);
cur_pred[1][3] =
cur_pred[3][4] =
cur_pred[5][5] =
cur_pred[7][6] = (imgpel) ((P_B + P_D + 2*P_C + 2) >> 2);
cur_pred[1][4] =
cur_pred[3][5] =
cur_pred[5][6] =
cur_pred[7][7] = (imgpel) ((P_C + P_E + 2*P_D + 2) >> 2);
cur_pred[1][5] =
cur_pred[3][6] =
cur_pred[5][7] = (imgpel) ((P_D + P_F + 2*P_E + 2) >> 2);
cur_pred[1][6] =
cur_pred[3][7] = (imgpel) ((P_E + P_G + 2*P_F + 2) >> 2);
cur_pred[1][7] = (imgpel) ((P_F + P_H + 2*P_G + 2) >> 2);
cur_pred[2][0] =
cur_pred[4][1] =
cur_pred[6][2] = (imgpel) ((P_R + P_Z + 2*P_Q + 2) >> 2);
cur_pred[3][0] =
cur_pred[5][1] =
cur_pred[7][2] = (imgpel) ((P_S + P_Q + 2*P_R + 2) >> 2);
cur_pred[4][0] =
cur_pred[6][1] = (imgpel) ((P_T + P_R + 2*P_S + 2) >> 2);
cur_pred[5][0] =
cur_pred[7][1] = (imgpel) ((P_U + P_S + 2*P_T + 2) >> 2);
cur_pred[6][0] = (imgpel) ((P_V + P_T + 2*P_U + 2) >> 2);
cur_pred[7][0] = (imgpel) ((P_W + P_U + 2*P_V + 2) >> 2);
///////////////////////////////////
// make horizontal down prediction
///////////////////////////////////
cur_pred = img->mprr_3[HOR_DOWN_PRED];
cur_pred[0][0] =
cur_pred[1][2] =
cur_pred[2][4] =
cur_pred[3][6] = (imgpel) ((P_Q + P_Z + 1) >> 1);
cur_pred[1][0] =
cur_pred[2][2] =
cur_pred[3][4] =
cur_pred[4][6] = (imgpel) ((P_R + P_Q + 1) >> 1);
cur_pred[2][0] =
cur_pred[3][2] =
cur_pred[4][4] =
cur_pred[5][6] = (imgpel) ((P_S + P_R + 1) >> 1);
cur_pred[3][0] =
cur_pred[4][2] =
cur_pred[5][4] =
cur_pred[6][6] = (imgpel) ((P_T + P_S + 1) >> 1);
cur_pred[4][0] =
cur_pred[5][2] =
cur_pred[6][4] =
cur_pred[7][6] = (imgpel) ((P_U + P_T + 1) >> 1);
cur_pred[5][0] =
cur_pred[6][2] =
cur_pred[7][4] = (imgpel) ((P_V + P_U + 1) >> 1);
cur_pred[6][0] =
cur_pred[7][2] = (imgpel) ((P_W + P_V + 1) >> 1);
cur_pred[7][0] = (imgpel) ((P_X + P_W + 1) >> 1);
cur_pred[0][1] =
cur_pred[1][3] =
cur_pred[2][5] =
cur_pred[3][7] = (imgpel) ((P_Q + P_A + 2*P_Z + 2) >> 2);
cur_pred[1][1] =
cur_pred[2][3] =
cur_pred[3][5] =
cur_pred[4][7] = (imgpel) ((P_Z + P_R + 2*P_Q + 2) >> 2);
cur_pred[2][1] =
cur_pred[3][3] =
cur_pred[4][5] =
cur_pred[5][7] = (imgpel) ((P_Q + P_S + 2*P_R + 2) >> 2);
cur_pred[3][1] =
cur_pred[4][3] =
cur_pred[5][5] =
cur_pred[6][7] = (imgpel) ((P_R + P_T + 2*P_S + 2) >> 2);
cur_pred[4][1] =
cur_pred[5][3] =
cur_pred[6][5] =
cur_pred[7][7] = (imgpel) ((P_S + P_U + 2*P_T + 2) >> 2);
cur_pred[5][1] =
cur_pred[6][3] =
cur_pred[7][5] = (imgpel) ((P_T + P_V + 2*P_U + 2) >> 2);
