blob: 27319804049de4c32dd8e37e30d7ce09cdf3fe4f [file] [log] [blame]
//===-- FixupStatepointCallerSaved.cpp - Fixup caller saved registers ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Statepoint instruction in deopt parameters contains values which are
/// meaningful to the runtime and should be able to be read at the moment the
/// call returns. So we can say that we need to encode the fact that these
/// values are "late read" by runtime. If we could express this notion for
/// register allocator it would produce the right form for us.
/// The need to fixup (i.e this pass) is specifically handling the fact that
/// we cannot describe such a late read for the register allocator.
/// Register allocator may put the value on a register clobbered by the call.
/// This pass forces the spill of such registers and replaces corresponding
/// statepoint operands to added spill slots.
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "fixup-statepoint-caller-saved"
STATISTIC(NumSpilledRegisters, "Number of spilled register");
STATISTIC(NumSpillSlotsAllocated, "Number of spill slots allocated");
STATISTIC(NumSpillSlotsExtended, "Number of spill slots extended");
static cl::opt<bool> FixupSCSExtendSlotSize(
"fixup-scs-extend-slot-size", cl::Hidden, cl::init(false),
cl::desc("Allow spill in spill slot of greater size than register size"),
cl::Hidden);
namespace {
class FixupStatepointCallerSaved : public MachineFunctionPass {
public:
static char ID;
FixupStatepointCallerSaved() : MachineFunctionPass(ID) {
initializeFixupStatepointCallerSavedPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override {
return "Fixup Statepoint Caller Saved";
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // End anonymous namespace.
char FixupStatepointCallerSaved::ID = 0;
char &llvm::FixupStatepointCallerSavedID = FixupStatepointCallerSaved::ID;
INITIALIZE_PASS_BEGIN(FixupStatepointCallerSaved, DEBUG_TYPE,
"Fixup Statepoint Caller Saved", false, false)
INITIALIZE_PASS_END(FixupStatepointCallerSaved, DEBUG_TYPE,
"Fixup Statepoint Caller Saved", false, false)
// Utility function to get size of the register.
static unsigned getRegisterSize(const TargetRegisterInfo &TRI, Register Reg) {
const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
return TRI.getSpillSize(*RC);
}
namespace {
// Cache used frame indexes during statepoint re-write to re-use them in
// processing next statepoint instruction.
// Two strategies. One is to preserve the size of spill slot while another one
// extends the size of spill slots to reduce the number of them, causing
// the less total frame size. But unspill will have "implicit" any extend.
class FrameIndexesCache {
private:
struct FrameIndexesPerSize {
// List of used frame indexes during processing previous statepoints.
SmallVector<int, 8> Slots;
// Current index of un-used yet frame index.
unsigned Index = 0;
};
MachineFrameInfo &MFI;
const TargetRegisterInfo &TRI;
// Map size to list of frame indexes of this size. If the mode is
// FixupSCSExtendSlotSize then the key 0 is used to keep all frame indexes.
// If the size of required spill slot is greater than in a cache then the
// size will be increased.
DenseMap<unsigned, FrameIndexesPerSize> Cache;
public:
FrameIndexesCache(MachineFrameInfo &MFI, const TargetRegisterInfo &TRI)
: MFI(MFI), TRI(TRI) {}
// Reset the current state of used frame indexes. After invocation of
// this function all frame indexes are available for allocation.
void reset() {
for (auto &It : Cache)
It.second.Index = 0;
}
// Get frame index to spill the register.
int getFrameIndex(Register Reg) {
unsigned Size = getRegisterSize(TRI, Reg);
// In FixupSCSExtendSlotSize mode the bucket with 0 index is used
// for all sizes.
unsigned Bucket = FixupSCSExtendSlotSize ? 0 : Size;
FrameIndexesPerSize &Line = Cache[Bucket];
if (Line.Index < Line.Slots.size()) {
int FI = Line.Slots[Line.Index++];
// If all sizes are kept together we probably need to extend the
// spill slot size.
if (MFI.getObjectSize(FI) < Size) {
MFI.setObjectSize(FI, Size);
MFI.setObjectAlignment(FI, Align(Size));
NumSpillSlotsExtended++;
}
return FI;
}
int FI = MFI.CreateSpillStackObject(Size, Align(Size));
NumSpillSlotsAllocated++;
Line.Slots.push_back(FI);
++Line.Index;
return FI;
}
// Sort all registers to spill in descendent order. In the
// FixupSCSExtendSlotSize mode it will minimize the total frame size.
// In non FixupSCSExtendSlotSize mode we can skip this step.
void sortRegisters(SmallVectorImpl<Register> &Regs) {
if (!FixupSCSExtendSlotSize)
return;
llvm::sort(Regs.begin(), Regs.end(), [&](Register &A, Register &B) {
return getRegisterSize(TRI, A) > getRegisterSize(TRI, B);
});
}
};
// Describes the state of the current processing statepoint instruction.
class StatepointState {
private:
// statepoint instruction.
MachineInstr &MI;
MachineFunction &MF;
const TargetRegisterInfo &TRI;
const TargetInstrInfo &TII;
MachineFrameInfo &MFI;
// Mask with callee saved registers.
const uint32_t *Mask;
// Cache of frame indexes used on previous instruction processing.
