| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py |
| ; RUN: opt < %s -vector-combine -S -mtriple=x86_64-- -mattr=SSE2 | FileCheck %s --check-prefixes=CHECK,SSE |
| ; RUN: opt < %s -vector-combine -S -mtriple=x86_64-- -mattr=AVX2 | FileCheck %s --check-prefixes=CHECK,AVX |
| |
| declare void @use(<4 x i32>) |
| declare void @usef(<4 x float>) |
| |
| ; Eliminating an insert is profitable. |
| |
| define <16 x i8> @ins0_ins0_add(i8 %x, i8 %y) { |
| ; CHECK-LABEL: @ins0_ins0_add( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = add i8 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <16 x i8> undef, i8 [[R_SCALAR]], i64 0 |
| ; CHECK-NEXT: ret <16 x i8> [[R]] |
| ; |
| %i0 = insertelement <16 x i8> undef, i8 %x, i32 0 |
| %i1 = insertelement <16 x i8> undef, i8 %y, i32 0 |
| %r = add <16 x i8> %i0, %i1 |
| ret <16 x i8> %r |
| } |
| |
| ; Eliminating an insert is still profitable. Flags propagate. Mismatch types on index is ok. |
| |
| define <8 x i16> @ins0_ins0_sub_flags(i16 %x, i16 %y) { |
| ; CHECK-LABEL: @ins0_ins0_sub_flags( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = sub nuw nsw i16 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <8 x i16> undef, i16 [[R_SCALAR]], i64 5 |
| ; CHECK-NEXT: ret <8 x i16> [[R]] |
| ; |
| %i0 = insertelement <8 x i16> undef, i16 %x, i8 5 |
| %i1 = insertelement <8 x i16> undef, i16 %y, i32 5 |
| %r = sub nsw nuw <8 x i16> %i0, %i1 |
| ret <8 x i16> %r |
| } |
| |
| ; The new vector constant is calculated by constant folding. |
| ; This is conservatively created as zero rather than undef for 'undef ^ undef'. |
| |
| define <2 x i64> @ins1_ins1_xor(i64 %x, i64 %y) { |
| ; CHECK-LABEL: @ins1_ins1_xor( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = xor i64 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> zeroinitializer, i64 [[R_SCALAR]], i64 1 |
| ; CHECK-NEXT: ret <2 x i64> [[R]] |
| ; |
| %i0 = insertelement <2 x i64> undef, i64 %x, i64 1 |
| %i1 = insertelement <2 x i64> undef, i64 %y, i32 1 |
| %r = xor <2 x i64> %i0, %i1 |
| ret <2 x i64> %r |
| } |
| |
| define <2 x i64> @ins1_ins1_iterate(i64 %w, i64 %x, i64 %y, i64 %z) { |
| ; CHECK-LABEL: @ins1_ins1_iterate( |
| ; CHECK-NEXT: [[S0_SCALAR:%.*]] = sub i64 [[W:%.*]], [[X:%.*]] |
| ; CHECK-NEXT: [[S1_SCALAR:%.*]] = or i64 [[S0_SCALAR]], [[Y:%.*]] |
| ; CHECK-NEXT: [[S2_SCALAR:%.*]] = shl i64 [[Z:%.*]], [[S1_SCALAR]] |
| ; CHECK-NEXT: [[S2:%.*]] = insertelement <2 x i64> undef, i64 [[S2_SCALAR]], i64 1 |
| ; CHECK-NEXT: ret <2 x i64> [[S2]] |
| ; |
| %i0 = insertelement <2 x i64> undef, i64 %w, i64 1 |
| %i1 = insertelement <2 x i64> undef, i64 %x, i32 1 |
| %s0 = sub <2 x i64> %i0, %i1 |
| %i2 = insertelement <2 x i64> undef, i64 %y, i32 1 |
| %s1 = or <2 x i64> %s0, %i2 |
| %i3 = insertelement <2 x i64> undef, i64 %z, i32 1 |
| %s2 = shl <2 x i64> %i3, %s1 |
| ret <2 x i64> %s2 |
| } |
| |
| ; The inserts are free, but it's still better to scalarize. |
| |
| define <2 x double> @ins0_ins0_fadd(double %x, double %y) { |
| ; CHECK-LABEL: @ins0_ins0_fadd( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = fadd reassoc nsz double [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <2 x double> undef, double [[R_SCALAR]], i64 0 |
| ; CHECK-NEXT: ret <2 x double> [[R]] |
| ; |
| %i0 = insertelement <2 x double> undef, double %x, i32 0 |
