| #include "test/jemalloc_test.h" |
| |
| #include "jemalloc/internal/fxp.h" |
| |
| static double |
| fxp2double(fxp_t a) { |
| double intpart = (double)(a >> 16); |
| double fracpart = (double)(a & ((1U << 16) - 1)) / (1U << 16); |
| return intpart + fracpart; |
| } |
| |
| /* Is a close to b? */ |
| static bool |
| double_close(double a, double b) { |
| /* |
| * Our implementation doesn't try for precision. Correspondingly, don't |
| * enforce it too strenuously here; accept values that are close in |
| * either relative or absolute terms. |
| */ |
| return fabs(a - b) < 0.01 || fabs(a - b) / a < 0.01; |
| } |
| |
| static bool |
| fxp_close(fxp_t a, fxp_t b) { |
| return double_close(fxp2double(a), fxp2double(b)); |
| } |
| |
| static fxp_t |
| xparse_fxp(const char *str) { |
| fxp_t result; |
| bool err = fxp_parse(&result, str, NULL); |
| assert_false(err, "Invalid fxp string: %s", str); |
| return result; |
| } |
| |
| static void |
| expect_parse_accurate(const char *str, const char *parse_str) { |
| double true_val = strtod(str, NULL); |
| fxp_t fxp_val; |
| char *end; |
| bool err = fxp_parse(&fxp_val, parse_str, &end); |
| expect_false(err, "Unexpected parse failure"); |
| expect_ptr_eq(parse_str + strlen(str), end, |
| "Didn't parse whole string"); |
| expect_true(double_close(fxp2double(fxp_val), true_val), |
| "Misparsed %s", str); |
| } |
| |
| static void |
| parse_valid_trial(const char *str) { |
| /* The value it parses should be correct. */ |
| expect_parse_accurate(str, str); |
| char buf[100]; |
| snprintf(buf, sizeof(buf), "%swith_some_trailing_text", str); |
| expect_parse_accurate(str, buf); |
| snprintf(buf, sizeof(buf), "%s with a space", str); |
| expect_parse_accurate(str, buf); |
| snprintf(buf, sizeof(buf), "%s,in_a_malloc_conf_string:1", str); |
| expect_parse_accurate(str, buf); |
| } |
| |
| TEST_BEGIN(test_parse_valid) { |
| parse_valid_trial("0"); |
| parse_valid_trial("1"); |
| parse_valid_trial("2"); |
| parse_valid_trial("100"); |
| parse_valid_trial("345"); |
| parse_valid_trial("00000000123"); |
| parse_valid_trial("00000000987"); |
| |
| parse_valid_trial("0.0"); |
| parse_valid_trial("0.00000000000456456456"); |
| parse_valid_trial("100.00000000000456456456"); |
| |
| parse_valid_trial("123.1"); |
| parse_valid_trial("123.01"); |
| parse_valid_trial("123.001"); |
| parse_valid_trial("123.0001"); |
| parse_valid_trial("123.00001"); |
| parse_valid_trial("123.000001"); |
| parse_valid_trial("123.0000001"); |
| |
| parse_valid_trial(".0"); |
| parse_valid_trial(".1"); |
| parse_valid_trial(".01"); |
| parse_valid_trial(".001"); |
| parse_valid_trial(".0001"); |
| parse_valid_trial(".00001"); |
| parse_valid_trial(".000001"); |
| |
| parse_valid_trial(".1"); |
| parse_valid_trial(".10"); |
| parse_valid_trial(".100"); |
| parse_valid_trial(".1000"); |
| parse_valid_trial(".100000"); |
| } |
| TEST_END |
| |
| static void |
| expect_parse_failure(const char *str) { |
| fxp_t result = FXP_INIT_INT(333); |
| char *end = (void *)0x123; |
