blob: c1dac7442dc0ff8092c34e2d7bcd7d8b373c01f9 [file] [log] [blame]
/**************************************************************************
*
* Copyright © 2007 Red Hat Inc.
* Copyright © 2007-2020 Intel Corporation
* Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*
**************************************************************************/
/*
* Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
* Keith Whitwell <keithw-at-tungstengraphics-dot-com>
* Eric Anholt <eric@anholt.net>
* Dave Airlie <airlied@linux.ie>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "xf86drm.h"
#include "xf86atomic.h"
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdbool.h>
#include "errno.h"
#ifndef ETIME
#define ETIME ETIMEDOUT
#endif
#include "libdrm_macros.h"
#include "libdrm_lists.h"
#include "mos_bufmgr.h"
#include "mos_bufmgr_priv.h"
#include "string.h"
#include "i915_drm.h"
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#else
#define VG(x)
#endif
#define memclear(s) memset(&s, 0, sizeof(s))
#define MOS_DBG(...) do { \
if (bufmgr_gem->bufmgr.debug) \
fprintf(stderr, __VA_ARGS__); \
} while (0)
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#define MAX2(A, B) ((A) > (B) ? (A) : (B))
/**
* upper_32_bits - return bits 32-63 of a number
* @n: the number we're accessing
*
* A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
* the "right shift count >= width of type" warning when that quantity is
* 32-bits.
*/
#define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
/**
* lower_32_bits - return bits 0-31 of a number
* @n: the number we're accessing
*/
#define lower_32_bits(n) ((__u32)(n))
#define PCI_CHIP_I915_G 0x2582
#define PCI_CHIP_E7221_G 0x258A
#define PCI_CHIP_I915_GM 0x2592
#define IS_915(devid) ((devid) == PCI_CHIP_I915_G || \
(devid) == PCI_CHIP_E7221_G || \
(devid) == PCI_CHIP_I915_GM)
struct mos_gem_bo_bucket {
drmMMListHead head;
unsigned long size;
};
struct mos_bufmgr_gem {
struct mos_bufmgr bufmgr;
atomic_t refcount;
int fd;
int max_relocs;
pthread_mutex_t lock;
struct drm_i915_gem_exec_object *exec_objects;
struct drm_i915_gem_exec_object2 *exec2_objects;
struct mos_linux_bo **exec_bos;
int exec_size;
int exec_count;
/** Array of lists of cached gem objects of power-of-two sizes */
struct mos_gem_bo_bucket cache_bucket[14 * 4];
int num_buckets;
time_t time;
drmMMListHead managers;
drmMMListHead named;
uint64_t gtt_size;
int available_fences;
int pci_device;
unsigned int has_bsd : 1;
unsigned int has_blt : 1;
unsigned int has_relaxed_fencing : 1;
unsigned int has_llc : 1;
unsigned int has_wait_timeout : 1;
unsigned int bo_reuse : 1;
unsigned int no_exec : 1;
unsigned int has_vebox : 1;
unsigned int has_ext_mmap : 1;
bool fenced_relocs;
struct {
void *ptr;
uint32_t handle;
} userptr_active;
// manage address for softpin buffer object
uint64_t head_offset;
bool use_softpin;
} mos_bufmgr_gem;
#define DRM_INTEL_RELOC_FENCE (1<<0)
struct mos_reloc_target {
struct mos_linux_bo *bo;
int flags;
};
struct mos_softpin_target {
struct mos_linux_bo *bo;
int flags;
};
struct mos_bo_gem {
struct mos_linux_bo bo;
atomic_t refcount;
uint32_t gem_handle;
const char *name;
/**
* Kenel-assigned global name for this object
*
* List contains both flink named and prime fd'd objects
*/
unsigned int global_name;
drmMMListHead name_list;
/**
* Index of the buffer within the validation list while preparing a
* batchbuffer execution.
*/
int validate_index;
/**
* Current tiling mode
*/
uint32_t tiling_mode;
uint32_t swizzle_mode;
unsigned long stride;
time_t free_time;
/** Array passed to the DRM containing relocation information. */
struct drm_i915_gem_relocation_entry *relocs;
/**
* Array of info structs corresponding to relocs[i].target_handle etc
*/
struct mos_reloc_target *reloc_target_info;
/** Number of entries in relocs */
int reloc_count;
/** Array of BOs that are referenced by this buffer and will be softpinned */
struct mos_softpin_target *softpin_target;
/** Number softpinned BOs that are referenced by this buffer */
int softpin_target_count;
/** Maximum amount of softpinned BOs that are referenced by this buffer */
int softpin_target_size;
/** Mapped address for the buffer, saved across map/unmap cycles */
void *mem_virtual;
/** Uncached Mapped address for the buffer, saved across map/unmap cycles */
void *mem_wc_virtual;
/** GTT virtual address for the buffer, saved across map/unmap cycles */
void *gtt_virtual;
/**
* Virtual address of the buffer allocated by user, used for userptr
* objects only.
*/
void *user_virtual;
int map_count;
/** BO cache list */
drmMMListHead head;
/**
* Boolean of whether this BO and its children have been included in
* the current drm_intel_bufmgr_check_aperture_space() total.
*/
bool included_in_check_aperture;
/**
* Boolean of whether this buffer has been used as a relocation
* target and had its size accounted for, and thus can't have any
* further relocations added to it.
*/
bool used_as_reloc_target;
/**
* Boolean of whether we have encountered an error whilst building the relocation tree.
*/
bool has_error;
/**
* Boolean of whether this buffer can be re-used
*/
bool reusable;
/**
* Boolean of whether the GPU is definitely not accessing the buffer.
*
* This is only valid when reusable, since non-reusable
* buffers are those that have been shared wth other
* processes, so we don't know their state.
*/
bool idle;
/**
* Boolean of whether this buffer was allocated with userptr
*/
bool is_userptr;
/**
* Boolean of whether this buffer can be placed in the full 48-bit
* address range on gen8+.
*
* By default, buffers will be keep in a 32-bit range, unless this
* flag is explicitly set.
*/
bool use_48b_address_range;
/**
* Whether this buffer is softpinned at offset specified by the user
*/
bool is_softpin;
/*
* Whether to remove the dependency of this bo in exebuf.
*/
bool exec_async;
/**
* Size in bytes of this buffer and its relocation descendents.
*
* Used to avoid costly tree walking in
* drm_intel_bufmgr_check_aperture in the common case.
*/
int reloc_tree_size;
/**
* Number of potential fence registers required by this buffer and its
* relocations.
*/
int reloc_tree_fences;
/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
bool mapped_cpu_write;
/**
* Size to pad the object to.
*
*/
uint64_t pad_to_size;
};
static unsigned int
mos_gem_estimate_batch_space(struct mos_linux_bo ** bo_array, int count);
static unsigned int
mos_gem_compute_batch_space(struct mos_linux_bo ** bo_array, int count);
static int
mos_gem_bo_get_tiling(struct mos_linux_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode);
static int
mos_gem_bo_set_tiling_internal(struct mos_linux_bo *bo,
uint32_t tiling_mode,
uint32_t stride);
static void mos_gem_bo_unreference_locked_timed(struct mos_linux_bo *bo,
time_t time);
static void mos_gem_bo_unreference(struct mos_linux_bo *bo);
static inline struct mos_bo_gem *to_bo_gem(struct mos_linux_bo *bo)
{
return (struct mos_bo_gem *)bo;
}
static unsigned long
mos_gem_bo_tile_size(struct mos_bufmgr_gem *bufmgr_gem, unsigned long size,
uint32_t *tiling_mode)
{
unsigned long min_size, max_size;
unsigned long i;
if (*tiling_mode == I915_TILING_NONE)
return size;
/* 965+ just need multiples of page size for tiling */
return ROUND_UP_TO(size, 4096);
}
/*
* Round a given pitch up to the minimum required for X tiling on a
* given chip. We use 512 as the minimum to allow for a later tiling
* change.
*/
static unsigned long
mos_gem_bo_tile_pitch(struct mos_bufmgr_gem *bufmgr_gem,
unsigned long pitch, uint32_t *tiling_mode)
{
unsigned long tile_width;
unsigned long i;
/* If untiled, then just align it so that we can do rendering
* to it with the 3D engine.
*/
if (*tiling_mode == I915_TILING_NONE)
return ALIGN(pitch, 64);
if (*tiling_mode == I915_TILING_X
|| (IS_915(bufmgr_gem->pci_device)
&& *tiling_mode == I915_TILING_Y))
tile_width = 512;
else
tile_width = 128;
/* 965 is flexible */
return ROUND_UP_TO(pitch, tile_width);
}
static struct mos_gem_bo_bucket *
mos_gem_bo_bucket_for_size(struct mos_bufmgr_gem *bufmgr_gem,
unsigned long size)
{
int i;
for (i = 0; i < bufmgr_gem->num_buckets; i++) {
struct mos_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
if (bucket->size >= size) {
return bucket;
}
}
return nullptr;
}
static void
mos_gem_dump_validation_list(struct mos_bufmgr_gem *bufmgr_gem)
{
int i, j;
for (i = 0; i < bufmgr_gem->exec_count; i++) {
struct mos_linux_bo *bo = bufmgr_gem->exec_bos[i];
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
if (bo_gem->relocs == nullptr || bo_gem->softpin_target == nullptr) {
MOS_DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
bo_gem->is_softpin ? "*" : "",
bo_gem->name);
continue;
}
for (j = 0; j < bo_gem->reloc_count; j++) {
struct mos_linux_bo *target_bo = bo_gem->reloc_target_info[j].bo;
struct mos_bo_gem *target_gem =
(struct mos_bo_gem *) target_bo;
MOS_DBG("%2d: %d %s(%s)@0x%08x %08x -> "
"%d (%s)@0x%08x %08x + 0x%08x\n",
i,
bo_gem->gem_handle,
bo_gem->is_softpin ? "*" : "",
bo_gem->name,
upper_32_bits(bo_gem->relocs[j].offset),
lower_32_bits(bo_gem->relocs[j].offset),
target_gem->gem_handle,
target_gem->name,
upper_32_bits(target_bo->offset64),
lower_32_bits(target_bo->offset64),
bo_gem->relocs[j].delta);
}
for (j = 0; j < bo_gem->softpin_target_count; j++) {
struct mos_linux_bo *target_bo = bo_gem->softpin_target[j].bo;
struct mos_bo_gem *target_gem =
(struct mos_bo_gem *) target_bo;
MOS_DBG("%2d: %d %s(%s) -> "
"%d *(%s)@0x%08x %08x\n",
i,
bo_gem->gem_handle,
bo_gem->is_softpin ? "*" : "",
bo_gem->name,
target_gem->gem_handle,
target_gem->name,
upper_32_bits(target_bo->offset64),
lower_32_bits(target_bo->offset64));
}
}
}
static inline void
mos_gem_bo_reference(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
atomic_inc(&bo_gem->refcount);
}
/**
* Adds the given buffer to the list of buffers to be validated (moved into the
* appropriate memory type) with the next batch submission.
*
* If a buffer is validated multiple times in a batch submission, it ends up
* with the intersection of the memory type flags and the union of the
* access flags.