| %i1 = insertelement <2 x double> undef, double %y, i32 0 |
| %r = fadd reassoc nsz <2 x double> %i0, %i1 |
| ret <2 x double> %r |
| } |
| |
| ; Negative test - mismatched indexes (but could fold this). |
| |
| define <16 x i8> @ins1_ins0_add(i8 %x, i8 %y) { |
| ; CHECK-LABEL: @ins1_ins0_add( |
| ; CHECK-NEXT: [[I0:%.*]] = insertelement <16 x i8> undef, i8 [[X:%.*]], i32 1 |
| ; CHECK-NEXT: [[I1:%.*]] = insertelement <16 x i8> undef, i8 [[Y:%.*]], i32 0 |
| ; CHECK-NEXT: [[R:%.*]] = add <16 x i8> [[I0]], [[I1]] |
| ; CHECK-NEXT: ret <16 x i8> [[R]] |
| ; |
| %i0 = insertelement <16 x i8> undef, i8 %x, i32 1 |
| %i1 = insertelement <16 x i8> undef, i8 %y, i32 0 |
| %r = add <16 x i8> %i0, %i1 |
| ret <16 x i8> %r |
| } |
| |
| ; Base vector does not have to be undef. |
| |
| define <4 x i32> @ins0_ins0_mul(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @ins0_ins0_mul( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = mul i32 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <4 x i32> zeroinitializer, i32 [[R_SCALAR]], i64 0 |
| ; CHECK-NEXT: ret <4 x i32> [[R]] |
| ; |
| %i0 = insertelement <4 x i32> zeroinitializer, i32 %x, i32 0 |
| %i1 = insertelement <4 x i32> undef, i32 %y, i32 0 |
| %r = mul <4 x i32> %i0, %i1 |
| ret <4 x i32> %r |
| } |
| |
| ; It is safe to scalarize any binop (no extra UB/poison danger). |
| |
| define <2 x i64> @ins1_ins1_sdiv(i64 %x, i64 %y) { |
| ; CHECK-LABEL: @ins1_ins1_sdiv( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = sdiv i64 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> <i64 -6, i64 0>, i64 [[R_SCALAR]], i64 1 |
| ; CHECK-NEXT: ret <2 x i64> [[R]] |
| ; |
| %i0 = insertelement <2 x i64> <i64 42, i64 -42>, i64 %x, i64 1 |
| %i1 = insertelement <2 x i64> <i64 -7, i64 128>, i64 %y, i32 1 |
| %r = sdiv <2 x i64> %i0, %i1 |
| ret <2 x i64> %r |
| } |
| |
| ; Constant folding deals with undef per element - the entire value does not become undef. |
| |
| define <2 x i64> @ins1_ins1_udiv(i64 %x, i64 %y) { |
| ; CHECK-LABEL: @ins1_ins1_udiv( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = udiv i64 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> <i64 6, i64 undef>, i64 [[R_SCALAR]], i64 1 |
| ; CHECK-NEXT: ret <2 x i64> [[R]] |
| ; |
| %i0 = insertelement <2 x i64> <i64 42, i64 undef>, i64 %x, i32 1 |
| %i1 = insertelement <2 x i64> <i64 7, i64 undef>, i64 %y, i32 1 |
| %r = udiv <2 x i64> %i0, %i1 |
| ret <2 x i64> %r |
| } |
| |
| ; This could be simplified -- creates immediate UB without the transform because |
| ; divisor has an undef element -- but that is hidden after the transform. |
| |
| define <2 x i64> @ins1_ins1_urem(i64 %x, i64 %y) { |
| ; CHECK-LABEL: @ins1_ins1_urem( |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = urem i64 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> <i64 undef, i64 0>, i64 [[R_SCALAR]], i64 1 |
| ; CHECK-NEXT: ret <2 x i64> [[R]] |
| ; |
| %i0 = insertelement <2 x i64> <i64 42, i64 undef>, i64 %x, i64 1 |
| %i1 = insertelement <2 x i64> <i64 undef, i64 128>, i64 %y, i32 1 |
| %r = urem <2 x i64> %i0, %i1 |
| ret <2 x i64> %r |
| } |
| |
| ; Extra use is accounted for in cost calculation. |
| |
| define <4 x i32> @ins0_ins0_xor(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @ins0_ins0_xor( |
| ; CHECK-NEXT: [[I0:%.*]] = insertelement <4 x i32> undef, i32 [[X:%.*]], i32 0 |
