blob: f129c463b126b88eb09a7256260e33052d02e0f7 [file] [log] [blame]
; RUN: llc -mtriple=arm64_32-apple-ios7.0 %s -filetype=obj -o - -disable-post-ra -frame-pointer=non-leaf | \
; RUN: llvm-objdump --private-headers - | \
; RUN: FileCheck %s --check-prefix=CHECK-MACHO
; RUN: llc -mtriple=arm64_32-apple-ios7.0 %s -o - -aarch64-enable-atomic-cfg-tidy=0 -disable-post-ra -frame-pointer=non-leaf | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-OPT
; RUN: llc -mtriple=arm64_32-apple-ios7.0 %s -o - -fast-isel -aarch64-enable-atomic-cfg-tidy=0 -disable-post-ra -frame-pointer=non-leaf | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-FAST
; CHECK-MACHO: Mach header
; CHECK-MACHO: MH_MAGIC ARM64_32 V8
@var64 = global i64 zeroinitializer, align 8
@var32 = global i32 zeroinitializer, align 4
@var_got = external global i8
define i32* @test_global_addr() {
; CHECK-LABEL: test_global_addr:
; CHECK: adrp [[PAGE:x[0-9]+]], _var32@PAGE
; CHECK-OPT: add x0, [[PAGE]], _var32@PAGEOFF
; CHECK-FAST: add [[TMP:x[0-9]+]], [[PAGE]], _var32@PAGEOFF
; CHECK-FAST: and x0, [[TMP]], #0xffffffff
ret i32* @var32
}
; ADRP is necessarily 64-bit. The important point to check is that, however that
; gets truncated to 32-bits, it's free. No need to zero out higher bits of that
; register.
define i64 @test_global_addr_extension() {
; CHECK-LABEL: test_global_addr_extension:
; CHECK: adrp [[PAGE:x[0-9]+]], _var32@PAGE
; CHECK: add x0, [[PAGE]], _var32@PAGEOFF
; CHECK-NOT: and
; CHECK: ret
ret i64 ptrtoint(i32* @var32 to i64)
}
define i32 @test_global_value() {
; CHECK-LABEL: test_global_value:
; CHECK: adrp x[[PAGE:[0-9]+]], _var32@PAGE
; CHECK: ldr w0, [x[[PAGE]], _var32@PAGEOFF]
%val = load i32, i32* @var32, align 4
ret i32 %val
}
; Because the addition may wrap, it is not safe to use "ldr w0, [xN, #32]" here.
define i32 @test_unsafe_indexed_add() {
; CHECK-LABEL: test_unsafe_indexed_add:
; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF
; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #32
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = ptrtoint i32* @var32 to i32
%addr_plus_32 = add i32 %addr_int, 32
%addr = inttoptr i32 %addr_plus_32 to i32*
%val = load i32, i32* %addr, align 4
ret i32 %val
}
; Since we've promised there is no unsigned overflow, @var32 must be at least
; 32-bytes below 2^32, and we can use the load this time.
define i32 @test_safe_indexed_add() {
; CHECK-LABEL: test_safe_indexed_add:
; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF
; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #32
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = ptrtoint i32* @var32 to i64
%addr_plus_32 = add nuw i64 %addr_int, 32
%addr = inttoptr i64 %addr_plus_32 to i32*
%val = load i32, i32* %addr, align 4
ret i32 %val
}
define i32 @test_safe_indexed_or(i32 %in) {
; CHECK-LABEL: test_safe_indexed_or:
; CHECK: and [[TMP:w[0-9]+]], {{w[0-9]+}}, #0xfffffff0
; CHECK: orr w[[ADDR:[0-9]+]], [[TMP]], #0x4
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = and i32 %in, -16
%addr_plus_4 = or i32 %addr_int, 4
%addr = inttoptr i32 %addr_plus_4 to i32*
%val = load i32, i32* %addr, align 4
ret i32 %val
}
; Promising nsw is not sufficient because the addressing mode basically
; calculates "zext(base) + zext(offset)" and nsw only guarantees
; "sext(base) + sext(offset) == base + offset".
define i32 @test_unsafe_nsw_indexed_add() {
; CHECK-LABEL: test_unsafe_nsw_indexed_add:
; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF
; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #32
; CHECK-NOT: ubfx
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = ptrtoint i32* @var32 to i32
%addr_plus_32 = add nsw i32 %addr_int, 32
%addr = inttoptr i32 %addr_plus_32 to i32*
%val = load i32, i32* %addr, align 4
ret i32 %val
}
; Because the addition may wrap, it is not safe to use "ldr w0, [xN, #32]" here.