*/
static void
mos_add_validate_buffer(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int index;
struct drm_i915_gem_exec_object *exec_objects;
struct mos_linux_bo **exec_bos;
if (bo_gem->validate_index != -1)
return;
/* Extend the array of validation entries as necessary. */
if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
int new_size = bufmgr_gem->exec_size * 2;
if (new_size == 0)
new_size = ARRAY_INIT_SIZE;
exec_objects = (struct drm_i915_gem_exec_object *)realloc(bufmgr_gem->exec_objects,
sizeof(*bufmgr_gem->exec_objects) * new_size);
if (!exec_objects)
return;
bufmgr_gem->exec_objects = exec_objects;
exec_bos = (struct mos_linux_bo **)realloc(bufmgr_gem->exec_bos,
sizeof(*bufmgr_gem->exec_bos) * new_size);
if (!exec_bos)
return;
bufmgr_gem->exec_bos = exec_bos;
bufmgr_gem->exec_size = new_size;
}
index = bufmgr_gem->exec_count;
bo_gem->validate_index = index;
/* Fill in array entry */
bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
bufmgr_gem->exec_objects[index].alignment = bo->align;
bufmgr_gem->exec_objects[index].offset = 0;
bufmgr_gem->exec_bos[index] = bo;
bufmgr_gem->exec_count++;
}
static void
mos_add_validate_buffer2(struct mos_linux_bo *bo, int need_fence)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *)bo;
int index;
struct drm_i915_gem_exec_object2 *exec2_objects;
struct mos_linux_bo **exec_bos;
int flags = 0;
if (need_fence)
flags |= EXEC_OBJECT_NEEDS_FENCE;
if (bo_gem->pad_to_size)
flags |= EXEC_OBJECT_PAD_TO_SIZE;
if (bo_gem->use_48b_address_range)
flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
if (bo_gem->is_softpin)
flags |= EXEC_OBJECT_PINNED;
if (bo_gem->exec_async)
flags |= EXEC_OBJECT_ASYNC;
if (bo_gem->validate_index != -1) {
bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
return;
}
/* Extend the array of validation entries as necessary. */
if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
int new_size = bufmgr_gem->exec_size * 2;
if (new_size == 0)
new_size = ARRAY_INIT_SIZE;
exec2_objects = (struct drm_i915_gem_exec_object2 *)
realloc(bufmgr_gem->exec2_objects,
sizeof(*bufmgr_gem->exec2_objects) * new_size);
if (!exec2_objects)
return;
bufmgr_gem->exec2_objects = exec2_objects;
exec_bos = (struct mos_linux_bo **)realloc(bufmgr_gem->exec_bos,
sizeof(*bufmgr_gem->exec_bos) * new_size);
if (!exec_bos)
return;
bufmgr_gem->exec_bos = exec_bos;
bufmgr_gem->exec_size = new_size;
}
index = bufmgr_gem->exec_count;
bo_gem->validate_index = index;
/* Fill in array entry */
bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
bufmgr_gem->exec2_objects[index].alignment = bo->align;
bufmgr_gem->exec2_objects[index].offset = bo_gem->is_softpin ?
bo->offset64 : 0;
bufmgr_gem->exec_bos[index] = bo;
bufmgr_gem->exec2_objects[index].flags = flags;
bufmgr_gem->exec2_objects[index].rsvd1 = 0;
bufmgr_gem->exec2_objects[index].pad_to_size = bo_gem->pad_to_size;
bufmgr_gem->exec2_objects[index].rsvd2 = 0;
bufmgr_gem->exec_count++;
}
static void
mos_add_reloc_objects(struct mos_reloc_target reloc_target)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)reloc_target.bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *)reloc_target.bo;
int index;
struct drm_i915_gem_exec_object2 *exec2_objects;
struct mos_linux_bo **exec_bos;
if (bo_gem->validate_index != -1) {
bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= reloc_target.flags;
return;
}
/* Extend the array of validation entries as necessary. */
if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
int new_size = bufmgr_gem->exec_size * 2;
if (new_size == 0)
new_size = ARRAY_INIT_SIZE;
exec2_objects = (struct drm_i915_gem_exec_object2 *)
realloc(bufmgr_gem->exec2_objects,
sizeof(*bufmgr_gem->exec2_objects) * new_size);
if (!exec2_objects)
{
MOS_DBG("realloc exec2_objects failed!\n");
return;
}
bufmgr_gem->exec2_objects = exec2_objects;
exec_bos = (struct mos_linux_bo **)realloc(bufmgr_gem->exec_bos,
sizeof(*bufmgr_gem->exec_bos) * new_size);
if (!exec_bos)
{
MOS_DBG("realloc exec_bo failed!\n");
return;
}
bufmgr_gem->exec_bos = exec_bos;
bufmgr_gem->exec_size = new_size;
}
index = bufmgr_gem->exec_count;
bo_gem->validate_index = index;
/* Fill in array entry */
bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
bufmgr_gem->exec2_objects[index].alignment = reloc_target.bo->align;
bufmgr_gem->exec2_objects[index].offset = 0;
bufmgr_gem->exec_bos[index] = reloc_target.bo;
bufmgr_gem->exec2_objects[index].flags = reloc_target.flags;
bufmgr_gem->exec2_objects[index].rsvd1 = 0;
bufmgr_gem->exec2_objects[index].pad_to_size = bo_gem->pad_to_size;
bufmgr_gem->exec2_objects[index].rsvd2 = 0;
bufmgr_gem->exec_count++;
}
static void
mos_add_softpin_objects(struct mos_softpin_target softpin_target)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)softpin_target.bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *)softpin_target.bo;
int index;
struct drm_i915_gem_exec_object2 *exec2_objects;
struct mos_linux_bo **exec_bos;
if (bo_gem->validate_index != -1) {
bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= softpin_target.flags;
return;
}
/* Extend the array of validation entries as necessary. */
if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
int new_size = bufmgr_gem->exec_size * 2;
if (new_size == 0)
new_size = ARRAY_INIT_SIZE;
exec2_objects = (struct drm_i915_gem_exec_object2 *)
realloc(bufmgr_gem->exec2_objects,
sizeof(*bufmgr_gem->exec2_objects) * new_size);
if (!exec2_objects)
{
MOS_DBG("realloc exec2_objects failed!\n");
return;
}
bufmgr_gem->exec2_objects = exec2_objects;
exec_bos = (struct mos_linux_bo **)realloc(bufmgr_gem->exec_bos,
sizeof(*bufmgr_gem->exec_bos) * new_size);
if (!exec_bos)
{
MOS_DBG("realloc exec_bo failed!\n");
return;
}
bufmgr_gem->exec_bos = exec_bos;
bufmgr_gem->exec_size = new_size;
}
index = bufmgr_gem->exec_count;
bo_gem->validate_index = index;
/* Fill in array entry */
bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
bufmgr_gem->exec2_objects[index].alignment = softpin_target.bo->align;
bufmgr_gem->exec2_objects[index].offset = softpin_target.bo->offset64;
bufmgr_gem->exec2_objects[index].flags = softpin_target.flags;
bufmgr_gem->exec2_objects[index].pad_to_size = bo_gem->pad_to_size;
bufmgr_gem->exec2_objects[index].rsvd1 = 0;
bufmgr_gem->exec2_objects[index].rsvd2 = 0;
bufmgr_gem->exec_bos[index] = softpin_target.bo;
bufmgr_gem->exec_count++;
}
#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
sizeof(uint32_t))
static void
mos_bo_gem_set_in_aperture_size(struct mos_bufmgr_gem *bufmgr_gem,
struct mos_bo_gem *bo_gem,
unsigned int alignment)
{
unsigned int size;
assert(!bo_gem->used_as_reloc_target);
/* The older chipsets are far-less flexible in terms of tiling,
* and require tiled buffer to be size aligned in the aperture.
* This means that in the worst possible case we will need a hole
* twice as large as the object in order for it to fit into the
* aperture. Optimal packing is for wimps.
*/
size = bo_gem->bo.size;
bo_gem->reloc_tree_size = size + alignment;
}
static int
mos_setup_reloc_list(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
unsigned int max_relocs = bufmgr_gem->max_relocs;
if (bo->size / 4 < max_relocs)
max_relocs = bo->size / 4;
bo_gem->relocs = (struct drm_i915_gem_relocation_entry *)malloc(max_relocs *
sizeof(struct drm_i915_gem_relocation_entry));
bo_gem->reloc_target_info = (struct mos_reloc_target *)malloc(max_relocs *
sizeof(struct mos_reloc_target));
if (bo_gem->relocs == nullptr || bo_gem->reloc_target_info == nullptr) {
bo_gem->has_error = true;
free (bo_gem->relocs);
bo_gem->relocs = nullptr;
free (bo_gem->reloc_target_info);
bo_gem->reloc_target_info = nullptr;
return 1;
}
return 0;
}
static int
mos_gem_bo_busy(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_busy busy;
int ret;
if (bo_gem->reusable && bo_gem->idle)
return false;
memclear(busy);
busy.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
if (ret == 0) {
bo_gem->idle = !busy.busy;
return busy.busy;
} else {
return false;
}
return (ret == 0 && busy.busy);
}
static int
mos_gem_bo_madvise_internal(struct mos_bufmgr_gem *bufmgr_gem,
struct mos_bo_gem *bo_gem, int state)
{
struct drm_i915_gem_madvise madv;
memclear(madv);
madv.handle = bo_gem->gem_handle;
madv.madv = state;
madv.retained = 1;
drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
return madv.retained;
}
static int
mos_gem_bo_madvise(struct mos_linux_bo *bo, int madv)
{
return mos_gem_bo_madvise_internal
((struct mos_bufmgr_gem *) bo->bufmgr,
(struct mos_bo_gem *) bo,
madv);
}
/* drop the oldest entries that have been purged by the kernel */
static void
mos_gem_bo_cache_purge_bucket(struct mos_bufmgr_gem *bufmgr_gem,
struct mos_gem_bo_bucket *bucket)
{
while (!DRMLISTEMPTY(&bucket->head)) {
struct mos_bo_gem *bo_gem;
bo_gem = DRMLISTENTRY(struct mos_bo_gem,
bucket->head.next, head);
if (mos_gem_bo_madvise_internal
(bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
break;
DRMLISTDEL(&bo_gem->head);
mos_gem_bo_free(&bo_gem->bo);
}
}
drm_export struct mos_linux_bo *
mos_gem_bo_alloc_internal(struct mos_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned long flags,
uint32_t tiling_mode,
unsigned long stride,
unsigned int alignment,
int mem_type)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bufmgr;
struct mos_bo_gem *bo_gem;
unsigned int page_size = getpagesize();
int ret;
struct mos_gem_bo_bucket *bucket;
bool alloc_from_cache;
unsigned long bo_size;
bool for_render = false;
if (flags & BO_ALLOC_FOR_RENDER)
for_render = true;
/* Round the allocated size up to a power of two number of pages. */
bucket = mos_gem_bo_bucket_for_size(bufmgr_gem, size);
/* If we don't have caching at this size, don't actually round the
* allocation up.
*/
if (bucket == nullptr) {
bo_size = size;
if (bo_size < page_size)
bo_size = page_size;
} else {
bo_size = bucket->size;
}
pthread_mutex_lock(&bufmgr_gem->lock);
/* Get a buffer out of the cache if available */
retry:
alloc_from_cache = false;
if (bucket != nullptr && !DRMLISTEMPTY(&bucket->head)) {
if (for_render) {
/* Allocate new render-target BOs from the tail (MRU)
* of the list, as it will likely be hot in the GPU
* cache and in the aperture for us.
*/
bo_gem = DRMLISTENTRY(struct mos_bo_gem,
bucket->head.prev, head);
DRMLISTDEL(&bo_gem->head);
alloc_from_cache = true;
bo_gem->bo.align = alignment;
} else {
assert(alignment == 0);
/* For non-render-target BOs (where we're probably
* going to map it first thing in order to fill it
* with data), check if the last BO in the cache is
* unbusy, and only reuse in that case. Otherwise,
* allocating a new buffer is probably faster than
* waiting for the GPU to finish.