| bool err = fxp_parse(&result, str, &end); |
| expect_true(err, "Expected a parse error on: %s", str); |
| expect_ptr_eq((void *)0x123, end, |
| "Parse error shouldn't change results"); |
| expect_u32_eq(result, FXP_INIT_INT(333), |
| "Parse error shouldn't change results"); |
| } |
| |
| TEST_BEGIN(test_parse_invalid) { |
| expect_parse_failure("123."); |
| expect_parse_failure("3.a"); |
| expect_parse_failure(".a"); |
| expect_parse_failure("a.1"); |
| expect_parse_failure("a"); |
| /* A valid string, but one that overflows. */ |
| expect_parse_failure("123456789"); |
| expect_parse_failure("0000000123456789"); |
| expect_parse_failure("1000000"); |
| } |
| TEST_END |
| |
| static void |
| expect_init_percent(unsigned percent, const char *str) { |
| fxp_t result_init = FXP_INIT_PERCENT(percent); |
| fxp_t result_parse = xparse_fxp(str); |
| expect_u32_eq(result_init, result_parse, |
| "Expect representations of FXP_INIT_PERCENT(%u) and " |
| "fxp_parse(\"%s\") to be equal; got %x and %x", |
| percent, str, result_init, result_parse); |
| |
| } |
| |
| /* |
| * Every other test uses either parsing or FXP_INIT_INT; it gets tested in those |
| * ways. We need a one-off for the percent-based initialization, though. |
| */ |
| TEST_BEGIN(test_init_percent) { |
| expect_init_percent(100, "1"); |
| expect_init_percent(75, ".75"); |
| expect_init_percent(1, ".01"); |
| expect_init_percent(50, ".5"); |
| } |
| TEST_END |
| |
| static void |
| expect_add(const char *astr, const char *bstr, const char* resultstr) { |
| fxp_t a = xparse_fxp(astr); |
| fxp_t b = xparse_fxp(bstr); |
| fxp_t result = xparse_fxp(resultstr); |
| expect_true(fxp_close(fxp_add(a, b), result), |
| "Expected %s + %s == %s", astr, bstr, resultstr); |
| } |
| |
| TEST_BEGIN(test_add_simple) { |
| expect_add("0", "0", "0"); |
| expect_add("0", "1", "1"); |
| expect_add("1", "1", "2"); |
| expect_add("1.5", "1.5", "3"); |
| expect_add("0.1", "0.1", "0.2"); |
| expect_add("123", "456", "579"); |
| } |
| TEST_END |
| |
| static void |
| expect_sub(const char *astr, const char *bstr, const char* resultstr) { |
| fxp_t a = xparse_fxp(astr); |
| fxp_t b = xparse_fxp(bstr); |
| fxp_t result = xparse_fxp(resultstr); |
| expect_true(fxp_close(fxp_sub(a, b), result), |
| "Expected %s - %s == %s", astr, bstr, resultstr); |
| } |
| |
| TEST_BEGIN(test_sub_simple) { |
| expect_sub("0", "0", "0"); |
| expect_sub("1", "0", "1"); |
| expect_sub("1", "1", "0"); |
| expect_sub("3.5", "1.5", "2"); |
| expect_sub("0.3", "0.1", "0.2"); |
| expect_sub("456", "123", "333"); |
| } |
| TEST_END |
| |
| static void |
| expect_mul(const char *astr, const char *bstr, const char* resultstr) { |
| fxp_t a = xparse_fxp(astr); |
| fxp_t b = xparse_fxp(bstr); |
| fxp_t result = xparse_fxp(resultstr); |
| expect_true(fxp_close(fxp_mul(a, b), result), |
| "Expected %s * %s == %s", astr, bstr, resultstr); |
| } |
| |
| TEST_BEGIN(test_mul_simple) { |
| expect_mul("0", "0", "0"); |
| expect_mul("1", "0", "0"); |
| expect_mul("1", "1", "1"); |
| expect_mul("1.5", "1.5", "2.25"); |