define i32 @test_unsafe_unscaled_add() {
; CHECK-LABEL: test_unsafe_unscaled_add:
; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF
; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #3
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = ptrtoint i32* @var32 to i32
%addr_plus_3 = add i32 %addr_int, 3
%addr = inttoptr i32 %addr_plus_3 to i32*
%val = load i32, i32* %addr, align 1
ret i32 %val
}
; Since we've promised there is no unsigned overflow, @var32 must be at least
; 32-bytes below 2^32, and we can use the load this time.
define i32 @test_safe_unscaled_add() {
; CHECK-LABEL: test_safe_unscaled_add:
; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF
; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #3
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = ptrtoint i32* @var32 to i32
%addr_plus_3 = add nuw i32 %addr_int, 3
%addr = inttoptr i32 %addr_plus_3 to i32*
%val = load i32, i32* %addr, align 1
ret i32 %val
}
; Promising nsw is not sufficient because the addressing mode basically
; calculates "zext(base) + zext(offset)" and nsw only guarantees
; "sext(base) + sext(offset) == base + offset".
define i32 @test_unsafe_nsw_unscaled_add() {
; CHECK-LABEL: test_unsafe_nsw_unscaled_add:
; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF
; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #3
; CHECK-NOT: ubfx
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = ptrtoint i32* @var32 to i32
%addr_plus_3 = add nsw i32 %addr_int, 3
%addr = inttoptr i32 %addr_plus_3 to i32*
%val = load i32, i32* %addr, align 1
ret i32 %val
}
; Because the addition may wrap, it is not safe to use "ldur w0, [xN, #-3]"
; here.
define i32 @test_unsafe_negative_unscaled_add() {
; CHECK-LABEL: test_unsafe_negative_unscaled_add:
; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF
; CHECK: sub w[[ADDR:[0-9]+]], w[[VAR32]], #3
; CHECK: ldr w0, [x[[ADDR]]]
%addr_int = ptrtoint i32* @var32 to i32
%addr_minus_3 = add i32 %addr_int, -3
%addr = inttoptr i32 %addr_minus_3 to i32*
%val = load i32, i32* %addr, align 1
ret i32 %val
}
define i8* @test_got_addr() {
; CHECK-LABEL: test_got_addr:
; CHECK: adrp x[[PAGE:[0-9]+]], _var_got@GOTPAGE
; CHECK-OPT: ldr w0, [x[[PAGE]], _var_got@GOTPAGEOFF]
; CHECK-FAST: ldr w[[TMP:[0-9]+]], [x[[PAGE]], _var_got@GOTPAGEOFF]
; CHECK-FAST: and x0, x[[TMP]], #0xffffffff
ret i8* @var_got
}
define float @test_va_arg_f32(i8** %list) {
; CHECK-LABEL: test_va_arg_f32:
; CHECK: ldr w[[START:[0-9]+]], [x0]
; CHECK: add [[AFTER:w[0-9]+]], w[[START]], #8
; CHECK: str [[AFTER]], [x0]
; Floating point arguments get promoted to double as per C99.
; CHECK: ldr [[DBL:d[0-9]+]], [x[[START]]]
; CHECK: fcvt s0, [[DBL]]
%res = va_arg i8** %list, float
ret float %res
}
; Interesting point is that the slot is 4 bytes.
define i8 @test_va_arg_i8(i8** %list) {
; CHECK-LABEL: test_va_arg_i8:
; CHECK: ldr w[[START:[0-9]+]], [x0]
; CHECK: add [[AFTER:w[0-9]+]], w[[START]], #4
; CHECK: str [[AFTER]], [x0]
; i8 gets promoted to int (again, as per C99).
; CHECK: ldr w0, [x[[START]]]
%res = va_arg i8** %list, i8
ret i8 %res
}
; Interesting point is that the slot needs aligning (again, min size is 4
; bytes).
define i64 @test_va_arg_i64(i64** %list) {
; CHECK-LABEL: test_va_arg_i64:
; Update the list for the next user (minimum slot size is 4, but the actual
; argument is 8 which had better be reflected!)