*/
bo_gem = DRMLISTENTRY(struct mos_bo_gem,
bucket->head.next, head);
if (!mos_gem_bo_busy(&bo_gem->bo)) {
alloc_from_cache = true;
DRMLISTDEL(&bo_gem->head);
}
}
if (alloc_from_cache) {
if (!mos_gem_bo_madvise_internal
(bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
mos_gem_bo_free(&bo_gem->bo);
mos_gem_bo_cache_purge_bucket(bufmgr_gem,
bucket);
goto retry;
}
if (mos_gem_bo_set_tiling_internal(&bo_gem->bo,
tiling_mode,
stride)) {
mos_gem_bo_free(&bo_gem->bo);
goto retry;
}
}
}
pthread_mutex_unlock(&bufmgr_gem->lock);
if (!alloc_from_cache) {
struct drm_i915_gem_create create;
bo_gem = (struct mos_bo_gem *)calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return nullptr;
bo_gem->bo.size = bo_size;
memclear(create);
create.size = bo_size;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_CREATE,
&create);
bo_gem->gem_handle = create.handle;
bo_gem->bo.handle = bo_gem->gem_handle;
if (ret != 0) {
free(bo_gem);
return nullptr;
}
bo_gem->bo.bufmgr = bufmgr;
bo_gem->bo.align = alignment;
bo_gem->tiling_mode = I915_TILING_NONE;
bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
bo_gem->stride = 0;
/* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
list (vma_list), so better set the list head here */
DRMINITLISTHEAD(&bo_gem->name_list);
if (mos_gem_bo_set_tiling_internal(&bo_gem->bo,
tiling_mode,
stride)) {
mos_gem_bo_free(&bo_gem->bo);
return nullptr;
}
}
bo_gem->name = name;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->reloc_tree_fences = 0;
bo_gem->used_as_reloc_target = false;
bo_gem->has_error = false;
bo_gem->reusable = true;
bo_gem->use_48b_address_range = bufmgr_gem->bufmgr.bo_use_48b_address_range ? true : false;
mos_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
if (bufmgr_gem->use_softpin)
{
mos_bo_set_softpin(&bo_gem->bo);
}
MOS_DBG("bo_create: buf %d (%s) %ldb\n",
bo_gem->gem_handle, bo_gem->name, size);
return &bo_gem->bo;
}
static struct mos_linux_bo *
mos_gem_bo_alloc_for_render(struct mos_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment,
int mem_type)
{
return mos_gem_bo_alloc_internal(bufmgr, name, size,
I915_TILING_NONE, 0,
BO_ALLOC_FOR_RENDER,
alignment, mem_type);
}
static struct mos_linux_bo *
mos_gem_bo_alloc(struct mos_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment,
int mem_type)
{
return mos_gem_bo_alloc_internal(bufmgr, name, size, 0,
I915_TILING_NONE, 0, 0, mem_type);
}
static struct mos_linux_bo *
mos_gem_bo_alloc_tiled(struct mos_bufmgr *bufmgr, const char *name,
int x, int y, int cpp, uint32_t *tiling_mode,
unsigned long *pitch, unsigned long flags,
int mem_type)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
unsigned long size, stride;
uint32_t tiling;
do {
unsigned long aligned_y, height_alignment;
tiling = *tiling_mode;
/* If we're tiled, our allocations are in 8 or 32-row blocks,
* so failure to align our height means that we won't allocate
* enough pages.
*
* If we're untiled, we still have to align to 2 rows high
* because the data port accesses 2x2 blocks even if the
* bottom row isn't to be rendered, so failure to align means
* we could walk off the end of the GTT and fault. This is
* documented on 965, and may be the case on older chipsets
* too so we try to be careful.
*/
aligned_y = y;
height_alignment = 2;
if (tiling == I915_TILING_X
|| (IS_915(bufmgr_gem->pci_device)
&& tiling == I915_TILING_Y))
height_alignment = 8;
else if (tiling == I915_TILING_Y)
height_alignment = 32;
aligned_y = ALIGN(y, height_alignment);
stride = x * cpp;
stride = mos_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
size = stride * aligned_y;
size = mos_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
} while (*tiling_mode != tiling);
*pitch = stride;
if (tiling == I915_TILING_NONE)
stride = 0;
return mos_gem_bo_alloc_internal(bufmgr, name, size, flags,
tiling, stride, 0, mem_type);
}
static struct mos_linux_bo *
mos_gem_bo_alloc_userptr(struct mos_bufmgr *bufmgr,
const char *name,
void *addr,
uint32_t tiling_mode,
uint32_t stride,
unsigned long size,
unsigned long flags)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bufmgr;
struct mos_bo_gem *bo_gem;
int ret;
struct drm_i915_gem_userptr userptr;
/* Tiling with userptr surfaces is not supported
* on all hardware so refuse it for time being.
*/
if (tiling_mode != I915_TILING_NONE)
return nullptr;
bo_gem = (struct mos_bo_gem *)calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return nullptr;
bo_gem->bo.size = size;
memclear(userptr);
userptr.user_ptr = (__u64)((unsigned long)addr);
userptr.user_size = size;
userptr.flags = 0;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_USERPTR,
&userptr);
if (ret != 0) {
MOS_DBG("bo_create_userptr: "
"ioctl failed with user ptr %p size 0x%lx, "
"user flags 0x%lx\n", addr, size, flags);
free(bo_gem);
return nullptr;
}
bo_gem->gem_handle = userptr.handle;
bo_gem->bo.handle = bo_gem->gem_handle;
bo_gem->bo.bufmgr = bufmgr;
bo_gem->is_userptr = true;
#ifdef __cplusplus
bo_gem->bo.virt = addr;
#else
bo_gem->bo.virtual = addr;
#endif
/* Save the address provided by user */
bo_gem->user_virtual = addr;
bo_gem->tiling_mode = I915_TILING_NONE;
bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
bo_gem->stride = 0;
DRMINITLISTHEAD(&bo_gem->name_list);
bo_gem->name = name;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->reloc_tree_fences = 0;
bo_gem->used_as_reloc_target = false;
bo_gem->has_error = false;
bo_gem->reusable = false;
bo_gem->use_48b_address_range = bufmgr_gem->bufmgr.bo_use_48b_address_range ? true : false;
mos_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
MOS_DBG("bo_create_userptr: "
"ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
addr, bo_gem->gem_handle, bo_gem->name,
size, stride, tiling_mode);
return &bo_gem->bo;
}
static bool
has_userptr(struct mos_bufmgr_gem *bufmgr_gem)
{
int ret;
void *ptr;
long pgsz;
struct drm_i915_gem_userptr userptr;
pgsz = sysconf(_SC_PAGESIZE);
assert(pgsz > 0);
ret = posix_memalign(&ptr, pgsz, pgsz);
if (ret) {
MOS_DBG("Failed to get a page (%ld) for userptr detection!\n",
pgsz);
return false;
}
memclear(userptr);
userptr.user_ptr = (__u64)(unsigned long)ptr;
userptr.user_size = pgsz;
retry:
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
if (ret) {
if (errno == ENODEV && userptr.flags == 0) {
userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
goto retry;
}
free(ptr);
return false;
}
/* We don't release the userptr bo here as we want to keep the
* kernel mm tracking alive for our lifetime. The first time we
* create a userptr object the kernel has to install a mmu_notifer
* which is a heavyweight operation (e.g. it requires taking all
* mm_locks and stop_machine()).
*/
bufmgr_gem->userptr_active.ptr = ptr;
bufmgr_gem->userptr_active.handle = userptr.handle;
return true;
}
static struct mos_linux_bo *
check_bo_alloc_userptr(struct mos_bufmgr *bufmgr,
const char *name,
void *addr,
uint32_t tiling_mode,
uint32_t stride,
unsigned long size,
unsigned long flags)
{
if (has_userptr((struct mos_bufmgr_gem *)bufmgr))
bufmgr->bo_alloc_userptr = mos_gem_bo_alloc_userptr;
else
bufmgr->bo_alloc_userptr = nullptr;
return mos_bo_alloc_userptr(bufmgr, name, addr,
tiling_mode, stride, size, flags);
}
/**
* Returns a drm_intel_bo wrapping the given buffer object handle.
*
* This can be used when one application needs to pass a buffer object
* to another.
*/
struct mos_linux_bo *
mos_bo_gem_create_from_name(struct mos_bufmgr *bufmgr,
const char *name,
unsigned int handle)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bufmgr;
struct mos_bo_gem *bo_gem;
int ret;
struct drm_gem_open open_arg;
struct drm_i915_gem_get_tiling get_tiling;
drmMMListHead *list;
/* At the moment most applications only have a few named bo.
* For instance, in a DRI client only the render buffers passed
* between X and the client are named. And since X returns the
* alternating names for the front/back buffer a linear search
* provides a sufficiently fast match.