| ; CHECK-NEXT: call void @use(<4 x i32> [[I0]]) |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = xor i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <4 x i32> zeroinitializer, i32 [[R_SCALAR]], i64 0 |
| ; CHECK-NEXT: ret <4 x i32> [[R]] |
| ; |
| %i0 = insertelement <4 x i32> undef, i32 %x, i32 0 |
| call void @use(<4 x i32> %i0) |
| %i1 = insertelement <4 x i32> undef, i32 %y, i32 0 |
| %r = xor <4 x i32> %i0, %i1 |
| ret <4 x i32> %r |
| } |
| |
| ; Extra use is accounted for in cost calculation. |
| |
| define <4 x float> @ins1_ins1_fmul(float %x, float %y) { |
| ; CHECK-LABEL: @ins1_ins1_fmul( |
| ; CHECK-NEXT: [[I1:%.*]] = insertelement <4 x float> undef, float [[Y:%.*]], i32 1 |
| ; CHECK-NEXT: call void @usef(<4 x float> [[I1]]) |
| ; CHECK-NEXT: [[R_SCALAR:%.*]] = fmul float [[X:%.*]], [[Y]] |
| ; CHECK-NEXT: [[R:%.*]] = insertelement <4 x float> undef, float [[R_SCALAR]], i64 1 |
| ; CHECK-NEXT: ret <4 x float> [[R]] |
| ; |
| %i0 = insertelement <4 x float> undef, float %x, i32 1 |
| %i1 = insertelement <4 x float> undef, float %y, i32 1 |
| call void @usef(<4 x float> %i1) |
| %r = fmul <4 x float> %i0, %i1 |
| ret <4 x float> %r |
| } |
| |
| ; If the scalar binop is not cheaper than the vector binop, extra uses can prevent the transform. |
| |
| define <4 x float> @ins2_ins2_fsub(float %x, float %y) { |
| ; CHECK-LABEL: @ins2_ins2_fsub( |
| ; CHECK-NEXT: [[I0:%.*]] = insertelement <4 x float> undef, float [[X:%.*]], i32 2 |
| ; CHECK-NEXT: call void @usef(<4 x float> [[I0]]) |
| ; CHECK-NEXT: [[I1:%.*]] = insertelement <4 x float> undef, float [[Y:%.*]], i32 2 |
| ; CHECK-NEXT: call void @usef(<4 x float> [[I1]]) |
| ; CHECK-NEXT: [[R:%.*]] = fsub <4 x float> [[I0]], [[I1]] |
| ; CHECK-NEXT: ret <4 x float> [[R]] |
| ; |
| %i0 = insertelement <4 x float> undef, float %x, i32 2 |
| call void @usef(<4 x float> %i0) |
| %i1 = insertelement <4 x float> undef, float %y, i32 2 |
| call void @usef(<4 x float> %i1) |
| %r = fsub <4 x float> %i0, %i1 |
| ret <4 x float> %r |
| } |
| |
| ; It may be worth scalarizing an expensive binop even if both inserts have extra uses. |
| |
| define <4 x float> @ins3_ins3_fdiv(float %x, float %y) { |
| ; SSE-LABEL: @ins3_ins3_fdiv( |
| ; SSE-NEXT: [[I0:%.*]] = insertelement <4 x float> undef, float [[X:%.*]], i32 3 |
| ; SSE-NEXT: call void @usef(<4 x float> [[I0]]) |
| ; SSE-NEXT: [[I1:%.*]] = insertelement <4 x float> undef, float [[Y:%.*]], i32 3 |
| ; SSE-NEXT: call void @usef(<4 x float> [[I1]]) |
| ; SSE-NEXT: [[R_SCALAR:%.*]] = fdiv float [[X]], [[Y]] |
| ; SSE-NEXT: [[R:%.*]] = insertelement <4 x float> undef, float [[R_SCALAR]], i64 3 |
| ; SSE-NEXT: ret <4 x float> [[R]] |
| ; |
| ; AVX-LABEL: @ins3_ins3_fdiv( |
| ; AVX-NEXT: [[I0:%.*]] = insertelement <4 x float> undef, float [[X:%.*]], i32 3 |
| ; AVX-NEXT: call void @usef(<4 x float> [[I0]]) |
| ; AVX-NEXT: [[I1:%.*]] = insertelement <4 x float> undef, float [[Y:%.*]], i32 3 |
| ; AVX-NEXT: call void @usef(<4 x float> [[I1]]) |
| ; AVX-NEXT: [[R:%.*]] = fdiv <4 x float> [[I0]], [[I1]] |
| ; AVX-NEXT: ret <4 x float> [[R]] |
| ; |
| %i0 = insertelement <4 x float> undef, float %x, i32 3 |
| call void @usef(<4 x float> %i0) |
| %i1 = insertelement <4 x float> undef, float %y, i32 3 |
| call void @usef(<4 x float> %i1) |
| %r = fdiv <4 x float> %i0, %i1 |
| ret <4 x float> %r |
| } |