| expect_mul("100.0", "10", "1000"); |
| expect_mul(".1", "10", "1"); |
| } |
| TEST_END |
| |
| static void |
| expect_div(const char *astr, const char *bstr, const char* resultstr) { |
| fxp_t a = xparse_fxp(astr); |
| fxp_t b = xparse_fxp(bstr); |
| fxp_t result = xparse_fxp(resultstr); |
| expect_true(fxp_close(fxp_div(a, b), result), |
| "Expected %s / %s == %s", astr, bstr, resultstr); |
| } |
| |
| TEST_BEGIN(test_div_simple) { |
| expect_div("1", "1", "1"); |
| expect_div("0", "1", "0"); |
| expect_div("2", "1", "2"); |
| expect_div("3", "2", "1.5"); |
| expect_div("3", "1.5", "2"); |
| expect_div("10", ".1", "100"); |
| expect_div("123", "456", ".2697368421"); |
| } |
| TEST_END |
| |
| static void |
| expect_round(const char *str, uint32_t rounded_down, uint32_t rounded_nearest) { |
| fxp_t fxp = xparse_fxp(str); |
| uint32_t fxp_rounded_down = fxp_round_down(fxp); |
| uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp); |
| expect_u32_eq(rounded_down, fxp_rounded_down, |
| "Mistake rounding %s down", str); |
| expect_u32_eq(rounded_nearest, fxp_rounded_nearest, |
| "Mistake rounding %s to nearest", str); |
| } |
| |
| TEST_BEGIN(test_round_simple) { |
| expect_round("1.5", 1, 2); |
| expect_round("0", 0, 0); |
| expect_round("0.1", 0, 0); |
| expect_round("0.4", 0, 0); |
| expect_round("0.40000", 0, 0); |
| expect_round("0.5", 0, 1); |
| expect_round("0.6", 0, 1); |
| expect_round("123", 123, 123); |
| expect_round("123.4", 123, 123); |
| expect_round("123.5", 123, 124); |
| } |
| TEST_END |
| |
| static void |
| expect_mul_frac(size_t a, const char *fracstr, size_t expected) { |
| fxp_t frac = xparse_fxp(fracstr); |
| size_t result = fxp_mul_frac(a, frac); |
| expect_true(double_close(expected, result), |
| "Expected %zu * %s == %zu (fracmul); got %zu", a, fracstr, |
| expected, result); |
| } |
| |
| TEST_BEGIN(test_mul_frac_simple) { |
| expect_mul_frac(SIZE_MAX, "1.0", SIZE_MAX); |
| expect_mul_frac(SIZE_MAX, ".75", SIZE_MAX / 4 * 3); |
| expect_mul_frac(SIZE_MAX, ".5", SIZE_MAX / 2); |
| expect_mul_frac(SIZE_MAX, ".25", SIZE_MAX / 4); |
| expect_mul_frac(1U << 16, "1.0", 1U << 16); |
| expect_mul_frac(1U << 30, "0.5", 1U << 29); |
| expect_mul_frac(1U << 30, "0.25", 1U << 28); |
| expect_mul_frac(1U << 30, "0.125", 1U << 27); |
| expect_mul_frac((1U << 30) + 1, "0.125", 1U << 27); |
| expect_mul_frac(100, "0.25", 25); |
| expect_mul_frac(1000 * 1000, "0.001", 1000); |
| } |
| TEST_END |
| |
| static void |
| expect_print(const char *str) { |
| fxp_t fxp = xparse_fxp(str); |
| char buf[FXP_BUF_SIZE]; |
| fxp_print(fxp, buf); |
| expect_d_eq(0, strcmp(str, buf), "Couldn't round-trip print %s", str); |
| } |
| |
| TEST_BEGIN(test_print_simple) { |
| expect_print("0.0"); |
| expect_print("1.0"); |
| expect_print("2.0"); |
| expect_print("123.0"); |
| /* |
| * We hit the possibility of roundoff errors whenever the fractional |
| * component isn't a round binary number; only check these here (we |
| * round-trip properly in the stress test). |
| */ |
| expect_print("1.5"); |