*/
pthread_mutex_lock(&bufmgr_gem->lock);
for (list = bufmgr_gem->named.next;
list != &bufmgr_gem->named;
list = list->next) {
bo_gem = DRMLISTENTRY(struct mos_bo_gem, list, name_list);
if (bo_gem->global_name == handle) {
mos_gem_bo_reference(&bo_gem->bo);
pthread_mutex_unlock(&bufmgr_gem->lock);
return &bo_gem->bo;
}
}
memclear(open_arg);
open_arg.name = handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_GEM_OPEN,
&open_arg);
if (ret != 0) {
MOS_DBG("Couldn't reference %s handle 0x%08x: %s\n",
name, handle, strerror(errno));
pthread_mutex_unlock(&bufmgr_gem->lock);
return nullptr;
}
/* Now see if someone has used a prime handle to get this
* object from the kernel before by looking through the list
* again for a matching gem_handle
*/
for (list = bufmgr_gem->named.next;
list != &bufmgr_gem->named;
list = list->next) {
bo_gem = DRMLISTENTRY(struct mos_bo_gem, list, name_list);
if (bo_gem->gem_handle == open_arg.handle) {
mos_gem_bo_reference(&bo_gem->bo);
pthread_mutex_unlock(&bufmgr_gem->lock);
return &bo_gem->bo;
}
}
bo_gem = (struct mos_bo_gem *)calloc(1, sizeof(*bo_gem));
if (!bo_gem) {
pthread_mutex_unlock(&bufmgr_gem->lock);
return nullptr;
}
bo_gem->bo.size = open_arg.size;
bo_gem->bo.offset = 0;
bo_gem->bo.offset64 = 0;
#if defined(__cplusplus)
bo_gem->bo.virt = nullptr;
#else
bo_gem->bo.virtual = nullptr;
#endif
bo_gem->bo.bufmgr = bufmgr;
bo_gem->name = name;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->gem_handle = open_arg.handle;
bo_gem->bo.handle = open_arg.handle;
bo_gem->global_name = handle;
bo_gem->reusable = false;
bo_gem->use_48b_address_range = bufmgr_gem->bufmgr.bo_use_48b_address_range ? true : false;
memclear(get_tiling);
get_tiling.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_GET_TILING,
&get_tiling);
if (ret != 0) {
mos_gem_bo_unreference(&bo_gem->bo);
pthread_mutex_unlock(&bufmgr_gem->lock);
return nullptr;
}
bo_gem->tiling_mode = get_tiling.tiling_mode;
bo_gem->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
mos_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
pthread_mutex_unlock(&bufmgr_gem->lock);
MOS_DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
return &bo_gem->bo;
}
drm_export void
mos_gem_bo_free(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_gem_close close;
int ret;
if (bo_gem->mem_virtual) {
VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
}
if (bo_gem->gtt_virtual) {
drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
}
if (bo_gem->mem_wc_virtual) {
VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_wc_virtual, 0));
drm_munmap(bo_gem->mem_wc_virtual, bo_gem->bo.size);
}
/* Close this object */
memclear(close);
close.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
if (ret != 0) {
MOS_DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
bo_gem->gem_handle, bo_gem->name, strerror(errno));
}
free(bo);
}
static void
mos_gem_bo_mark_mmaps_incoherent(struct mos_linux_bo *bo)
{
#if HAVE_VALGRIND
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
if (bo_gem->mem_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
if (bo_gem->gtt_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
if (bo_gem->mem_wc_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_wc_virtual, bo->size);
#endif
}
/** Frees all cached buffers significantly older than @time. */
static void
mos_gem_cleanup_bo_cache(struct mos_bufmgr_gem *bufmgr_gem, time_t time)
{
int i;
if (bufmgr_gem->time == time)
return;
for (i = 0; i < bufmgr_gem->num_buckets; i++) {
struct mos_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
while (!DRMLISTEMPTY(&bucket->head)) {
struct mos_bo_gem *bo_gem;
bo_gem = DRMLISTENTRY(struct mos_bo_gem,
bucket->head.next, head);
if (time - bo_gem->free_time <= 1)
break;
DRMLISTDEL(&bo_gem->head);
mos_gem_bo_free(&bo_gem->bo);
}
}
bufmgr_gem->time = time;
}
drm_export void
mos_gem_bo_unreference_final(struct mos_linux_bo *bo, time_t time)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct mos_gem_bo_bucket *bucket;
int i;
/* Unreference all the target buffers */
for (i = 0; i < bo_gem->reloc_count; i++) {
if (bo_gem->reloc_target_info[i].bo != bo) {
mos_gem_bo_unreference_locked_timed(bo_gem->
reloc_target_info[i].bo,
time);
}
}
for (i = 0; i < bo_gem->softpin_target_count; i++)
mos_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i].bo,
time);
bo_gem->reloc_count = 0;
bo_gem->used_as_reloc_target = false;
bo_gem->softpin_target_count = 0;
bo_gem->exec_async = false;
MOS_DBG("bo_unreference final: %d (%s)\n",
bo_gem->gem_handle, bo_gem->name);
bo_gem->pad_to_size = 0;
/* release memory associated with this object */
if (bo_gem->reloc_target_info) {
free(bo_gem->reloc_target_info);
bo_gem->reloc_target_info = nullptr;
}
if (bo_gem->relocs) {
free(bo_gem->relocs);
bo_gem->relocs = nullptr;
}
if (bo_gem->softpin_target) {
free(bo_gem->softpin_target);
bo_gem->softpin_target = nullptr;
bo_gem->softpin_target_size = 0;
}
/* Clear any left-over mappings */
if (bo_gem->map_count) {
MOS_DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
bo_gem->map_count = 0;
mos_gem_bo_mark_mmaps_incoherent(bo);
}
DRMLISTDEL(&bo_gem->name_list);
bucket = mos_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
/* Put the buffer into our internal cache for reuse if we can. */
if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != nullptr &&
mos_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
I915_MADV_DONTNEED)) {
bo_gem->free_time = time;
bo_gem->name = nullptr;
bo_gem->validate_index = -1;
DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
} else {
mos_gem_bo_free(bo);
}
}
static void mos_gem_bo_unreference_locked_timed(struct mos_linux_bo *bo,
time_t time)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
assert(atomic_read(&bo_gem->refcount) > 0);
if (atomic_dec_and_test(&bo_gem->refcount))
mos_gem_bo_unreference_final(bo, time);
}
static void mos_gem_bo_unreference(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
assert(atomic_read(&bo_gem->refcount) > 0);
if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
struct mos_bufmgr_gem *bufmgr_gem =
(struct mos_bufmgr_gem *) bo->bufmgr;
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
pthread_mutex_lock(&bufmgr_gem->lock);
if (atomic_dec_and_test(&bo_gem->refcount)) {
mos_gem_bo_unreference_final(bo, time.tv_sec);
mos_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
}
pthread_mutex_unlock(&bufmgr_gem->lock);
}
}
static int
map_wc(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int ret;
if (bo_gem->is_userptr)
return -EINVAL;
if (!bufmgr_gem->has_ext_mmap)
return -EINVAL;
/* Get a mapping of the buffer if we haven't before. */
if (bo_gem->mem_wc_virtual == nullptr) {
struct drm_i915_gem_mmap mmap_arg;
MOS_DBG("bo_map_wc: mmap %d (%s), map_count=%d\n",
bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo_gem->gem_handle;
/* To indicate the uncached virtual mapping to KMD */
mmap_arg.flags = I915_MMAP_WC;
mmap_arg.size = bo->size;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP,
&mmap_arg);
if (ret != 0) {
ret = -errno;
MOS_DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle,
bo_gem->name, strerror(errno));
return ret;
}
VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
bo_gem->mem_wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
}
#ifdef __cplusplus
bo->virt = bo_gem->mem_wc_virtual;
#else
bo->virtual = bo_gem->mem_wc_virtual;
#endif
MOS_DBG("bo_map_wc: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
bo_gem->mem_wc_virtual);
return 0;
}
/* To be used in a similar way to mmap_gtt */
drm_export int
mos_gem_bo_map_wc(struct mos_linux_bo *bo) {
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
pthread_mutex_lock(&bufmgr_gem->lock);
ret = map_wc(bo);
if (ret) {
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
/* Now move it to the GTT domain so that the GPU and CPU
* caches are flushed and the GPU isn't actively using the
* buffer.
*
* The domain change is done even for the objects which
* are not bounded. For them first the pages are acquired,
* before the domain change.
*/
memclear(set_domain);
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_GTT;
set_domain.write_domain = I915_GEM_DOMAIN_GTT;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
if (ret != 0) {
MOS_DBG("%s:%d: Error setting domain %d: %s\n",
__FILE__, __LINE__, bo_gem->gem_handle,
strerror(errno));
}
mos_gem_bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_wc_virtual, bo->size));
pthread_mutex_unlock(&bufmgr_gem->lock);
return 0;
}
int
mos_gem_bo_map_wc_unsynchronized(struct mos_linux_bo *bo) {
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
#ifdef HAVE_VALGRIND
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
#endif
int ret;
pthread_mutex_lock(&bufmgr_gem->lock);
ret = map_wc(bo);
if (ret == 0) {
mos_gem_bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_wc_virtual, bo->size));
}
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
drm_export int mos_gem_bo_map(struct mos_linux_bo *bo, int write_enable)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
if (bo_gem->is_userptr) {
/* Return the same user ptr */
#ifdef __cplusplus
bo->virt = bo_gem->user_virtual;
#else
bo->virtual = bo_gem->user_virtual;
#endif
return 0;
}
pthread_mutex_lock(&bufmgr_gem->lock);
if (!bo_gem->mem_virtual) {
struct drm_i915_gem_mmap mmap_arg;
MOS_DBG("bo_map: %d (%s), map_count=%d\n",
bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo_gem->gem_handle;
mmap_arg.size = bo->size;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP,
&mmap_arg);
if (ret != 0) {
ret = -errno;
MOS_DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle,
bo_gem->name, strerror(errno));
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
}
MOS_DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
bo_gem->mem_virtual);
#ifdef __cplusplus
bo->virt = bo_gem->mem_virtual;
#else
bo->virtual = bo_gem->mem_virtual;
#endif
memclear(set_domain);
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_CPU;
if (write_enable)
set_domain.write_domain = I915_GEM_DOMAIN_CPU;
else
set_domain.write_domain = 0;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
if (ret != 0) {
MOS_DBG("%s:%d: Error setting to CPU domain %d: %s\n",
__FILE__, __LINE__, bo_gem->gem_handle,
strerror(errno));
}
if (write_enable)
bo_gem->mapped_cpu_write = true;
mos_gem_bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
pthread_mutex_unlock(&bufmgr_gem->lock);
return 0;
}
drm_export int
map_gtt(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int ret;
if (bo_gem->is_userptr)
return -EINVAL;
/* Get a mapping of the buffer if we haven't before. */
if (bo_gem->gtt_virtual == nullptr) {
struct drm_i915_gem_mmap_gtt mmap_arg;
MOS_DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo_gem->gem_handle;
/* Get the fake offset back... */
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP_GTT,
&mmap_arg);
if (ret != 0) {
ret = -errno;
MOS_DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
__FILE__, __LINE__,
bo_gem->gem_handle, bo_gem->name,
strerror(errno));
return ret;
}
/* and mmap it */
bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
MAP_SHARED, bufmgr_gem->fd,
mmap_arg.offset);
if (bo_gem->gtt_virtual == MAP_FAILED) {
bo_gem->gtt_virtual = nullptr;
ret = -errno;
MOS_DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__,
bo_gem->gem_handle, bo_gem->name,
strerror(errno));
return ret;
}
}
#ifdef __cplusplus
bo->virt = bo_gem->gtt_virtual;
#else
bo->virtual = bo_gem->gtt_virtual;
#endif
MOS_DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
bo_gem->gtt_virtual);
return 0;
}
int
mos_gem_bo_map_gtt(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
pthread_mutex_lock(&bufmgr_gem->lock);
ret = map_gtt(bo);
if (ret) {
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
/* Now move it to the GTT domain so that the GPU and CPU
* caches are flushed and the GPU isn't actively using the
* buffer.
*
* The pagefault handler does this domain change for us when
* it has unbound the BO from the GTT, but it's up to us to
* tell it when we're about to use things if we had done
* rendering and it still happens to be bound to the GTT.
*/
memclear(set_domain);
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_GTT;
set_domain.write_domain = I915_GEM_DOMAIN_GTT;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
if (ret != 0) {
MOS_DBG("%s:%d: Error setting domain %d: %s\n",
__FILE__, __LINE__, bo_gem->gem_handle,
strerror(errno));
}
mos_gem_bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
pthread_mutex_unlock(&bufmgr_gem->lock);
return 0;
}
/**
* Performs a mapping of the buffer object like the normal GTT
* mapping, but avoids waiting for the GPU to be done reading from or
* rendering to the buffer.
*
* This is used in the implementation of GL_ARB_map_buffer_range: The
* user asks to create a buffer, then does a mapping, fills some
* space, runs a drawing command, then asks to map it again without
* synchronizing because it guarantees that it won't write over the
* data that the GPU is busy using (or, more specifically, that if it
* does write over the data, it acknowledges that rendering is
* undefined).
*/
int
mos_gem_bo_map_unsynchronized(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
#ifdef HAVE_VALGRIND
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
#endif
int ret;
/* If the CPU cache isn't coherent with the GTT, then use a
* regular synchronized mapping. The problem is that we don't
* track where the buffer was last used on the CPU side in
* terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
* we would potentially corrupt the buffer even when the user
* does reasonable things.
*/
if (!bufmgr_gem->has_llc)
return mos_gem_bo_map_gtt(bo);
pthread_mutex_lock(&bufmgr_gem->lock);
ret = map_gtt(bo);
if (ret == 0) {
mos_gem_bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
}
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
drm_export int mos_gem_bo_unmap(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int ret = 0;
if (bo == nullptr)
return 0;
if (bo_gem->is_userptr)
return 0;
bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
pthread_mutex_lock(&bufmgr_gem->lock);
if (bo_gem->map_count <= 0) {
MOS_DBG("attempted to unmap an unmapped bo\n");
pthread_mutex_unlock(&bufmgr_gem->lock);
/* Preserve the old behaviour of just treating this as a
* no-op rather than reporting the error.
*/
return 0;
}
if (bo_gem->mapped_cpu_write) {
struct drm_i915_gem_sw_finish sw_finish;
/* Cause a flush to happen if the buffer's pinned for
* scanout, so the results show up in a timely manner.
* Unlike GTT set domains, this only does work if the
* buffer should be scanout-related.
*/
memclear(sw_finish);
sw_finish.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SW_FINISH,
&sw_finish);
ret = ret == -1 ? -errno : 0;
bo_gem->mapped_cpu_write = false;
}
/* We need to unmap after every innovation as we cannot track
* an open vma for every bo as that will exhaasut the system
* limits and cause later failures.