cur_pred[6][1] =
cur_pred[7][3] = (imgpel) ((P_U + P_W + 2*P_V + 2) >> 2);
cur_pred[7][1] = (imgpel) ((P_V + P_X + 2*P_W + 2) >> 2);
cur_pred[0][2] =
cur_pred[1][4] =
cur_pred[2][6] = (imgpel) ((P_Z + P_B + 2*P_A + 2) >> 2);
cur_pred[0][3] =
cur_pred[1][5] =
cur_pred[2][7] = (imgpel) ((P_A + P_C + 2*P_B + 2) >> 2);
cur_pred[0][4] =
cur_pred[1][6] = (imgpel) ((P_B + P_D + 2*P_C + 2) >> 2);
cur_pred[0][5] =
cur_pred[1][7] = (imgpel) ((P_C + P_E + 2*P_D + 2) >> 2);
cur_pred[0][6] = (imgpel) ((P_D + P_F + 2*P_E + 2) >> 2);
cur_pred[0][7] = (imgpel) ((P_E + P_G + 2*P_F + 2) >> 2);
}
///////////////////////////////////
// make horizontal up prediction
///////////////////////////////////
if (block_available_left)
{
cur_pred = img->mprr_3[HOR_UP_PRED];
cur_pred[0][0] = (imgpel) ((P_Q + P_R + 1) >> 1);
cur_pred[1][0] =
cur_pred[0][2] = (imgpel) ((P_R + P_S + 1) >> 1);
cur_pred[2][0] =
cur_pred[1][2] =
cur_pred[0][4] = (imgpel) ((P_S + P_T + 1) >> 1);
cur_pred[3][0] =
cur_pred[2][2] =
cur_pred[1][4] =
cur_pred[0][6] = (imgpel) ((P_T + P_U + 1) >> 1);
cur_pred[4][0] =
cur_pred[3][2] =
cur_pred[2][4] =
cur_pred[1][6] = (imgpel) ((P_U + P_V + 1) >> 1);
cur_pred[5][0] =
cur_pred[4][2] =
cur_pred[3][4] =
cur_pred[2][6] = (imgpel) ((P_V + P_W + 1) >> 1);
cur_pred[6][0] =
cur_pred[5][2] =
cur_pred[4][4] =
cur_pred[3][6] = (imgpel) ((P_W + P_X + 1) >> 1);
cur_pred[4][6] =
cur_pred[4][7] =
cur_pred[5][4] =
cur_pred[5][5] =
cur_pred[5][6] =
cur_pred[5][7] =
cur_pred[6][2] =
cur_pred[6][3] =
cur_pred[6][4] =
cur_pred[6][5] =
cur_pred[6][6] =
cur_pred[6][7] =
cur_pred[7][0] =
cur_pred[7][1] =
cur_pred[7][2] =
cur_pred[7][3] =
cur_pred[7][4] =
cur_pred[7][5] =
cur_pred[7][6] =
cur_pred[7][7] = (imgpel) P_X;
cur_pred[6][1] =
cur_pred[5][3] =
cur_pred[4][5] =
cur_pred[3][7] = (imgpel) ((P_W + 3*P_X + 2) >> 2);
cur_pred[5][1] =
cur_pred[4][3] =
cur_pred[3][5] =
cur_pred[2][7] = (imgpel) ((P_X + P_V + 2*P_W + 2) >> 2);
cur_pred[4][1] =
cur_pred[3][3] =
cur_pred[2][5] =
cur_pred[1][7] = (imgpel) ((P_W + P_U + 2*P_V + 2) >> 2);
cur_pred[3][1] =
cur_pred[2][3] =
cur_pred[1][5] =
cur_pred[0][7] = (imgpel) ((P_V + P_T + 2*P_U + 2) >> 2);
cur_pred[2][1] =
cur_pred[1][3] =
cur_pred[0][5] = (imgpel) ((P_U + P_S + 2*P_T + 2) >> 2);
cur_pred[1][1] =
cur_pred[0][3] = (imgpel) ((P_T + P_R + 2*P_S + 2) >> 2);
cur_pred[0][1] = (imgpel) ((P_S + P_Q + 2*P_R + 2) >> 2);
}
}
/*!