FrameIndexesCache &CacheFI;
// Operands with physical registers requiring spilling.
SmallVector<unsigned, 8> OpsToSpill;
// Set of register to spill.
SmallVector<Register, 8> RegsToSpill;
// Map Register to Frame Slot index.
DenseMap<Register, int> RegToSlotIdx;
public:
StatepointState(MachineInstr &MI, const uint32_t *Mask,
FrameIndexesCache &CacheFI)
: MI(MI), MF(*MI.getMF()), TRI(*MF.getSubtarget().getRegisterInfo()),
TII(*MF.getSubtarget().getInstrInfo()), MFI(MF.getFrameInfo()),
Mask(Mask), CacheFI(CacheFI) {}
// Return true if register is callee saved.
bool isCalleeSaved(Register Reg) { return (Mask[Reg / 32] >> Reg % 32) & 1; }
// Iterates over statepoint meta args to find caller saver registers.
// Also cache the size of found registers.
// Returns true if caller save registers found.
bool findRegistersToSpill() {
SmallSet<Register, 8> VisitedRegs;
for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
EndIdx = MI.getNumOperands();
Idx < EndIdx; ++Idx) {
MachineOperand &MO = MI.getOperand(Idx);
if (!MO.isReg() || MO.isImplicit())
continue;
Register Reg = MO.getReg();
assert(Reg.isPhysical() && "Only physical regs are expected");
if (isCalleeSaved(Reg))
continue;
if (VisitedRegs.insert(Reg).second)
RegsToSpill.push_back(Reg);
OpsToSpill.push_back(Idx);
}
CacheFI.sortRegisters(RegsToSpill);
return !RegsToSpill.empty();
}
// Spill all caller saved registers right before statepoint instruction.
// Remember frame index where register is spilled.
void spillRegisters() {
for (Register Reg : RegsToSpill) {
int FI = CacheFI.getFrameIndex(Reg);
const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(*MI.getParent(), MI, Reg, true /*is_Kill*/, FI,
RC, &TRI);
NumSpilledRegisters++;
RegToSlotIdx[Reg] = FI;
}
}
// Re-write statepoint machine instruction to replace caller saved operands
// with indirect memory location (frame index).
void rewriteStatepoint() {
MachineInstr *NewMI =
MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
MachineInstrBuilder MIB(MF, NewMI);
// Add End marker.
OpsToSpill.push_back(MI.getNumOperands());
unsigned CurOpIdx = 0;
for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
MachineOperand &MO = MI.getOperand(I);
if (I == OpsToSpill[CurOpIdx]) {
int FI = RegToSlotIdx[MO.getReg()];
MIB.addImm(StackMaps::IndirectMemRefOp);
MIB.addImm(getRegisterSize(TRI, MO.getReg()));
assert(MO.isReg() && "Should be register");
assert(MO.getReg().isPhysical() && "Should be physical register");
MIB.addFrameIndex(FI);
MIB.addImm(0);
++CurOpIdx;
} else
MIB.add(MO);
}
assert(CurOpIdx == (OpsToSpill.size() - 1) && "Not all operands processed");
// Add mem operands.
NewMI->setMemRefs(MF, MI.memoperands());
for (auto It : RegToSlotIdx) {
int FrameIndex = It.second;
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
getRegisterSize(TRI, It.first),
MFI.getObjectAlign(FrameIndex));
NewMI->addMemOperand(MF, MMO);
}
// Insert new statepoint and erase old one.
MI.getParent()->insert(MI, NewMI);
MI.eraseFromParent();
}
};
class StatepointProcessor {
private:
MachineFunction &MF;
const TargetRegisterInfo &TRI;
FrameIndexesCache CacheFI;
public:
StatepointProcessor(MachineFunction &MF)
: MF(MF), TRI(*MF.getSubtarget().getRegisterInfo()),
CacheFI(MF.getFrameInfo(), TRI) {}
bool process(MachineInstr &MI) {
StatepointOpers SO(&MI);
uint64_t Flags = SO.getFlags();
// Do nothing for LiveIn, it supports all registers.
if (Flags & (uint64_t)StatepointFlags::DeoptLiveIn)
return false;
CallingConv::ID CC = SO.getCallingConv();
const uint32_t *Mask = TRI.getCallPreservedMask(MF, CC);
CacheFI.reset();
StatepointState SS(MI, Mask, CacheFI);
if (!SS.findRegistersToSpill())
return false;
SS.spillRegisters();
SS.rewriteStatepoint();
return true;
}
};
} // namespace
bool FixupStatepointCallerSaved::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
const Function &F = MF.getFunction();
if (!F.hasGC())
return false;
SmallVector<MachineInstr *, 16> Statepoints;
for (MachineBasicBlock &BB : MF)
for (MachineInstr &I : BB)
if (I.getOpcode() == TargetOpcode::STATEPOINT)
Statepoints.push_back(&I);
if (Statepoints.empty())
return false;
bool Changed = false;
StatepointProcessor SPP(MF);
for (MachineInstr *I : Statepoints)
Changed |= SPP.process(*I);
return Changed;
}