| expect_print("3.375"); |
| expect_print("0.25"); |
| expect_print("0.125"); |
| /* 1 / 2**14 */ |
| expect_print("0.00006103515625"); |
| } |
| TEST_END |
| |
| TEST_BEGIN(test_stress) { |
| const char *numbers[] = { |
| "0.0", "0.1", "0.2", "0.3", "0.4", |
| "0.5", "0.6", "0.7", "0.8", "0.9", |
| |
| "1.0", "1.1", "1.2", "1.3", "1.4", |
| "1.5", "1.6", "1.7", "1.8", "1.9", |
| |
| "2.0", "2.1", "2.2", "2.3", "2.4", |
| "2.5", "2.6", "2.7", "2.8", "2.9", |
| |
| "17.0", "17.1", "17.2", "17.3", "17.4", |
| "17.5", "17.6", "17.7", "17.8", "17.9", |
| |
| "18.0", "18.1", "18.2", "18.3", "18.4", |
| "18.5", "18.6", "18.7", "18.8", "18.9", |
| |
| "123.0", "123.1", "123.2", "123.3", "123.4", |
| "123.5", "123.6", "123.7", "123.8", "123.9", |
| |
| "124.0", "124.1", "124.2", "124.3", "124.4", |
| "124.5", "124.6", "124.7", "124.8", "124.9", |
| |
| "125.0", "125.1", "125.2", "125.3", "125.4", |
| "125.5", "125.6", "125.7", "125.8", "125.9"}; |
| size_t numbers_len = sizeof(numbers)/sizeof(numbers[0]); |
| for (size_t i = 0; i < numbers_len; i++) { |
| fxp_t fxp_a = xparse_fxp(numbers[i]); |
| double double_a = strtod(numbers[i], NULL); |
| |
| uint32_t fxp_rounded_down = fxp_round_down(fxp_a); |
| uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp_a); |
| uint32_t double_rounded_down = (uint32_t)double_a; |
| uint32_t double_rounded_nearest = (uint32_t)round(double_a); |
| |
| expect_u32_eq(double_rounded_down, fxp_rounded_down, |
| "Incorrectly rounded down %s", numbers[i]); |
| expect_u32_eq(double_rounded_nearest, fxp_rounded_nearest, |
| "Incorrectly rounded-to-nearest %s", numbers[i]); |
| |
| for (size_t j = 0; j < numbers_len; j++) { |
| fxp_t fxp_b = xparse_fxp(numbers[j]); |
| double double_b = strtod(numbers[j], NULL); |
| |
| fxp_t fxp_sum = fxp_add(fxp_a, fxp_b); |
| double double_sum = double_a + double_b; |
| expect_true( |
| double_close(fxp2double(fxp_sum), double_sum), |
| "Miscomputed %s + %s", numbers[i], numbers[j]); |
| |
| if (double_a > double_b) { |
| fxp_t fxp_diff = fxp_sub(fxp_a, fxp_b); |
| double double_diff = double_a - double_b; |
| expect_true( |
| double_close(fxp2double(fxp_diff), |
| double_diff), |
| "Miscomputed %s - %s", numbers[i], |
| numbers[j]); |
| } |
| |
| fxp_t fxp_prod = fxp_mul(fxp_a, fxp_b); |
| double double_prod = double_a * double_b; |
| expect_true( |
| double_close(fxp2double(fxp_prod), double_prod), |
| "Miscomputed %s * %s", numbers[i], numbers[j]); |
| |
| if (double_b != 0.0) { |
| fxp_t fxp_quot = fxp_div(fxp_a, fxp_b); |
| double double_quot = double_a / double_b; |
| expect_true( |
| double_close(fxp2double(fxp_quot), |
| double_quot), |
| "Miscomputed %s / %s", numbers[i], |
| numbers[j]); |
| } |
| } |
| } |
| } |
| TEST_END |
| |
| int |
| main(void) { |
| return test_no_reentrancy( |
| test_parse_valid, |
| test_parse_invalid, |
| test_init_percent, |
| test_add_simple, |
| test_sub_simple, |
| test_mul_simple, |
| test_div_simple, |
| test_round_simple, |
| test_mul_frac_simple, |
| test_print_simple, |
| test_stress); |
| } |