*************************************************************************************
* \brief
* Prefiltering for Intra8x8 prediction
*************************************************************************************
*/
void LowPassForIntra8x8Pred(imgpel *PredPel, int block_up_left, int block_up, int block_left)
{
int i;
imgpel LoopArray[25];
memcpy(LoopArray,PredPel, 25 * sizeof(imgpel));
if(block_up)
{
if(block_up_left)
{
LoopArray[1] = (((&P_Z)[0] + ((&P_Z)[1]<<1) + (&P_Z)[2] + 2)>>2);
}
else
LoopArray[1] = (((&P_Z)[1] + ((&P_Z)[1]<<1) + (&P_Z)[2] + 2)>>2);
for(i = 2; i <16; i++)
{
LoopArray[i] = (((&P_Z)[i-1] + ((&P_Z)[i]<<1) + (&P_Z)[i+1] + 2)>>2);
}
LoopArray[16] = ((P_P + (P_P<<1) + P_O + 2)>>2);
}
if(block_up_left)
{
if(block_up && block_left)
{
LoopArray[0] = ((P_Q + (P_Z<<1) + P_A +2)>>2);
}
else
{
if(block_up)
LoopArray[0] = ((P_Z + (P_Z<<1) + P_A +2)>>2);
else
if(block_left)
LoopArray[0] = ((P_Z + (P_Z<<1) + P_Q +2)>>2);
}
}
if(block_left)
{
if(block_up_left)
LoopArray[17] = ((P_Z + (P_Q<<1) + P_R + 2)>>2);
else
LoopArray[17] = ((P_Q + (P_Q<<1) + P_R + 2)>>2);
for(i = 18; i <24; i++)
{
LoopArray[i] = (((&P_Z)[i-1] + ((&P_Z)[i]<<1) + (&P_Z)[i+1] + 2)>>2);
}
LoopArray[24] = ((P_W + (P_X<<1) + P_X + 2)>>2);
}
memcpy(PredPel, LoopArray, 25 * sizeof(imgpel));
}
/*!
*************************************************************************************
* \brief
* R-D Cost for an 8x8 Intra block
*************************************************************************************
*/
double RDCost_for_8x8IntraBlocks(int *nonzero, int b8, int ipmode, double lambda, double min_rdcost, int mostProbableMode)
{
double rdcost = 0.0;
int dummy, x, y, rate;
int64 distortion = 0;
int block_x = 8*(b8 & 0x01);
int block_y = 8*(b8 >> 1);
int pic_pix_x = img->pix_x+block_x;
int pic_pix_y = img->pix_y+block_y;
int pic_opix_y = img->opix_y+block_y;
imgpel **imgY_orig = imgY_org;
imgpel **imgY = enc_picture->imgY;
Slice *currSlice = img->currentSlice;
SyntaxElement se;
const int *partMap = assignSE2partition[input->partition_mode];
DataPartition *dataPart;
//===== perform DCT, Q, IQ, IDCT, Reconstruction =====
dummy = 0;
*nonzero = dct_luma8x8 (b8, &dummy, 1);
//===== get distortion (SSD) of 8x8 block =====
for (y=0; y<8; y++)
for (x=pic_pix_x; x<pic_pix_x+8; x++)
distortion += img->quad [imgY_orig[pic_opix_y+y][x] - imgY[pic_pix_y+y][x]];
//===== RATE for INTRA PREDICTION MODE (SYMBOL MODE MUST BE SET TO UVLC) =====
se.value1 = (mostProbableMode == ipmode) ? -1 : ipmode < mostProbableMode ? ipmode : ipmode-1;
//--- set position and type ---
se.context = b8;
se.type = SE_INTRAPREDMODE;
//--- choose data partition ---
if (img->type!=B_SLICE)
dataPart = &(currSlice->partArr[partMap[SE_INTRAPREDMODE]]);
else
dataPart = &(currSlice->partArr[partMap[SE_BFRAME]]);
//--- encode and update rate ---
writeIntraPredMode (&se, dataPart);
/*
if (input->symbol_mode == UVLC)
writeIntraPredMode_CAVLC(currSE, dataPart);
else
{
currSE->writing = writeIntraPredMode_CABAC;
dataPart->writeSyntaxElement (currSE, dataPart);
}
*/
rate = se.len;
//===== RATE for LUMINANCE COEFFICIENTS =====
if (input->symbol_mode == UVLC)
{
int b4;
for(b4=0; b4<4; b4++)
rate += writeCoeff4x4_CAVLC (LUMA, b8, b4, 0);
}
else
{
rate += writeLumaCoeff8x8_CABAC (b8, 1);
}
rdcost = (double)distortion + lambda*(double)rate;
return rdcost;
}
/*!