*/
if (--bo_gem->map_count == 0) {
mos_gem_bo_mark_mmaps_incoherent(bo);
#ifdef __cplusplus
bo->virt = nullptr;
#else
bo->virtual = nullptr;
#endif
}
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
int
mos_gem_bo_unmap_wc(struct mos_linux_bo *bo)
{
return mos_gem_bo_unmap(bo);
}
int
mos_gem_bo_unmap_gtt(struct mos_linux_bo *bo)
{
return mos_gem_bo_unmap(bo);
}
int mos_gem_bo_get_fake_offset(struct mos_linux_bo *bo)
{
int ret;
struct drm_i915_gem_mmap_gtt mmap_arg;
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
memclear(mmap_arg);
mmap_arg.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP_GTT,
&mmap_arg);
if (ret != 0) {
ret = -errno;
MOS_DBG("%s:%d: Error to get buffer fake offset %d (%s): %s .\n",
__FILE__, __LINE__,
bo_gem->gem_handle, bo_gem->name,
strerror(errno));
}
else {
bo->offset64 = mmap_arg.offset;
}
return ret;
}
drm_export int
mos_gem_bo_subdata(struct mos_linux_bo *bo, unsigned long offset,
unsigned long size, const void *data)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_pwrite pwrite;
int ret;
if (bo_gem->is_userptr)
return -EINVAL;
memclear(pwrite);
pwrite.handle = bo_gem->gem_handle;
pwrite.offset = offset;
pwrite.size = size;
pwrite.data_ptr = (uint64_t) (uintptr_t) data;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PWRITE,
&pwrite);
if (ret != 0) {
ret = -errno;
MOS_DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
(int)size, strerror(errno));
}
return ret;
}
static int
mos_gem_get_pipe_from_crtc_id(struct mos_bufmgr *bufmgr, int crtc_id)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bufmgr;
struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
int ret;
memclear(get_pipe_from_crtc_id);
get_pipe_from_crtc_id.crtc_id = crtc_id;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
&get_pipe_from_crtc_id);
if (ret != 0) {
/* We return -1 here to signal that we don't
* know which pipe is associated with this crtc.
* This lets the caller know that this information
* isn't available; using the wrong pipe for
* vblank waiting can cause the chipset to lock up
*/
return -1;
}
return get_pipe_from_crtc_id.pipe;
}
static int
mos_gem_bo_get_subdata(struct mos_linux_bo *bo, unsigned long offset,
unsigned long size, void *data)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_pread pread;
int ret;
if (bo_gem->is_userptr)
return -EINVAL;
memclear(pread);
pread.handle = bo_gem->gem_handle;
pread.offset = offset;
pread.size = size;
pread.data_ptr = (uint64_t) (uintptr_t) data;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PREAD,
&pread);
if (ret != 0) {
ret = -errno;
MOS_DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
(int)size, strerror(errno));
}
return ret;
}
/** Waits for all GPU rendering with the object to have completed. */
static void
mos_gem_bo_wait_rendering(struct mos_linux_bo *bo)
{
mos_gem_bo_start_gtt_access(bo, 1);
}
/**
* Waits on a BO for the given amount of time.
*
* @bo: buffer object to wait for
* @timeout_ns: amount of time to wait in nanoseconds.
* If value is less than 0, an infinite wait will occur.
*
* Returns 0 if the wait was successful ie. the last batch referencing the
* object has completed within the allotted time. Otherwise some negative return
* value describes the error. Of particular interest is -ETIME when the wait has
* failed to yield the desired result.
*
* Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
* the operation to give up after a certain amount of time. Another subtle
* difference is the internal locking semantics are different (this variant does
* not hold the lock for the duration of the wait). This makes the wait subject
* to a larger userspace race window.
*
* The implementation shall wait until the object is no longer actively
* referenced within a batch buffer at the time of the call. The wait will
* not guarantee that the buffer is re-issued via another thread, or an flinked
* handle. Userspace must make sure this race does not occur if such precision
* is important.
*
* Note that some kernels have broken the inifite wait for negative values
* promise, upgrade to latest stable kernels if this is the case.
*/
drm_export int
mos_gem_bo_wait(struct mos_linux_bo *bo, int64_t timeout_ns)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_wait wait;
int ret;
if (!bufmgr_gem->has_wait_timeout) {
MOS_DBG("%s:%d: Timed wait is not supported. Falling back to "
"infinite wait\n", __FILE__, __LINE__);
if (timeout_ns) {
mos_gem_bo_wait_rendering(bo);
return 0;
} else {
return mos_gem_bo_busy(bo) ? -ETIME : 0;
}
}
memclear(wait);
wait.bo_handle = bo_gem->gem_handle;
wait.timeout_ns = timeout_ns;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
if (ret == -1)
return -errno;
return ret;
}
/**
* Sets the object to the GTT read and possibly write domain, used by the X
* 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
*
* In combination with drm_intel_gem_bo_pin() and manual fence management, we
* can do tiled pixmaps this way.
*/
void
mos_gem_bo_start_gtt_access(struct mos_linux_bo *bo, int write_enable)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
memclear(set_domain);
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_GTT;
set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
if (ret != 0) {
MOS_DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle,
set_domain.read_domains, set_domain.write_domain,
strerror(errno));
}
}
static void
mos_bufmgr_gem_destroy(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bufmgr;
struct drm_gem_close close_bo;
int i, ret;
free(bufmgr_gem->exec2_objects);
free(bufmgr_gem->exec_objects);
free(bufmgr_gem->exec_bos);
pthread_mutex_destroy(&bufmgr_gem->lock);
/* Free any cached buffer objects we were going to reuse */
for (i = 0; i < bufmgr_gem->num_buckets; i++) {
struct mos_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
struct mos_bo_gem *bo_gem;
while (!DRMLISTEMPTY(&bucket->head)) {
bo_gem = DRMLISTENTRY(struct mos_bo_gem,
bucket->head.next, head);
DRMLISTDEL(&bo_gem->head);
mos_gem_bo_free(&bo_gem->bo);
}
}
/* Release userptr bo kept hanging around for optimisation. */
if (bufmgr_gem->userptr_active.ptr) {
memclear(close_bo);
close_bo.handle = bufmgr_gem->userptr_active.handle;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
free(bufmgr_gem->userptr_active.ptr);
if (ret)
fprintf(stderr,
"Failed to release test userptr object! (%d) "
"i915 kernel driver may not be sane!\n", errno);
}
free(bufmgr);
}
/**
* Adds the target buffer to the validation list and adds the relocation
* to the reloc_buffer's relocation list.
*
* The relocation entry at the given offset must already contain the
* precomputed relocation value, because the kernel will optimize out
* the relocation entry write when the buffer hasn't moved from the
* last known offset in target_bo.
*/
static int
do_bo_emit_reloc(struct mos_linux_bo *bo, uint32_t offset,
struct mos_linux_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain,
bool need_fence)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct mos_bo_gem *target_bo_gem = (struct mos_bo_gem *) target_bo;
bool fenced_command;
if (bo_gem->has_error)
return -ENOMEM;
if (target_bo_gem->has_error) {
bo_gem->has_error = true;
return -ENOMEM;
}
/* We never use HW fences for rendering on 965+ */
need_fence = false;
fenced_command = need_fence;
if (target_bo_gem->tiling_mode == I915_TILING_NONE)
need_fence = false;
/* Create a new relocation list if needed */
if (bo_gem->relocs == nullptr && mos_setup_reloc_list(bo))
return -ENOMEM;
/* Check overflow */
assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
/* Check args */
assert(offset <= bo->size - 4);
assert((write_domain & (write_domain - 1)) == 0);
/* An object needing a fence is a tiled buffer, so it won't have
* relocs to other buffers.
*/
if (need_fence) {
assert(target_bo_gem->reloc_count == 0);
target_bo_gem->reloc_tree_fences = 1;
}
/* Make sure that we're not adding a reloc to something whose size has
* already been accounted for.
*/
assert(!bo_gem->used_as_reloc_target);
if (target_bo_gem != bo_gem) {
target_bo_gem->used_as_reloc_target = true;
bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
}
bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
if (target_bo != bo)
mos_gem_bo_reference(target_bo);
if (fenced_command)
bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
DRM_INTEL_RELOC_FENCE;
else
bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
bo_gem->relocs[bo_gem->reloc_count].offset = offset;
bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
bo_gem->relocs[bo_gem->reloc_count].target_handle =
target_bo_gem->gem_handle;
bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
bo_gem->reloc_count++;
return 0;
}
static int
do_bo_emit_reloc2(struct mos_linux_bo *bo, uint32_t offset,
struct mos_linux_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain,
bool need_fence, uint64_t presumed_offset)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct mos_bo_gem *target_bo_gem = (struct mos_bo_gem *) target_bo;
if (bo_gem->has_error)
return -ENOMEM;
if (target_bo_gem->has_error) {
bo_gem->has_error = true;
return -ENOMEM;
}
/* Create a new relocation list if needed */
if (bo_gem->relocs == nullptr && mos_setup_reloc_list(bo))
return -ENOMEM;
/* Check overflow */
assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
/* Check args */
assert(offset <= bo->size - 4);
assert((write_domain & (write_domain - 1)) == 0);
/* An object needing a fence is a tiled buffer, so it won't have
* relocs to other buffers.
*/
if (need_fence) {
assert(target_bo_gem->reloc_count == 0);
target_bo_gem->reloc_tree_fences = 1;
}
/* Make sure that we're not adding a reloc to something whose size has
* already been accounted for.
*/
assert(!bo_gem->used_as_reloc_target);
if (target_bo_gem != bo_gem) {
target_bo_gem->used_as_reloc_target = true;
bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
}
int flags = 0;
if (target_bo_gem->pad_to_size)
flags |= EXEC_OBJECT_PAD_TO_SIZE;
if (target_bo_gem->use_48b_address_range)
flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
if (target_bo_gem->exec_async)
flags |= EXEC_OBJECT_ASYNC;
if (target_bo != bo)
mos_gem_bo_reference(target_bo);
bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
bo_gem->reloc_target_info[bo_gem->reloc_count].flags = flags;
bo_gem->relocs[bo_gem->reloc_count].offset = offset;
bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
bo_gem->relocs[bo_gem->reloc_count].target_handle =
target_bo_gem->gem_handle;
bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
bo_gem->relocs[bo_gem->reloc_count].presumed_offset = presumed_offset;
bo_gem->reloc_count++;
return 0;
}
static void
mos_gem_bo_use_48b_address_range(struct mos_linux_bo *bo, uint32_t enable)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
bo_gem->use_48b_address_range = enable;
}
static void
mos_gem_bo_set_object_async(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *)bo;
bo_gem->exec_async = true;
}
static void
mos_gem_bo_set_exec_object_async(struct mos_linux_bo *bo, struct mos_linux_bo *target_bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct mos_bo_gem *target_bo_gem = (struct mos_bo_gem *) target_bo;
int i;
for (i = 0; i < bo_gem->reloc_count; i++)
{
if (bo_gem->reloc_target_info[i].bo == target_bo)
{
bo_gem->reloc_target_info[i].flags |= EXEC_OBJECT_ASYNC;
break;
}
}
for (i = 0; i < bo_gem->softpin_target_count; i++)
{
if (bo_gem->softpin_target[i].bo == target_bo)
{
bo_gem->softpin_target[i].flags |= EXEC_OBJECT_ASYNC;
break;
}
}
}
static int
mos_gem_bo_add_softpin_target(struct mos_linux_bo *bo, struct mos_linux_bo *target_bo, bool write_flag)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct mos_bo_gem *target_bo_gem = (struct mos_bo_gem *) target_bo;
if (bo_gem->has_error)
return -ENOMEM;
if (target_bo_gem->has_error) {
bo_gem->has_error = true;
return -ENOMEM;
}
if (!target_bo_gem->is_softpin)
return -EINVAL;
if (target_bo_gem == bo_gem)
return -EINVAL;
if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
int new_size = bo_gem->softpin_target_size * 2;
if (new_size == 0)
new_size = bufmgr_gem->max_relocs;
bo_gem->softpin_target = (struct mos_softpin_target *)realloc(bo_gem->softpin_target, new_size *
sizeof(struct mos_softpin_target));
if (!bo_gem->softpin_target)
return -ENOMEM;
bo_gem->softpin_target_size = new_size;
}
int flags = EXEC_OBJECT_PINNED;
if (target_bo_gem->pad_to_size)
flags |= EXEC_OBJECT_PAD_TO_SIZE;
if (target_bo_gem->use_48b_address_range)
flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
if (target_bo_gem->exec_async)
flags |= EXEC_OBJECT_ASYNC;
if (write_flag)
flags |= EXEC_OBJECT_WRITE;
bo_gem->softpin_target[bo_gem->softpin_target_count].bo = target_bo;
bo_gem->softpin_target[bo_gem->softpin_target_count].flags = flags;
mos_gem_bo_reference(target_bo);
bo_gem->softpin_target_count++;
return 0;
}
static int
mos_gem_bo_pad_to_size(struct mos_linux_bo *bo, uint64_t pad_to_size)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
if (pad_to_size && pad_to_size < bo->size)
return -EINVAL;
bo_gem->pad_to_size = pad_to_size;
return 0;
}
static int
mos_gem_bo_emit_reloc(struct mos_linux_bo *bo, uint32_t offset,
struct mos_linux_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bo->bufmgr;
return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
read_domains, write_domain,
!bufmgr_gem->fenced_relocs);
}
static int
mos_gem_bo_emit_reloc2(struct mos_linux_bo *bo, uint32_t offset,
struct mos_linux_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain,
uint64_t presumed_offset)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bo->bufmgr;
return do_bo_emit_reloc2(bo, offset, target_bo, target_offset,
read_domains, write_domain,
false,
presumed_offset);
}
static int
mos_gem_bo_emit_reloc_fence(struct mos_linux_bo *bo, uint32_t offset,
struct mos_linux_bo *target_bo,
uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain)
{
return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
read_domains, write_domain, true);
}
int
mos_gem_bo_get_reloc_count(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
return bo_gem->reloc_count;
}
/**
* Removes existing relocation entries in the BO after "start".