; CHECK: ldr w[[UNALIGNED_START:[0-9]+]], [x0]
; CHECK: add [[ALIGN_TMP:x[0-9]+]], x[[UNALIGNED_START]], #7
; CHECK: and x[[START:[0-9]+]], [[ALIGN_TMP]], #0x1fffffff8
; CHECK: add w[[AFTER:[0-9]+]], w[[START]], #8
; CHECK: str w[[AFTER]], [x0]
; CHECK: ldr x0, [x[[START]]]
%res = va_arg i64** %list, i64
ret i64 %res
}
declare void @bar(...)
define void @test_va_call(i8 %l, i8 %r, float %in, i8* %ptr) {
; CHECK-LABEL: test_va_call:
; CHECK: add [[SUM:w[0-9]+]], {{w[0-9]+}}, w1
; CHECK-DAG: str w2, [sp, #32]
; CHECK-DAG: str xzr, [sp, #24]
; CHECK-DAG: str s0, [sp, #16]
; CHECK-DAG: str xzr, [sp, #8]
; CHECK-DAG: str [[SUM]], [sp]
; Add them to ensure real promotion occurs.
%sum = add i8 %l, %r
call void(...) @bar(i8 %sum, i64 0, float %in, double 0.0, i8* %ptr)
ret void
}
declare i8* @llvm.frameaddress(i32)
define i8* @test_frameaddr() {
; CHECK-LABEL: test_frameaddr:
; CHECK-OPT: ldr x0, [x29]
; CHECK-FAST: ldr [[TMP:x[0-9]+]], [x29]
; CHECK-FAST: and x0, [[TMP]], #0xffffffff
%val = call i8* @llvm.frameaddress(i32 1)
ret i8* %val
}
declare i8* @llvm.returnaddress(i32)
define i8* @test_toplevel_returnaddr() {
; CHECK-LABEL: test_toplevel_returnaddr:
; CHECK-OPT: mov x0, x30
; CHECK-FAST: and x0, x30, #0xffffffff
%val = call i8* @llvm.returnaddress(i32 0)
ret i8* %val
}
define i8* @test_deep_returnaddr() {
; CHECK-LABEL: test_deep_returnaddr:
; CHECK: ldr x[[FRAME_REC:[0-9]+]], [x29]
; CHECK-OPT: ldr x0, [x[[FRAME_REC]], #8]
; CHECK-FAST: ldr [[TMP:x[0-9]+]], [x[[FRAME_REC]], #8]
; CHECK-FAST: and x0, [[TMP]], #0xffffffff
%val = call i8* @llvm.returnaddress(i32 1)
ret i8* %val
}
define void @test_indirect_call(void()* %func) {
; CHECK-LABEL: test_indirect_call:
; CHECK: blr x0
call void() %func()
ret void
}
; Safe to use the unextended address here
define void @test_indirect_safe_call(i32* %weird_funcs) {
; CHECK-LABEL: test_indirect_safe_call:
; CHECK: add w[[ADDR32:[0-9]+]], w0, #4
; CHECK-OPT-NOT: ubfx
; CHECK: blr x[[ADDR32]]
%addr = getelementptr i32, i32* %weird_funcs, i32 1
%func = bitcast i32* %addr to void()*
call void() %func()
ret void
}
declare void @simple()
define void @test_simple_tail_call() {
; CHECK-LABEL: test_simple_tail_call:
; CHECK: b _simple
tail call void @simple()
ret void
}
define void @test_indirect_tail_call(void()* %func) {
; CHECK-LABEL: test_indirect_tail_call:
; CHECK: br x0
tail call void() %func()
ret void
}
; Safe to use the unextended address here
define void @test_indirect_safe_tail_call(i32* %weird_funcs) {
; CHECK-LABEL: test_indirect_safe_tail_call:
; CHECK: add w[[ADDR32:[0-9]+]], w0, #4
; CHECK-OPT-NOT: ubfx
; CHECK-OPT: br x[[ADDR32]]
%addr = getelementptr i32, i32* %weird_funcs, i32 1
%func = bitcast i32* %addr to void()*
tail call void() %func()
ret void
}
; For the "armv7k" slice, Clang will be emitting some small structs as [N x
; i32]. For ABI compatibility with arm64_32 these need to be passed in *X*
; registers (e.g. [2 x i32] would be packed into a single register).