************************************************************************
* \brief
* The routine performs transform,quantization,inverse transform, adds the diff.
* to the prediction and writes the result to the decoded luma frame. Includes the
* RD constrained quantization also.
*
* \par Input:
* b8: Block position inside a macro block (0,1,2,3).
*
* \par Output:
* nonzero: 0 if no levels are nonzero. 1 if there are nonzero levels.
* coeff_cost: Counter for nonzero coefficients, used to discard expensive levels.
************************************************************************
*/
#define MC(coeff) ((coeff)&3)
int dct_luma8x8(int b8,int *coeff_cost, int intra)
{
int i,j,ilev,coeff_ctr;
int level,scan_pos,run;
int nonzero;
int qp_per,qp_rem,q_bits;
int block_x = 8*(b8 & 0x01);
int block_y = 8*(b8 >> 1);
int* ACLevel = img->cofAC[b8][0][0];
int* ACRun = img->cofAC[b8][0][1];
int m6[8][8];
int a[8], b[8];
int scan_poss[4],runs[4];
int pix_x, pix_y, ipix_y;
int **levelscale,**leveloffset;
int **invlevelscale;
int MCcoeff;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
Boolean lossless_qpprime = (Boolean) ((img->qp_scaled)==0 && img->lossless_qpprime_flag==1);
const byte (*pos_scan)[2] = currMB->is_field_mode ? FIELD_SCAN8x8 : SNGL_SCAN8x8;
qp_per = qp_per_matrix[(img->qp_scaled - MIN_QP)];
qp_rem = qp_rem_matrix[(img->qp_scaled - MIN_QP)];
q_bits = Q_BITS_8+qp_per;
levelscale = LevelScale8x8Luma[intra][qp_rem];
leveloffset = LevelOffset8x8Luma[intra][qp_per];
invlevelscale = InvLevelScale8x8Luma[intra][qp_rem];
// horizontal transform
if (!lossless_qpprime)
{
for( i=0; i<8; i++)
{
a[0] = img->m7[i][0] + img->m7[i][7];
a[1] = img->m7[i][1] + img->m7[i][6];
a[2] = img->m7[i][2] + img->m7[i][5];
a[3] = img->m7[i][3] + img->m7[i][4];
b[0] = a[0] + a[3];
b[1] = a[1] + a[2];
b[2] = a[0] - a[3];
b[3] = a[1] - a[2];
a[4] = img->m7[i][0] - img->m7[i][7];
a[5] = img->m7[i][1] - img->m7[i][6];
a[6] = img->m7[i][2] - img->m7[i][5];
a[7] = img->m7[i][3] - img->m7[i][4];
b[4]= a[5] + a[6] + ((a[4]>>1) + a[4]);
b[5]= a[4] - a[7] - ((a[6]>>1) + a[6]);
b[6]= a[4] + a[7] - ((a[5]>>1) + a[5]);
b[7]= a[5] - a[6] + ((a[7]>>1) + a[7]);
m6[0][i] = b[0] + b[1];
m6[2][i] = b[2] + (b[3]>>1);
m6[4][i] = b[0] - b[1];
m6[6][i] = (b[2]>>1) - b[3];
m6[1][i] = b[4] + (b[7]>>2);
m6[3][i] = b[5] + (b[6]>>2);
m6[5][i] = b[6] - (b[5]>>2);
m6[7][i] = - b[7] + (b[4]>>2);
}
// vertical transform
for( i=0; i<8; i++)
{
a[0] = m6[i][0] + m6[i][7];
a[1] = m6[i][1] + m6[i][6];
a[2] = m6[i][2] + m6[i][5];
a[3] = m6[i][3] + m6[i][4];
b[0] = a[0] + a[3];
b[1] = a[1] + a[2];
b[2] = a[0] - a[3];
b[3] = a[1] - a[2];
a[4] = m6[i][0] - m6[i][7];