*
* This allows a user to avoid a two-step process for state setup with
* counting up all the buffer objects and doing a
* drm_intel_bufmgr_check_aperture_space() before emitting any of the
* relocations for the state setup. Instead, save the state of the
* batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
* state, and then check if it still fits in the aperture.
*
* Any further drm_intel_bufmgr_check_aperture_space() queries
* involving this buffer in the tree are undefined after this call.
*
* This also removes all softpinned targets being referenced by the BO.
*/
drm_export void
mos_gem_bo_clear_relocs(struct mos_linux_bo *bo, int start)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int i;
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
assert(bo_gem->reloc_count >= start);
/* Unreference the cleared target buffers */
pthread_mutex_lock(&bufmgr_gem->lock);
for (i = start; i < bo_gem->reloc_count; i++) {
struct mos_bo_gem *target_bo_gem = (struct mos_bo_gem *) bo_gem->reloc_target_info[i].bo;
if (&target_bo_gem->bo != bo) {
bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
target_bo_gem->used_as_reloc_target = false;
target_bo_gem->reloc_count = 0;
mos_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
time.tv_sec);
}
}
bo_gem->reloc_count = start;
for (i = 0; i < bo_gem->softpin_target_count; i++) {
struct mos_bo_gem *target_bo_gem = (struct mos_bo_gem *) bo_gem->softpin_target[i].bo;
mos_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
}
bo_gem->softpin_target_count = 0;
pthread_mutex_unlock(&bufmgr_gem->lock);
}
/**
* Walk the tree of relocations rooted at BO and accumulate the list of
* validations to be performed and update the relocation buffers with
* index values into the validation list.
*/
static void
mos_gem_bo_process_reloc(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int i;
if (bo_gem->relocs == nullptr)
return;
for (i = 0; i < bo_gem->reloc_count; i++) {
struct mos_linux_bo *target_bo = bo_gem->reloc_target_info[i].bo;
if (target_bo == bo)
continue;
mos_gem_bo_mark_mmaps_incoherent(bo);
/* Continue walking the tree depth-first. */
mos_gem_bo_process_reloc(target_bo);
/* Add the target to the validate list */
mos_add_validate_buffer(target_bo);
}
}
static void
mos_gem_bo_process_reloc2(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *)bo;
int i;
if (bo_gem->relocs == nullptr && bo_gem->softpin_target == nullptr)
return;
for (i = 0; i < bo_gem->reloc_count; i++) {
struct mos_linux_bo *target_bo = bo_gem->reloc_target_info[i].bo;
int need_fence;
if (target_bo == bo)
continue;
mos_gem_bo_mark_mmaps_incoherent(bo);
/* Continue walking the tree depth-first. */
mos_gem_bo_process_reloc2(target_bo);
/* Add the target to the validate list */
mos_add_reloc_objects(bo_gem->reloc_target_info[i]);
}
for (i = 0; i < bo_gem->softpin_target_count; i++) {
struct mos_linux_bo *target_bo = bo_gem->softpin_target[i].bo;
if (target_bo == bo)
continue;
mos_gem_bo_mark_mmaps_incoherent(bo);
mos_gem_bo_process_reloc2(target_bo);
mos_add_softpin_objects(bo_gem->softpin_target[i]);
}
}
static void
mos_update_buffer_offsets(struct mos_bufmgr_gem *bufmgr_gem)
{
int i;
for (i = 0; i < bufmgr_gem->exec_count; i++) {
struct mos_linux_bo *bo = bufmgr_gem->exec_bos[i];
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
/* Update the buffer offset */
if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
MOS_DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
bo_gem->gem_handle, bo_gem->name,
upper_32_bits(bo->offset64),
lower_32_bits(bo->offset64),
upper_32_bits(bufmgr_gem->exec_objects[i].offset),
lower_32_bits(bufmgr_gem->exec_objects[i].offset));
bo->offset64 = bufmgr_gem->exec_objects[i].offset;
bo->offset = bufmgr_gem->exec_objects[i].offset;
}
}
}
static void
mos_update_buffer_offsets2 (struct mos_bufmgr_gem *bufmgr_gem, mos_linux_context *ctx, mos_linux_bo *cmd_bo)
{
int i;
for (i = 0; i < bufmgr_gem->exec_count; i++) {
struct mos_linux_bo *bo = bufmgr_gem->exec_bos[i];
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *)bo;
/* Update the buffer offset */
if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
/* If we're seeing softpinned object here it means that the kernel
* has relocated our object... Indicating a programming error
*/
assert(!bo_gem->is_softpin);
MOS_DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
bo_gem->gem_handle, bo_gem->name,
upper_32_bits(bo->offset64),
lower_32_bits(bo->offset64),
upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
bo->offset = bufmgr_gem->exec2_objects[i].offset;
}
if (cmd_bo != bo) {
auto item_ctx = ctx->pOsContext->contextOffsetList.begin();
for (; item_ctx != ctx->pOsContext->contextOffsetList.end(); item_ctx++) {
if (item_ctx->intel_context == ctx && item_ctx->target_bo == bo) {
item_ctx->offset64 = bo->offset64;
break;
}
}
if ( item_ctx == ctx->pOsContext->contextOffsetList.end()) {
struct MOS_CONTEXT_OFFSET newContext = {ctx,
bo,
bo->offset64};
ctx->pOsContext->contextOffsetList.push_back(newContext);
}
}
}
}
drm_export int
mos_gem_bo_exec(struct mos_linux_bo *bo, int used,
drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct drm_i915_gem_execbuffer execbuf;
int ret, i;
if (to_bo_gem(bo)->has_error)
return -ENOMEM;
pthread_mutex_lock(&bufmgr_gem->lock);
/* Update indices and set up the validate list. */
mos_gem_bo_process_reloc(bo);
/* Add the batch buffer to the validation list. There are no
* relocations pointing to it.
*/
mos_add_validate_buffer(bo);
memclear(execbuf);
execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
execbuf.buffer_count = bufmgr_gem->exec_count;
execbuf.batch_start_offset = 0;
execbuf.batch_len = used;
execbuf.cliprects_ptr = (uintptr_t) cliprects;
execbuf.num_cliprects = num_cliprects;
execbuf.DR1 = 0;
execbuf.DR4 = DR4;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_EXECBUFFER,
&execbuf);
if (ret != 0) {
ret = -errno;
if (errno == ENOSPC) {
MOS_DBG("Execbuffer fails to pin. "
"Estimate: %u. Actual: %u. Available: %u\n",
mos_gem_estimate_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->
exec_count),
mos_gem_compute_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->
exec_count),
(unsigned int)bufmgr_gem->gtt_size);
}
}
mos_update_buffer_offsets(bufmgr_gem);
if (bufmgr_gem->bufmgr.debug)
mos_gem_dump_validation_list(bufmgr_gem);
for (i = 0; i < bufmgr_gem->exec_count; i++) {
struct mos_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
bo_gem->idle = false;
/* Disconnect the buffer from the validate list */
bo_gem->validate_index = -1;
bufmgr_gem->exec_bos[i] = nullptr;
}
bufmgr_gem->exec_count = 0;
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
drm_export int
do_exec2(struct mos_linux_bo *bo, int used, struct mos_linux_context *ctx,
drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
unsigned int flags, int *fence
)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bo->bufmgr;
struct drm_i915_gem_execbuffer2 execbuf;
int ret = 0;
int i;
if (to_bo_gem(bo)->has_error)
return -ENOMEM;
switch (flags & 0x7) {
default:
return -EINVAL;
case I915_EXEC_BLT:
if (!bufmgr_gem->has_blt)
return -EINVAL;
break;
case I915_EXEC_BSD:
if (!bufmgr_gem->has_bsd)
return -EINVAL;
break;
case I915_EXEC_VEBOX:
if (!bufmgr_gem->has_vebox)
return -EINVAL;
break;
case I915_EXEC_RENDER:
case I915_EXEC_DEFAULT:
break;
}
pthread_mutex_lock(&bufmgr_gem->lock);
/* Update indices and set up the validate list. */
mos_gem_bo_process_reloc2(bo);
/* Add the batch buffer to the validation list. There are no relocations
* pointing to it.