define i32 @test_in_smallstruct_low([3 x i32] %in) {
; CHECK-LABEL: test_in_smallstruct_low:
; CHECK: mov x0, x1
%val = extractvalue [3 x i32] %in, 2
ret i32 %val
}
define i32 @test_in_smallstruct_high([3 x i32] %in) {
; CHECK-LABEL: test_in_smallstruct_high:
; CHECK: lsr x0, x0, #32
%val = extractvalue [3 x i32] %in, 1
ret i32 %val
}
; The 64-bit DarwinPCS ABI has the quirk that structs on the stack are always
; 64-bit aligned. This must not happen for arm64_32 since othwerwise va_arg will
; be incompatible with the armv7k ABI.
define i32 @test_in_smallstruct_stack([8 x i64], i32, [3 x i32] %in) {
; CHECK-LABEL: test_in_smallstruct_stack:
; CHECK: ldr w0, [sp, #4]
%val = extractvalue [3 x i32] %in, 0
ret i32 %val
}
define [2 x i32] @test_ret_smallstruct([3 x i32] %in) {
; CHECK-LABEL: test_ret_smallstruct:
; CHECK: mov x0, #1
; CHECK: movk x0, #2, lsl #32
ret [2 x i32] [i32 1, i32 2]
}
declare void @smallstruct_callee([4 x i32])
define void @test_call_smallstruct() {
; CHECK-LABEL: test_call_smallstruct:
; CHECK: mov x0, #1
; CHECK: movk x0, #2, lsl #32
; CHECK: mov x1, #3
; CHECK: movk x1, #4, lsl #32
; CHECK: bl _smallstruct_callee
call void @smallstruct_callee([4 x i32] [i32 1, i32 2, i32 3, i32 4])
ret void
}
declare void @smallstruct_callee_stack([8 x i64], i32, [2 x i32])
define void @test_call_smallstruct_stack() {
; CHECK-LABEL: test_call_smallstruct_stack:
; CHECK: mov [[VAL:x[0-9]+]], #1
; CHECK: movk [[VAL]], #2, lsl #32
; CHECK: stur [[VAL]], [sp, #4]
call void @smallstruct_callee_stack([8 x i64] undef, i32 undef, [2 x i32] [i32 1, i32 2])
ret void
}
declare [3 x i32] @returns_smallstruct()
define i32 @test_use_smallstruct_low() {
; CHECK-LABEL: test_use_smallstruct_low:
; CHECK: bl _returns_smallstruct
; CHECK: mov x0, x1
%struct = call [3 x i32] @returns_smallstruct()
%val = extractvalue [3 x i32] %struct, 2
ret i32 %val
}
define i32 @test_use_smallstruct_high() {
; CHECK-LABEL: test_use_smallstruct_high:
; CHECK: bl _returns_smallstruct
; CHECK: lsr x0, x0, #32
%struct = call [3 x i32] @returns_smallstruct()
%val = extractvalue [3 x i32] %struct, 1
ret i32 %val
}
; If a small struct can't be allocated to x0-x7, the remaining registers should
; be marked as unavailable and subsequent GPR arguments should also be on the
; stack. Obviously the struct itself should be passed entirely on the stack.
define i32 @test_smallstruct_padding([7 x i64], [4 x i32] %struct, i32 %in) {
; CHECK-LABEL: test_smallstruct_padding:
; CHECK-DAG: ldr [[IN:w[0-9]+]], [sp, #16]
; CHECK-DAG: ldr [[LHS:w[0-9]+]], [sp]
; CHECK: add w0, [[LHS]], [[IN]]
%lhs = extractvalue [4 x i32] %struct, 0
%sum = add i32 %lhs, %in
ret i32 %sum
}
declare void @take_small_smallstruct(i64, [1 x i32])
define void @test_small_smallstruct() {
; CHECK-LABEL: test_small_smallstruct:
; CHECK-DAG: mov w0, #1
; CHECK-DAG: mov w1, #2
; CHECK: bl _take_small_smallstruct
call void @take_small_smallstruct(i64 1, [1 x i32] [i32 2])