a[5] = m6[i][1] - m6[i][6];
a[6] = m6[i][2] - m6[i][5];
a[7] = m6[i][3] - m6[i][4];
b[4]= a[5] + a[6] + ((a[4]>>1) + a[4]);
b[5]= a[4] - a[7] - ((a[6]>>1) + a[6]);
b[6]= a[4] + a[7] - ((a[5]>>1) + a[5]);
b[7]= a[5] - a[6] + ((a[7]>>1) + a[7]);
img->m7[0][i] = b[0] + b[1];
img->m7[2][i] = b[2] + (b[3]>>1);
img->m7[4][i] = b[0] - b[1];
img->m7[6][i] = (b[2]>>1) - b[3];
img->m7[1][i] = b[4] + (b[7]>>2);
img->m7[3][i] = b[5] + (b[6]>>2);
img->m7[5][i] = b[6] - (b[5]>>2);
img->m7[7][i] = - b[7] + (b[4]>>2);
}
// Quant
nonzero=FALSE;
run=-1;
scan_pos=0;
runs[0] = runs[1] = runs[2] = runs[3] = -1;
scan_poss[0] = scan_poss[1] = scan_poss[2] = scan_poss[3] = 0;
for (coeff_ctr = 0; coeff_ctr < 64; coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
MCcoeff = MC(coeff_ctr);
run++;
ilev=0;
runs[MCcoeff]++;
level = (iabs (img->m7[j][i]) * levelscale[j][i] + leveloffset[j][i]) >> q_bits;
if (img->AdaptiveRounding)
{
img->fadjust8x8[intra][block_y + j][block_x + i] = ( level == 0 )
? 0
: rshift_rnd_sf((AdaptRndWeight * (iabs (img->m7[j][i]) * levelscale[j][i] - (level << q_bits))), (q_bits + 1));
}
if (level != 0)
{
nonzero=TRUE;
if (currMB->luma_transform_size_8x8_flag && input->symbol_mode == UVLC)
{
*coeff_cost += (level > 1) ? MAX_VALUE : COEFF_COST8x8[input->disthres][runs[MCcoeff]];
img->cofAC[b8][MCcoeff][0][scan_poss[MCcoeff]] = isignab(level,img->m7[j][i]);
img->cofAC[b8][MCcoeff][1][scan_poss[MCcoeff]] = runs[MCcoeff];
++scan_poss[MCcoeff];
runs[MCcoeff]=-1;
}
else
{
*coeff_cost += (level > 1) ? MAX_VALUE : COEFF_COST8x8[input->disthres][run];
ACLevel[scan_pos] = isignab(level,img->m7[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
}
level = isignab(level, img->m7[j][i]);
ilev = rshift_rnd_sf(level*invlevelscale[j][i]<<qp_per, 6); // dequantization
}
img->m7[j][i] = ilev;
}
}
else
{
// Quant
nonzero=FALSE;
run=-1;
scan_pos=0;
runs[0]=runs[1]=runs[2]=runs[3]=-1;
scan_poss[0]=scan_poss[1]=scan_poss[2]=scan_poss[3]=0;
for (coeff_ctr=0; coeff_ctr < 64; coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
MCcoeff = MC(coeff_ctr);
run++;
ilev=0;
runs[MCcoeff]++;
level = iabs (img->m7[j][i]);
if (img->AdaptiveRounding)
{
img->fadjust8x8[intra][block_y+j][block_x+i] = 0;
}
if (level != 0)
{
nonzero=TRUE;
if (currMB->luma_transform_size_8x8_flag && input->symbol_mode == UVLC)
{
*coeff_cost += MAX_VALUE;
img->cofAC[b8][MCcoeff][0][scan_poss[MCcoeff]] = isignab(level,img->m7[j][i]);
img->cofAC[b8][MCcoeff][1][scan_poss[MCcoeff]] = runs[MCcoeff];
++scan_poss[MCcoeff];
runs[MCcoeff]=-1;
}
else
{
*coeff_cost += MAX_VALUE;
ACLevel[scan_pos] = isignab(level,img->m7[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
}