*/
mos_add_validate_buffer2(bo, 0);
memclear(execbuf);
execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
execbuf.buffer_count = bufmgr_gem->exec_count;
execbuf.batch_start_offset = 0;
execbuf.batch_len = used;
execbuf.cliprects_ptr = (uintptr_t)cliprects;
execbuf.num_cliprects = num_cliprects;
execbuf.DR1 = 0;
execbuf.DR4 = DR4;
execbuf.flags = flags;
if (ctx == nullptr)
i915_execbuffer2_set_context_id(execbuf, 0);
else
i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
execbuf.rsvd2 = 0;
if(flags & I915_EXEC_FENCE_SUBMIT)
{
execbuf.rsvd2 = *fence;
}
if(flags & I915_EXEC_FENCE_OUT)
{
execbuf.rsvd2 = -1;
}
if (bufmgr_gem->no_exec)
goto skip_execution;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_EXECBUFFER2_WR,
&execbuf);
if (ret != 0) {
ret = -errno;
if (ret == -ENOSPC) {
MOS_DBG("Execbuffer fails to pin. "
"Estimate: %u. Actual: %u. Available: %u\n",
mos_gem_estimate_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->exec_count),
mos_gem_compute_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->exec_count),
(unsigned int) bufmgr_gem->gtt_size);
}
}
if (ctx != nullptr)
{
mos_update_buffer_offsets2(bufmgr_gem, ctx, bo);
}
if(flags & I915_EXEC_FENCE_OUT)
{
*fence = execbuf.rsvd2 >> 32;
}
skip_execution:
if (bufmgr_gem->bufmgr.debug)
mos_gem_dump_validation_list(bufmgr_gem);
for (i = 0; i < bufmgr_gem->exec_count; i++) {
struct mos_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
bo_gem->idle = false;
/* Disconnect the buffer from the validate list */
bo_gem->validate_index = -1;
bufmgr_gem->exec_bos[i] = nullptr;
}
bufmgr_gem->exec_count = 0;
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
drm_export int
do_exec3(struct mos_linux_bo **bo, int num_bo, struct mos_linux_context *ctx,
drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
unsigned int flags, int *fence
)
{
return 0;
}
static int
mos_gem_bo_exec2(struct mos_linux_bo *bo, int used,
drm_clip_rect_t *cliprects, int num_cliprects,
int DR4)
{
return do_exec2(bo, used, nullptr, cliprects, num_cliprects, DR4,
I915_EXEC_RENDER, nullptr);
}
static int
mos_gem_bo_mrb_exec2(struct mos_linux_bo *bo, int used,
drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
unsigned int flags)
{
return do_exec2(bo, used, nullptr, cliprects, num_cliprects, DR4,
flags, nullptr);
}
int
mos_gem_bo_context_exec(struct mos_linux_bo *bo, struct mos_linux_context *ctx,
int used, unsigned int flags)
{
return do_exec2(bo, used, ctx, nullptr, 0, 0, flags, nullptr);
}
int
mos_gem_bo_context_exec2(struct mos_linux_bo *bo, int used, struct mos_linux_context *ctx,
drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
unsigned int flags, int *fence)
{
return do_exec2(bo, used, ctx, cliprects, num_cliprects, DR4,
flags, fence);
}
int
mos_gem_bo_context_exec3(struct mos_linux_bo **bo, int num_bo, struct mos_linux_context *ctx,
struct drm_clip_rect *cliprects, int num_cliprects, int DR4,
unsigned int flags, int *fence)
{
return do_exec3(bo, num_bo, ctx, cliprects, num_cliprects, DR4,
flags, fence);
}
static int
mos_gem_bo_pin(struct mos_linux_bo *bo, uint32_t alignment)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_pin pin;
int ret;
memclear(pin);
pin.handle = bo_gem->gem_handle;
pin.alignment = alignment;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PIN,
&pin);
if (ret != 0)
return -errno;
bo->offset64 = pin.offset;
bo->offset = pin.offset;
return 0;
}
static int
mos_gem_bo_unpin(struct mos_linux_bo *bo)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_unpin unpin;
int ret;
memclear(unpin);
unpin.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
if (ret != 0)
return -errno;
return 0;
}
static int
mos_gem_bo_set_tiling_internal(struct mos_linux_bo *bo,
uint32_t tiling_mode,
uint32_t stride)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
struct drm_i915_gem_set_tiling set_tiling;
int ret;
if (bo_gem->global_name == 0 &&
tiling_mode == bo_gem->tiling_mode &&
stride == bo_gem->stride)
return 0;
memset(&set_tiling, 0, sizeof(set_tiling));
do {
/* set_tiling is slightly broken and overwrites the
* input on the error path, so we have to open code
* rmIoctl.
*/
set_tiling.handle = bo_gem->gem_handle;
set_tiling.tiling_mode = tiling_mode;
set_tiling.stride = stride;
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_TILING,
&set_tiling);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
if (ret == -1)
return -errno;
bo_gem->tiling_mode = set_tiling.tiling_mode;
bo_gem->swizzle_mode = set_tiling.swizzle_mode;
bo_gem->stride = set_tiling.stride;
return 0;
}
static int
mos_gem_bo_set_tiling(struct mos_linux_bo *bo, uint32_t * tiling_mode,
uint32_t stride)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int ret;
/* Tiling with userptr surfaces is not supported
* on all hardware so refuse it for time being.
*/
if (bo_gem->is_userptr)
return -EINVAL;
/* Linear buffers have no stride. By ensuring that we only ever use
* stride 0 with linear buffers, we simplify our code.
*/
if (*tiling_mode == I915_TILING_NONE)
stride = 0;
ret = mos_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
if (ret == 0)
mos_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
*tiling_mode = bo_gem->tiling_mode;
return ret;
}
static int
mos_gem_bo_get_tiling(struct mos_linux_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
*tiling_mode = bo_gem->tiling_mode;
*swizzle_mode = bo_gem->swizzle_mode;
return 0;
}
static int
mos_gem_bo_set_softpin_offset(struct mos_linux_bo *bo, uint64_t offset)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
bo_gem->is_softpin = true;
bo->offset64 = offset;
bo->offset = offset;
return 0;
}
static int
mos_gem_bo_set_softpin(MOS_LINUX_BO *bo)
{
int ret = 0;
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
uint64_t offset = bufmgr_gem->head_offset;
// if offset is over 48b address range, return error
if (offset > MEMZONE_TOTAL)
{
MOS_DBG("softpin failed: address over 48b range");
return -EINVAL;
}
if (!mos_gem_bo_is_softpin(bo))
{
// update the head_offset, need to be 64K aligned
bufmgr_gem->head_offset += MOS_ALIGN_CEIL(bo->size, PAGE_SIZE_64K);
// softpin the BO to the given offset
ret = mos_gem_bo_set_softpin_offset(bo, offset);
if (ret == 0)
{
ret = mos_bo_use_48b_address_range(bo, 1);
}
return ret;
}
return ret;
}
struct mos_linux_bo *
mos_bo_gem_create_from_prime(struct mos_bufmgr *bufmgr, int prime_fd, int size)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bufmgr;
int ret;
uint32_t handle;
struct mos_bo_gem *bo_gem;
struct drm_i915_gem_get_tiling get_tiling;
drmMMListHead *list;
pthread_mutex_lock(&bufmgr_gem->lock);
ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
if (ret) {
MOS_DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
pthread_mutex_unlock(&bufmgr_gem->lock);
return nullptr;
}
/*
* See if the kernel has already returned this buffer to us. Just as
* for named buffers, we must not create two bo's pointing at the same
* kernel object
*/
for (list = bufmgr_gem->named.next;
list != &bufmgr_gem->named;
list = list->next) {
bo_gem = DRMLISTENTRY(struct mos_bo_gem, list, name_list);
if (bo_gem->gem_handle == handle) {
mos_gem_bo_reference(&bo_gem->bo);
pthread_mutex_unlock(&bufmgr_gem->lock);
return &bo_gem->bo;
}
}
bo_gem = (struct mos_bo_gem *)calloc(1, sizeof(*bo_gem));
if (!bo_gem) {
pthread_mutex_unlock(&bufmgr_gem->lock);
return nullptr;
}
/* Determine size of bo. The fd-to-handle ioctl really should
* return the size, but it doesn't. If we have kernel 3.12 or
* later, we can lseek on the prime fd to get the size. Older
* kernels will just fail, in which case we fall back to the
* provided (estimated or guess size). */
ret = lseek(prime_fd, 0, SEEK_END);
if (ret != -1)
bo_gem->bo.size = ret;
else
bo_gem->bo.size = size;
bo_gem->bo.handle = handle;
bo_gem->bo.bufmgr = bufmgr;
bo_gem->gem_handle = handle;
atomic_set(&bo_gem->refcount, 1);
bo_gem->name = "prime";
bo_gem->validate_index = -1;
bo_gem->reloc_tree_fences = 0;
bo_gem->used_as_reloc_target = false;
bo_gem->has_error = false;
bo_gem->reusable = false;
bo_gem->use_48b_address_range = bufmgr_gem->bufmgr.bo_use_48b_address_range ? true : false;
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
pthread_mutex_unlock(&bufmgr_gem->lock);
memclear(get_tiling);
get_tiling.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_GET_TILING,
&get_tiling);
if (ret != 0) {
MOS_DBG("create_from_prime: failed to get tiling: %s\n", strerror(errno));
mos_gem_bo_unreference(&bo_gem->bo);
return nullptr;
}
bo_gem->tiling_mode = get_tiling.tiling_mode;
bo_gem->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
mos_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
return &bo_gem->bo;
}
int
mos_bo_gem_export_to_prime(struct mos_linux_bo *bo, int *prime_fd)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
pthread_mutex_lock(&bufmgr_gem->lock);
if (DRMLISTEMPTY(&bo_gem->name_list))
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
pthread_mutex_unlock(&bufmgr_gem->lock);
if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
DRM_CLOEXEC, prime_fd) != 0)
return -errno;
bo_gem->reusable = false;
return 0;
}
static int
mos_gem_bo_flink(struct mos_linux_bo *bo, uint32_t * name)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bo->bufmgr;
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int ret;
if (!bo_gem->global_name) {
struct drm_gem_flink flink;
memclear(flink);
flink.handle = bo_gem->gem_handle;
pthread_mutex_lock(&bufmgr_gem->lock);
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
if (ret != 0) {
pthread_mutex_unlock(&bufmgr_gem->lock);
return -errno;
}
bo_gem->global_name = flink.name;
bo_gem->reusable = false;
if (DRMLISTEMPTY(&bo_gem->name_list))
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
pthread_mutex_unlock(&bufmgr_gem->lock);
}
*name = bo_gem->global_name;
return 0;
}
/**
* Enables unlimited caching of buffer objects for reuse.
*
* This is potentially very memory expensive, as the cache at each bucket
* size is only bounded by how many buffers of that size we've managed to have
* in flight at once.
*/
void
mos_bufmgr_gem_enable_reuse(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *) bufmgr;
bufmgr_gem->bo_reuse = true;
}
/**
* Enable use of fenced reloc type.
*
* New code should enable this to avoid unnecessary fence register
* allocation. If this option is not enabled, all relocs will have fence
* register allocated.
*/
void
mos_bufmgr_gem_enable_fenced_relocs(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
if (bufmgr_gem->bufmgr.bo_exec == mos_gem_bo_exec2)
bufmgr_gem->fenced_relocs = true;
}
/**
* Return the additional aperture space required by the tree of buffer objects
* rooted at bo.
*/
static int
mos_gem_bo_get_aperture_space(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int i;
int total = 0;
if (bo == nullptr || bo_gem->included_in_check_aperture)
return 0;
total += bo->size;
bo_gem->included_in_check_aperture = true;
for (i = 0; i < bo_gem->reloc_count; i++)
total +=
mos_gem_bo_get_aperture_space(bo_gem->
reloc_target_info[i].bo);
return total;
}
/**
* Count the number of buffers in this list that need a fence reg
*
* If the count is greater than the number of available regs, we'll have
* to ask the caller to resubmit a batch with fewer tiled buffers.
*
* This function over-counts if the same buffer is used multiple times.
*/
static unsigned int
mos_gem_total_fences(struct mos_linux_bo ** bo_array, int count)
{
int i;
unsigned int total = 0;
for (i = 0; i < count; i++) {
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo_array[i];
if (bo_gem == nullptr)
continue;
total += bo_gem->reloc_tree_fences;
}
return total;
}
/**
* Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
* for the next drm_intel_bufmgr_check_aperture_space() call.
*/
static void
mos_gem_bo_clear_aperture_space_flag(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int i;
if (bo == nullptr || !bo_gem->included_in_check_aperture)
return;
bo_gem->included_in_check_aperture = false;
for (i = 0; i < bo_gem->reloc_count; i++)
mos_gem_bo_clear_aperture_space_flag(bo_gem->
reloc_target_info[i].bo);
}
/**
* Return a conservative estimate for the amount of aperture required
* for a collection of buffers. This may double-count some buffers.