ret void
}
define void @test_bare_frameaddr(i8** %addr) {
; CHECK-LABEL: test_bare_frameaddr:
; CHECK: add x[[LOCAL:[0-9]+]], sp, #{{[0-9]+}}
; CHECK: str w[[LOCAL]],
%ptr = alloca i8
store i8* %ptr, i8** %addr, align 4
ret void
}
define void @test_sret_use([8 x i64]* sret %out) {
; CHECK-LABEL: test_sret_use:
; CHECK: str xzr, [x8]
%addr = getelementptr [8 x i64], [8 x i64]* %out, i32 0, i32 0
store i64 0, i64* %addr
ret void
}
define i64 @test_sret_call() {
; CHECK-LABEL: test_sret_call:
; CHECK: mov x8, sp
; CHECK: bl _test_sret_use
%arr = alloca [8 x i64]
call void @test_sret_use([8 x i64]* sret %arr)
%addr = getelementptr [8 x i64], [8 x i64]* %arr, i32 0, i32 0
%val = load i64, i64* %addr
ret i64 %val
}
define double @test_constpool() {
; CHECK-LABEL: test_constpool:
; CHECK: adrp x[[PAGE:[0-9]+]], [[POOL:lCPI[0-9]+_[0-9]+]]@PAGE
; CHECK: ldr d0, [x[[PAGE]], [[POOL]]@PAGEOFF]
ret double 1.0e-6
}
define i8* @test_blockaddress() {
; CHECK-LABEL: test_blockaddress:
; CHECK: [[BLOCK:Ltmp[0-9]+]]:
; CHECK: adrp [[PAGE:x[0-9]+]], [[BLOCK]]@PAGE
; CHECK: add x0, [[PAGE]], [[BLOCK]]@PAGEOFF
br label %dest
dest:
ret i8* blockaddress(@test_blockaddress, %dest)
}
define i8* @test_indirectbr(i8* %dest) {
; CHECK-LABEL: test_indirectbr:
; CHECK: br x0
indirectbr i8* %dest, [label %true, label %false]
true:
ret i8* blockaddress(@test_indirectbr, %true)
false:
ret i8* blockaddress(@test_indirectbr, %false)
}
; ISelDAGToDAG tries to fold an offset FI load (in this case var+4) into the
; actual load instruction. This needs to be done slightly carefully since we
; claim the FI in the process -- it doesn't need extending.
define float @test_frameindex_offset_load() {
; CHECK-LABEL: test_frameindex_offset_load:
; CHECK: ldr s0, [sp, #4]
%arr = alloca float, i32 4, align 8
%addr = getelementptr inbounds float, float* %arr, i32 1
%val = load float, float* %addr, align 4
ret float %val
}
define void @test_unaligned_frameindex_offset_store() {
; CHECK-LABEL: test_unaligned_frameindex_offset_store:
; CHECK: mov x[[TMP:[0-9]+]], sp
; CHECK: orr w[[ADDR:[0-9]+]], w[[TMP]], #0x2
; CHECK: mov [[VAL:w[0-9]+]], #42
; CHECK: str [[VAL]], [x[[ADDR]]]
%arr = alloca [4 x i32]
%addr.int = ptrtoint [4 x i32]* %arr to i32
%addr.nextint = add nuw i32 %addr.int, 2
%addr.next = inttoptr i32 %addr.nextint to i32*
store i32 42, i32* %addr.next
ret void
}
define {i64, i64*} @test_pre_idx(i64* %addr) {
; CHECK-LABEL: test_pre_idx:
; CHECK: add w[[ADDR:[0-9]+]], w0, #8
; CHECK: ldr x0, [x[[ADDR]]]
%addr.int = ptrtoint i64* %addr to i32
%addr.next.int = add nuw i32 %addr.int, 8
%addr.next = inttoptr i32 %addr.next.int to i64*
%val = load i64, i64* %addr.next
%tmp = insertvalue {i64, i64*} undef, i64 %val, 0
%res = insertvalue {i64, i64*} %tmp, i64* %addr.next, 1
ret {i64, i64*} %res
}
; Forming a post-indexed load is invalid here since the GEP needs to work when
; %addr wraps round to 0.