level = isignab(level, img->m7[j][i]);
ilev = level;
}
}
}
if (!currMB->luma_transform_size_8x8_flag || input->symbol_mode != UVLC)
ACLevel[scan_pos] = 0;
else
{
for(i=0; i<4; i++)
img->cofAC[b8][i][0][scan_poss[i]] = 0;
}
// Inverse Transform
// horizontal inverse transform
if (!lossless_qpprime)
{
for( i=0; i<8; i++)
{
a[0] = img->m7[i][0] + img->m7[i][4];
a[4] = img->m7[i][0] - img->m7[i][4];
a[2] = (img->m7[i][2]>>1) - img->m7[i][6];
a[6] = img->m7[i][2] + (img->m7[i][6]>>1);
b[0] = a[0] + a[6];
b[2] = a[4] + a[2];
b[4] = a[4] - a[2];
b[6] = a[0] - a[6];
a[1] = -img->m7[i][3] + img->m7[i][5] - img->m7[i][7] - (img->m7[i][7]>>1);
a[3] = img->m7[i][1] + img->m7[i][7] - img->m7[i][3] - (img->m7[i][3]>>1);
a[5] = -img->m7[i][1] + img->m7[i][7] + img->m7[i][5] + (img->m7[i][5]>>1);
a[7] = img->m7[i][3] + img->m7[i][5] + img->m7[i][1] + (img->m7[i][1]>>1);
b[1] = a[1] + (a[7]>>2);
b[7] = -(a[1]>>2) + a[7];
b[3] = a[3] + (a[5]>>2);
b[5] = (a[3]>>2) - a[5];
m6[0][i] = b[0] + b[7];
m6[1][i] = b[2] + b[5];
m6[2][i] = b[4] + b[3];
m6[3][i] = b[6] + b[1];
m6[4][i] = b[6] - b[1];
m6[5][i] = b[4] - b[3];
m6[6][i] = b[2] - b[5];
m6[7][i] = b[0] - b[7];
}
// vertical inverse transform
for( i=0; i<8; i++)
{
a[0] = m6[i][0] + m6[i][4];
a[4] = m6[i][0] - m6[i][4];
a[2] = (m6[i][2]>>1) - m6[i][6];
a[6] = m6[i][2] + (m6[i][6]>>1);
b[0] = a[0] + a[6];
b[2] = a[4] + a[2];
b[4] = a[4] - a[2];
b[6] = a[0] - a[6];
a[1] = -m6[i][3] + m6[i][5] - m6[i][7] - (m6[i][7]>>1);
a[3] = m6[i][1] + m6[i][7] - m6[i][3] - (m6[i][3]>>1);
a[5] = -m6[i][1] + m6[i][7] + m6[i][5] + (m6[i][5]>>1);
a[7] = m6[i][3] + m6[i][5] + m6[i][1] + (m6[i][1]>>1);
b[1] = a[1] + (a[7]>>2);
b[7] = -(a[1]>>2) + a[7];
b[3] = a[3] + (a[5]>>2);
b[5] = (a[3]>>2) - a[5];
img->m7[0][i] = b[0] + b[7];
img->m7[1][i] = b[2] + b[5];
img->m7[2][i] = b[4] + b[3];
img->m7[3][i] = b[6] + b[1];
img->m7[4][i] = b[6] - b[1];
img->m7[5][i] = b[4] - b[3];
img->m7[6][i] = b[2] - b[5];
img->m7[7][i] = b[0] - b[7];
}
for( j=0; j<2*BLOCK_SIZE; j++)
{
pix_y = block_y + j;
ipix_y = img->pix_y + pix_y;
for( i=0; i<2*BLOCK_SIZE; i++)
{
pix_x = block_x + i;
img->m7[j][i] = iClip1( img->max_imgpel_value, rshift_rnd_sf((img->m7[j][i]+((long)img->mpr[pix_y][pix_x] << DQ_BITS_8)),DQ_BITS_8));
enc_picture->imgY[ipix_y][img->pix_x + pix_x]= (imgpel) img->m7[j][i];
}
}
}
else
{
for( j=0; j<2*BLOCK_SIZE; j++)
{
pix_y = block_y + j;
ipix_y = img->pix_y + pix_y;
for( i=0; i<2*BLOCK_SIZE; i++)
{
pix_x = block_x + i;
img->m7[j][i] = img->m7[j][i] + img->mpr[pix_y][block_x+i];
enc_picture->imgY[ipix_y][img->pix_x + pix_x]= (imgpel) img->m7[j][i];
}
}
}
// Decoded block moved to frame memory
return nonzero;
}