| #ifndef JEMALLOC_INTERNAL_SIZE_H |
| #define JEMALLOC_INTERNAL_SIZE_H |
| |
| #include "jemalloc/internal/bit_util.h" |
| #include "jemalloc/internal/pages.h" |
| #include "jemalloc/internal/sc.h" |
| #include "jemalloc/internal/util.h" |
| |
| /* |
| * sz module: Size computations. |
| * |
| * Some abbreviations used here: |
| * p: Page |
| * ind: Index |
| * s, sz: Size |
| * u: Usable size |
| * a: Aligned |
| * |
| * These are not always used completely consistently, but should be enough to |
| * interpret function names. E.g. sz_psz2ind converts page size to page size |
| * index; sz_sa2u converts a (size, alignment) allocation request to the usable |
| * size that would result from such an allocation. |
| */ |
| |
| /* |
| * sz_pind2sz_tab encodes the same information as could be computed by |
| * sz_pind2sz_compute(). |
| */ |
| extern size_t sz_pind2sz_tab[SC_NPSIZES + 1]; |
| /* |
| * sz_index2size_tab encodes the same information as could be computed (at |
| * unacceptable cost in some code paths) by sz_index2size_compute(). |
| */ |
| extern size_t sz_index2size_tab[SC_NSIZES]; |
| /* |
| * sz_size2index_tab is a compact lookup table that rounds request sizes up to |
| * size classes. In order to reduce cache footprint, the table is compressed, |
| * and all accesses are via sz_size2index(). |
| */ |
| extern uint8_t sz_size2index_tab[]; |
| |
| static const size_t sz_large_pad = |
| #ifdef JEMALLOC_CACHE_OBLIVIOUS |
| PAGE |
| #else |
| 0 |
| #endif |
| ; |
| |
| extern void sz_boot(const sc_data_t *sc_data); |
| |
| JEMALLOC_ALWAYS_INLINE pszind_t |
| sz_psz2ind(size_t psz) { |
| if (unlikely(psz > SC_LARGE_MAXCLASS)) { |
| return SC_NPSIZES; |
| } |
| pszind_t x = lg_floor((psz<<1)-1); |
| pszind_t shift = (x < SC_LG_NGROUP + LG_PAGE) ? |
| 0 : x - (SC_LG_NGROUP + LG_PAGE); |
| pszind_t grp = shift << SC_LG_NGROUP; |
| |
| pszind_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ? |
| LG_PAGE : x - SC_LG_NGROUP - 1; |
| |
| size_t delta_inverse_mask = ZU(-1) << lg_delta; |
| pszind_t mod = ((((psz-1) & delta_inverse_mask) >> lg_delta)) & |
| ((ZU(1) << SC_LG_NGROUP) - 1); |
| |
| pszind_t ind = grp + mod; |
| return ind; |
| } |
| |
| static inline size_t |
| sz_pind2sz_compute(pszind_t pind) { |
| if (unlikely(pind == SC_NPSIZES)) { |
| return SC_LARGE_MAXCLASS + PAGE; |
| } |
| size_t grp = pind >> SC_LG_NGROUP; |
| size_t mod = pind & ((ZU(1) << SC_LG_NGROUP) - 1); |
| |
| size_t grp_size_mask = ~((!!grp)-1); |
| size_t grp_size = ((ZU(1) << (LG_PAGE + (SC_LG_NGROUP-1))) << grp) |
| & grp_size_mask; |
| |
| size_t shift = (grp == 0) ? 1 : grp; |
| size_t lg_delta = shift + (LG_PAGE-1); |
| size_t mod_size = (mod+1) << lg_delta; |
| |
| size_t sz = grp_size + mod_size; |
| return sz; |
| } |
| |
| static inline size_t |
| sz_pind2sz_lookup(pszind_t pind) { |
| size_t ret = (size_t)sz_pind2sz_tab[pind]; |
| assert(ret == sz_pind2sz_compute(pind)); |
| return ret; |
| } |
| |
| static inline size_t |
| sz_pind2sz(pszind_t pind) { |