define {i64, i64*} @test_invalid_pre_idx(i64* %addr) {
; CHECK-LABEL: test_invalid_pre_idx:
; CHECK: add w1, w0, #8
; CHECK: ldr x0, [x1]
%addr.next = getelementptr i64, i64* %addr, i32 1
%val = load i64, i64* %addr.next
%tmp = insertvalue {i64, i64*} undef, i64 %val, 0
%res = insertvalue {i64, i64*} %tmp, i64* %addr.next, 1
ret {i64, i64*} %res
}
declare void @callee([8 x i32]*)
define void @test_stack_guard() ssp {
; CHECK-LABEL: test_stack_guard:
; CHECK: adrp x[[GUARD_GOTPAGE:[0-9]+]], ___stack_chk_guard@GOTPAGE
; CHECK: ldr w[[GUARD_ADDR:[0-9]+]], [x[[GUARD_GOTPAGE]], ___stack_chk_guard@GOTPAGEOFF]
; CHECK: ldr [[GUARD_VAL:w[0-9]+]], [x[[GUARD_ADDR]]]
; CHECK: stur [[GUARD_VAL]], [x29, #[[GUARD_OFFSET:-[0-9]+]]]
; CHECK: add x0, sp, #{{[0-9]+}}
; CHECK: bl _callee
; CHECK-OPT: adrp x[[GUARD_GOTPAGE:[0-9]+]], ___stack_chk_guard@GOTPAGE
; CHECK-OPT: ldr w[[GUARD_ADDR:[0-9]+]], [x[[GUARD_GOTPAGE]], ___stack_chk_guard@GOTPAGEOFF]
; CHECK-OPT: ldr [[GUARD_VAL:w[0-9]+]], [x[[GUARD_ADDR]]]
; CHECK-OPT: ldur [[NEW_VAL:w[0-9]+]], [x29, #[[GUARD_OFFSET]]]
; CHECK-OPT: cmp [[GUARD_VAL]], [[NEW_VAL]]
; CHECK-OPT: b.ne [[FAIL:LBB[0-9]+_[0-9]+]]
; CHECK-OPT: [[FAIL]]:
; CHECK-OPT-NEXT: bl ___stack_chk_fail
%arr = alloca [8 x i32]
call void @callee([8 x i32]* %arr)
ret void
}
declare i32 @__gxx_personality_v0(...)
declare void @eat_landingpad_args(i32, i8*, i32)
@_ZTI8Whatever = external global i8
define void @test_landingpad_marshalling() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
; CHECK-LABEL: test_landingpad_marshalling:
; CHECK-OPT: mov x2, x1
; CHECK-OPT: mov x1, x0
; CHECK: bl _eat_landingpad_args
invoke void @callee([8 x i32]* undef) to label %done unwind label %lpad
lpad: ; preds = %entry
%exc = landingpad { i8*, i32 }
catch i8* @_ZTI8Whatever
%pointer = extractvalue { i8*, i32 } %exc, 0
%selector = extractvalue { i8*, i32 } %exc, 1
call void @eat_landingpad_args(i32 undef, i8* %pointer, i32 %selector)
ret void
done:
ret void
}
define void @test_dynamic_stackalloc() {
; CHECK-LABEL: test_dynamic_stackalloc:
; CHECK: sub [[REG:x[0-9]+]], sp, #32
; CHECK: mov sp, [[REG]]
; CHECK-OPT-NOT: ubfx
; CHECK: bl _callee
br label %next
next:
%val = alloca [8 x i32]
call void @callee([8 x i32]* %val)
ret void
}
define void @test_asm_memory(i32* %base.addr) {
; CHECK-LABEL: test_asm_memory:
; CHECK: add w[[ADDR:[0-9]+]], w0, #4
; CHECK: str wzr, [x[[ADDR]]
%addr = getelementptr i32, i32* %base.addr, i32 1
call void asm sideeffect "str wzr, $0", "*m"(i32* %addr)
ret void
}
define void @test_unsafe_asm_memory(i64 %val) {
; CHECK-LABEL: test_unsafe_asm_memory:
; CHECK: and x[[ADDR:[0-9]+]], x0, #0xffffffff
; CHECK: str wzr, [x[[ADDR]]]
%addr_int = trunc i64 %val to i32
%addr = inttoptr i32 %addr_int to i32*
call void asm sideeffect "str wzr, $0", "*m"(i32* %addr)
ret void
}
define [9 x i8*] @test_demoted_return(i8* %in) {
; CHECK-LABEL: test_demoted_return:
; CHECK: str w0, [x8, #32]
%res = insertvalue [9 x i8*] undef, i8* %in, 8