| assert(pind < SC_NPSIZES + 1); |
| return sz_pind2sz_lookup(pind); |
| } |
| |
| static inline size_t |
| sz_psz2u(size_t psz) { |
| if (unlikely(psz > SC_LARGE_MAXCLASS)) { |
| return SC_LARGE_MAXCLASS + PAGE; |
| } |
| size_t x = lg_floor((psz<<1)-1); |
| size_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ? |
| LG_PAGE : x - SC_LG_NGROUP - 1; |
| size_t delta = ZU(1) << lg_delta; |
| size_t delta_mask = delta - 1; |
| size_t usize = (psz + delta_mask) & ~delta_mask; |
| return usize; |
| } |
| |
| static inline szind_t |
| sz_size2index_compute(size_t size) { |
| if (unlikely(size > SC_LARGE_MAXCLASS)) { |
| return SC_NSIZES; |
| } |
| |
| if (size == 0) { |
| return 0; |
| } |
| #if (SC_NTINY != 0) |
| if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) { |
| szind_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1; |
| szind_t lg_ceil = lg_floor(pow2_ceil_zu(size)); |
| return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin); |
| } |
| #endif |
| { |
| szind_t x = lg_floor((size<<1)-1); |
| szind_t shift = (x < SC_LG_NGROUP + LG_QUANTUM) ? 0 : |
| x - (SC_LG_NGROUP + LG_QUANTUM); |
| szind_t grp = shift << SC_LG_NGROUP; |
| |
| szind_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1) |
| ? LG_QUANTUM : x - SC_LG_NGROUP - 1; |
| |
| size_t delta_inverse_mask = ZU(-1) << lg_delta; |
| szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) & |
| ((ZU(1) << SC_LG_NGROUP) - 1); |
| |
| szind_t index = SC_NTINY + grp + mod; |
| return index; |
| } |
| } |
| |
| JEMALLOC_ALWAYS_INLINE szind_t |
| sz_size2index_lookup(size_t size) { |
| assert(size <= SC_LOOKUP_MAXCLASS); |
| szind_t ret = (sz_size2index_tab[(size + (ZU(1) << SC_LG_TINY_MIN) - 1) |
| >> SC_LG_TINY_MIN]); |
| assert(ret == sz_size2index_compute(size)); |
| return ret; |
| } |
| |
| JEMALLOC_ALWAYS_INLINE szind_t |
| sz_size2index(size_t size) { |
| if (likely(size <= SC_LOOKUP_MAXCLASS)) { |
| return sz_size2index_lookup(size); |
| } |
| return sz_size2index_compute(size); |
| } |
| |
| static inline size_t |
| sz_index2size_compute(szind_t index) { |
| #if (SC_NTINY > 0) |
| if (index < SC_NTINY) { |
| return (ZU(1) << (SC_LG_TINY_MAXCLASS - SC_NTINY + 1 + index)); |
| } |
| #endif |
| { |
| size_t reduced_index = index - SC_NTINY; |
| size_t grp = reduced_index >> SC_LG_NGROUP; |
| size_t mod = reduced_index & ((ZU(1) << SC_LG_NGROUP) - |
| 1); |
| |
| size_t grp_size_mask = ~((!!grp)-1); |
| size_t grp_size = ((ZU(1) << (LG_QUANTUM + |
| (SC_LG_NGROUP-1))) << grp) & grp_size_mask; |
| |
| size_t shift = (grp == 0) ? 1 : grp; |
| size_t lg_delta = shift + (LG_QUANTUM-1); |
| size_t mod_size = (mod+1) << lg_delta; |
| |
| size_t usize = grp_size + mod_size; |
| return usize; |
| } |
| } |
| |
| JEMALLOC_ALWAYS_INLINE size_t |
| sz_index2size_lookup(szind_t index) { |
| size_t ret = (size_t)sz_index2size_tab[index]; |
| assert(ret == sz_index2size_compute(index)); |
| return ret; |
| } |
| |
| JEMALLOC_ALWAYS_INLINE size_t |
| sz_index2size(szind_t index) { |
| assert(index < SC_NSIZES); |
| return sz_index2size_lookup(index); |
| } |
| |
| JEMALLOC_ALWAYS_INLINE size_t |
| sz_s2u_compute(size_t size) { |
| if (unlikely(size > SC_LARGE_MAXCLASS)) { |
| return 0; |
| } |
| |
| if (size == 0) { |
| size++; |
| } |
| #if (SC_NTINY > 0) |
| if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) { |
| size_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1; |
| size_t lg_ceil = lg_floor(pow2_ceil_zu(size)); |
| return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) : |
| (ZU(1) << lg_ceil)); |
| } |
| #endif |
| { |
| size_t x = lg_floor((size<<1)-1); |
| size_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1) |
| ? LG_QUANTUM : x - SC_LG_NGROUP - 1; |
| size_t delta = ZU(1) << lg_delta; |
| size_t delta_mask = delta - 1; |
| size_t usize = (size + delta_mask) & ~delta_mask; |
| return usize; |
| } |
| } |
| |
| JEMALLOC_ALWAYS_INLINE size_t |
| sz_s2u_lookup(size_t size) { |
| size_t ret = sz_index2size_lookup(sz_size2index_lookup(size)); |
| |
| assert(ret == sz_s2u_compute(size)); |
| return ret; |
| } |
| |
| /* |
| * Compute usable size that would result from allocating an object with the |
| * specified size. |
| */ |
| JEMALLOC_ALWAYS_INLINE size_t |
| sz_s2u(size_t size) { |
| if (likely(size <= SC_LOOKUP_MAXCLASS)) { |
| return sz_s2u_lookup(size); |
| } |
| return sz_s2u_compute(size); |
| } |
| |
| /* |
| * Compute usable size that would result from allocating an object with the |
| * specified size and alignment. |
| */ |
| JEMALLOC_ALWAYS_INLINE size_t |
| sz_sa2u(size_t size, size_t alignment) { |
| size_t usize; |
| |
| assert(alignment != 0 && ((alignment - 1) & alignment) == 0); |
| |
| /* Try for a small size class. */ |
| if (size <= SC_SMALL_MAXCLASS && alignment < PAGE) { |
| /* |
| * Round size up to the nearest multiple of alignment. |
| * |
| * This done, we can take advantage of the fact that for each |
| * small size class, every object is aligned at the smallest |
| * power of two that is non-zero in the base two representation |
| * of the size. For example: |
| * |
| * Size | Base 2 | Minimum alignment |
| * -----+----------+------------------ |
| * 96 | 1100000 | 32 |
| * 144 | 10100000 | 32 |
| * 192 | 11000000 | 64 |
| */ |
| usize = sz_s2u(ALIGNMENT_CEILING(size, alignment)); |
| if (usize < SC_LARGE_MINCLASS) { |
| return usize; |
| } |
| } |
| |
| /* Large size class. Beware of overflow. */ |
| |
| if (unlikely(alignment > SC_LARGE_MAXCLASS)) { |
| return 0; |
| } |
| |
| /* Make sure result is a large size class. */ |
| if (size <= SC_LARGE_MINCLASS) { |
| usize = SC_LARGE_MINCLASS; |
| } else { |
| usize = sz_s2u(size); |
| if (usize < size) { |
| /* size_t overflow. */ |
| return 0; |
| } |
| } |
| |
| /* |
| * Calculate the multi-page mapping that large_palloc() would need in |
| * order to guarantee the alignment. |
| */ |
| if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) { |
| /* size_t overflow. */ |
| return 0; |
| } |
| return usize; |
| } |
| |
| #endif /* JEMALLOC_INTERNAL_SIZE_H */ |