ret [9 x i8*] %res
}
define i8* @test_inttoptr(i64 %in) {
; CHECK-LABEL: test_inttoptr:
; CHECK: and x0, x0, #0xffffffff
%res = inttoptr i64 %in to i8*
ret i8* %res
}
declare i32 @llvm.get.dynamic.area.offset.i32()
define i32 @test_dynamic_area() {
; CHECK-LABEL: test_dynamic_area:
; CHECK: mov w0, wzr
%res = call i32 @llvm.get.dynamic.area.offset.i32()
ret i32 %res
}
define void @test_pointer_vec_store(<2 x i8*>* %addr) {
; CHECK-LABEL: test_pointer_vec_store:
; CHECK: str xzr, [x0]
; CHECK-NOT: str
; CHECK-NOT: stp
store <2 x i8*> zeroinitializer, <2 x i8*>* %addr, align 16
ret void
}
define <2 x i8*> @test_pointer_vec_load(<2 x i8*>* %addr) {
; CHECK-LABEL: test_pointer_vec_load:
; CHECK: ldr d[[TMP:[0-9]+]], [x0]
; CHECK: ushll.2d v0, v[[TMP]], #0
%val = load <2 x i8*>, <2 x i8*>* %addr, align 16
ret <2 x i8*> %val
}
define void @test_inline_asm_mem_pointer(i32* %in) {
; CHECK-LABEL: test_inline_asm_mem_pointer:
; CHECK: str w0,
tail call void asm sideeffect "ldr x0, $0", "rm"(i32* %in)
ret void
}
define void @test_struct_hi(i32 %hi) nounwind {
; CHECK-LABEL: test_struct_hi:
; CHECK: mov w[[IN:[0-9]+]], w0
; CHECK: bl _get_int
; CHECK-FAST-NEXT: mov w0, w0
; CHECK-NEXT: bfi x0, x[[IN]], #32, #32
; CHECK-NEXT: bl _take_pair
%val.64 = call i64 @get_int()
%val.32 = trunc i64 %val.64 to i32
%pair.0 = insertvalue [2 x i32] undef, i32 %val.32, 0
%pair.1 = insertvalue [2 x i32] %pair.0, i32 %hi, 1
call void @take_pair([2 x i32] %pair.1)
ret void
}
declare void @take_pair([2 x i32])
declare i64 @get_int()
define i1 @test_icmp_ptr(i8* %in) {
; CHECK-LABEL: test_icmp_ptr
; CHECK: ubfx x0, x0, #31, #1
%res = icmp slt i8* %in, null
ret i1 %res
}
define void @test_multiple_icmp_ptr(i8* %l, i8* %r) {
; CHECK-LABEL: test_multiple_icmp_ptr:
; CHECK: tbnz w0, #31, [[FALSEBB:LBB[0-9]+_[0-9]+]]
; CHECK: tbnz w1, #31, [[FALSEBB]]
%tst1 = icmp sgt i8* %l, inttoptr (i32 -1 to i8*)
%tst2 = icmp sgt i8* %r, inttoptr (i32 -1 to i8*)
%tst = and i1 %tst1, %tst2
br i1 %tst, label %true, label %false
true:
call void(...) @bar()
ret void
false:
ret void
}
define { [18 x i8] }* @test_gep_nonpow2({ [18 x i8] }* %a0, i32 %a1) {
; CHECK-LABEL: test_gep_nonpow2:
; CHECK-OPT: mov w[[SIZE:[0-9]+]], #18
; CHECK-OPT-NEXT: smaddl x0, w1, w[[SIZE]], x0
; CHECK-OPT-NEXT: ret
; CHECK-FAST: mov w[[SIZE:[0-9]+]], #18
; CHECK-FAST-NEXT: smaddl [[TMP:x[0-9]+]], w1, w[[SIZE]], x0
; CHECK-FAST-NEXT: and x0, [[TMP]], #0xffffffff
; CHECK-FAST-NEXT: ret
%tmp0 = getelementptr inbounds { [18 x i8] }, { [18 x i8] }* %a0, i32 %a1
ret { [18 x i8] }* %tmp0
}
define void @test_bzero(i64 %in) {
; CHECK-LABEL: test_bzero:
; CHECK-DAG: lsr x1, x0, #32
; CHECK-DAG: and x0, x0, #0xffffffff
; CHECK: bl _bzero
%ptr.i32 = trunc i64 %in to i32
%size.64 = lshr i64 %in, 32
%size = trunc i64 %size.64 to i32
%ptr = inttoptr i32 %ptr.i32 to i8*
tail call void @llvm.memset.p0i8.i32(i8* align 4 %ptr, i8 0, i32 %size, i1 false)
ret void
}
declare void @llvm.memset.p0i8.i32(i8* nocapture writeonly, i8, i32, i1)