*/
static unsigned int
mos_gem_estimate_batch_space(struct mos_linux_bo **bo_array, int count)
{
int i;
unsigned int total = 0;
for (i = 0; i < count; i++) {
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo_array[i];
if (bo_gem != nullptr)
total += bo_gem->reloc_tree_size;
}
return total;
}
/**
* Return the amount of aperture needed for a collection of buffers.
* This avoids double counting any buffers, at the cost of looking
* at every buffer in the set.
*/
static unsigned int
mos_gem_compute_batch_space(struct mos_linux_bo **bo_array, int count)
{
int i;
unsigned int total = 0;
for (i = 0; i < count; i++) {
total += mos_gem_bo_get_aperture_space(bo_array[i]);
/* For the first buffer object in the array, we get an
* accurate count back for its reloc_tree size (since nothing
* had been flagged as being counted yet). We can save that
* value out as a more conservative reloc_tree_size that
* avoids double-counting target buffers. Since the first
* buffer happens to usually be the batch buffer in our
* callers, this can pull us back from doing the tree
* walk on every new batch emit.
*/
if (i == 0) {
struct mos_bo_gem *bo_gem =
(struct mos_bo_gem *) bo_array[i];
bo_gem->reloc_tree_size = total;
}
}
for (i = 0; i < count; i++)
mos_gem_bo_clear_aperture_space_flag(bo_array[i]);
return total;
}
/**
* Return -1 if the batchbuffer should be flushed before attempting to
* emit rendering referencing the buffers pointed to by bo_array.
*
* This is required because if we try to emit a batchbuffer with relocations
* to a tree of buffers that won't simultaneously fit in the aperture,
* the rendering will return an error at a point where the software is not
* prepared to recover from it.
*
* However, we also want to emit the batchbuffer significantly before we reach
* the limit, as a series of batchbuffers each of which references buffers
* covering almost all of the aperture means that at each emit we end up
* waiting to evict a buffer from the last rendering, and we get synchronous
* performance. By emitting smaller batchbuffers, we eat some CPU overhead to
* get better parallelism.
*/
static int
mos_gem_check_aperture_space(struct mos_linux_bo **bo_array, int count)
{
struct mos_bufmgr_gem *bufmgr_gem =
(struct mos_bufmgr_gem *) bo_array[0]->bufmgr;
unsigned int total = 0;
unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
int total_fences;
/* Check for fence reg constraints if necessary */
if (bufmgr_gem->available_fences) {
total_fences = mos_gem_total_fences(bo_array, count);
if (total_fences > bufmgr_gem->available_fences)
return -ENOSPC;
}
total = mos_gem_estimate_batch_space(bo_array, count);
if (total > threshold)
total = mos_gem_compute_batch_space(bo_array, count);
if (total > threshold) {
MOS_DBG("check_space: overflowed available aperture, "
"%dkb vs %dkb\n",
total / 1024, (int)bufmgr_gem->gtt_size / 1024);
return -ENOSPC;
} else {
MOS_DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
(int)bufmgr_gem->gtt_size / 1024);
return 0;
}
}
/*
* Disable buffer reuse for objects which are shared with the kernel
* as scanout buffers
*/
static int
mos_gem_bo_disable_reuse(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
bo_gem->reusable = false;
return 0;
}
static int
mos_gem_bo_is_reusable(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
return bo_gem->reusable;
}
static int
_mos_gem_bo_references(struct mos_linux_bo *bo, struct mos_linux_bo *target_bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
int i;
for (i = 0; i < bo_gem->reloc_count; i++) {
if (bo_gem->reloc_target_info[i].bo == target_bo)
return 1;
if (bo == bo_gem->reloc_target_info[i].bo)
continue;
if (_mos_gem_bo_references(bo_gem->reloc_target_info[i].bo,
target_bo))
return 1;
}
for (i = 0; i< bo_gem->softpin_target_count; i++) {
if (bo_gem->softpin_target[i].bo == target_bo)
return 1;
if (_mos_gem_bo_references(bo_gem->softpin_target[i].bo, target_bo))
return 1;
}
return 0;
}
/** Return true if target_bo is referenced by bo's relocation tree. */
static int
mos_gem_bo_references(struct mos_linux_bo *bo, struct mos_linux_bo *target_bo)
{
struct mos_bo_gem *target_bo_gem = (struct mos_bo_gem *) target_bo;
if (bo == nullptr || target_bo == nullptr)
return 0;
if (target_bo_gem->used_as_reloc_target)
return _mos_gem_bo_references(bo, target_bo);
return 0;
}
static void
add_bucket(struct mos_bufmgr_gem *bufmgr_gem, int size)
{
unsigned int i = bufmgr_gem->num_buckets;
assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
bufmgr_gem->cache_bucket[i].size = size;
bufmgr_gem->num_buckets++;
}
static void
init_cache_buckets(struct mos_bufmgr_gem *bufmgr_gem)
{
unsigned long size, cache_max_size = 64 * 1024 * 1024;
/* OK, so power of two buckets was too wasteful of memory.
* Give 3 other sizes between each power of two, to hopefully
* cover things accurately enough. (The alternative is
* probably to just go for exact matching of sizes, and assume
* that for things like composited window resize the tiled
* width/height alignment and rounding of sizes to pages will
* get us useful cache hit rates anyway)
*/
add_bucket(bufmgr_gem, 4096);
add_bucket(bufmgr_gem, 4096 * 2);
add_bucket(bufmgr_gem, 4096 * 3);
/* Initialize the linked lists for BO reuse cache. */
for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
add_bucket(bufmgr_gem, size);
add_bucket(bufmgr_gem, size + size * 1 / 4);
add_bucket(bufmgr_gem, size + size * 2 / 4);
add_bucket(bufmgr_gem, size + size * 3 / 4);
}
}
/**
* Get the PCI ID for the device. This can be overridden by setting the
* INTEL_DEVID_OVERRIDE environment variable to the desired ID.
*/
static int
get_pci_device_id(struct mos_bufmgr_gem *bufmgr_gem)
{
char *devid_override;
int devid = 0;
int ret;
drm_i915_getparam_t gp;
if (geteuid() == getuid()) {
devid_override = getenv("INTEL_DEVID_OVERRIDE");
if (devid_override) {
bufmgr_gem->no_exec = true;
return strtod(devid_override, nullptr);
}
}
memclear(gp);
gp.param = I915_PARAM_CHIPSET_ID;
gp.value = &devid;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret) {
fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
}
return devid;
}
int
mos_bufmgr_gem_get_devid(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
return bufmgr_gem->pci_device;
}
/**
* Sets up AUB dumping.
*
* This is a trace file format that can be used with the simulator.
* Packets are emitted in a format somewhat like GPU command packets.
* You can set up a GTT and upload your objects into the referenced
* space, then send off batchbuffers and get BMPs out the other end.
*/
void
mos_bufmgr_gem_set_aub_dump(struct mos_bufmgr *bufmgr, int enable)
{
fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
"Use intel_aubdump from intel-gpu-tools instead. Install intel-gpu-tools,\n"
"then run (for example)\n\n"
"\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
"See the intel_aubdump man page for more details.\n");
}
struct mos_linux_context *
mos_gem_context_create(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
struct drm_i915_gem_context_create create;
struct mos_linux_context *context = nullptr;
int ret;
context = (struct mos_linux_context *)calloc(1, sizeof(*context));
if (!context)
return nullptr;
memclear(create);
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
if (ret != 0) {
MOS_DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
strerror(errno));
free(context);
return nullptr;
}
context->ctx_id = create.ctx_id;
context->bufmgr = bufmgr;
return context;
}
void
mos_gem_context_destroy(struct mos_linux_context *ctx)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_context_destroy destroy;
int ret;
if (ctx == nullptr)
return;
memclear(destroy);
bufmgr_gem = (struct mos_bufmgr_gem *)ctx->bufmgr;
destroy.ctx_id = ctx->ctx_id;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
&destroy);
if (ret != 0)
fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
strerror(errno));
free(ctx);
}
int
mos_get_reset_stats(struct mos_linux_context *ctx,
uint32_t *reset_count,
uint32_t *active,
uint32_t *pending)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct drm_i915_reset_stats stats;
int ret;
if (ctx == nullptr)
return -EINVAL;
memclear(stats);
bufmgr_gem = (struct mos_bufmgr_gem *)ctx->bufmgr;
stats.ctx_id = ctx->ctx_id;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GET_RESET_STATS,
&stats);
if (ret == 0) {
if (reset_count != nullptr)
*reset_count = stats.reset_count;
if (active != nullptr)
*active = stats.batch_active;
if (pending != nullptr)
*pending = stats.batch_pending;
}
return ret;
}
unsigned int mos_hweight8(uint8_t w)
{
uint32_t i, weight = 0;
for (i=0; i<8; i++)
{
weight += !!((w) & (1UL << i));
}
return weight;
}
uint8_t mos_switch_off_n_bits(uint8_t in_mask, int n)
{
int i,count;
uint8_t bi,out_mask;
assert (n>0 && n<=8);
out_mask = in_mask;
count = n;
for(i=0; i<8; i++)
{
bi = 1UL<<i;
if (bi & in_mask)
{
out_mask &= ~bi;
count--;
}
if (count==0)
{
break;
}
}
return out_mask;
}
int
mos_get_context_param_sseu(struct mos_linux_context *ctx,
struct drm_i915_gem_context_param_sseu *sseu)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_context_param context_param;
int ret;
if (ctx == nullptr)
return -EINVAL;
bufmgr_gem = (struct mos_bufmgr_gem *)ctx->bufmgr;
memset(&context_param, 0, sizeof(context_param));
context_param.ctx_id = ctx->ctx_id;
context_param.param = I915_CONTEXT_PARAM_SSEU;
context_param.value = (uint64_t) sseu;
context_param.size = sizeof(struct drm_i915_gem_context_param_sseu);
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM,
&context_param);
return ret;
}
int
mos_set_context_param_sseu(struct mos_linux_context *ctx,
struct drm_i915_gem_context_param_sseu sseu)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_context_param context_param;
int ret;
if (ctx == nullptr)
return -EINVAL;
bufmgr_gem = (struct mos_bufmgr_gem *)ctx->bufmgr;
memset(&context_param, 0, sizeof(context_param));
context_param.ctx_id = ctx->ctx_id;
context_param.param = I915_CONTEXT_PARAM_SSEU;
context_param.value = (uint64_t) &sseu;
context_param.size = sizeof(struct drm_i915_gem_context_param_sseu);
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM,
&context_param);
return ret;
}
int
mos_get_subslice_mask(int fd, unsigned int *subslice_mask)
{
drm_i915_getparam_t gp;
int ret;
memclear(gp);
gp.value = (int*)subslice_mask;
gp.param = I915_PARAM_SUBSLICE_MASK;
ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret)
return -errno;
return 0;
}
int
mos_get_slice_mask(int fd, unsigned int *slice_mask)
{
drm_i915_getparam_t gp;
int ret;
memclear(gp);
gp.value = (int*)slice_mask;
gp.param = I915_PARAM_SLICE_MASK;
ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret)
return -errno;
return 0;
}
int
mos_get_context_param(struct mos_linux_context *ctx,
uint32_t size,
uint64_t param,
uint64_t *value)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_context_param context_param;
int ret;
if (ctx == nullptr)
return -EINVAL;
bufmgr_gem = (struct mos_bufmgr_gem *)ctx->bufmgr;
context_param.ctx_id = ctx->ctx_id;
context_param.size = size;
context_param.param = param;
context_param.value = 0;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM,
&context_param);
*value = context_param.value;
return ret;
}
int
mos_set_context_param(struct mos_linux_context *ctx,
uint32_t size,
uint64_t param,
uint64_t value)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_context_param context_param;
int ret;
if (ctx == nullptr)
return -EINVAL;
bufmgr_gem = (struct mos_bufmgr_gem *)ctx->bufmgr;
context_param.ctx_id = ctx->ctx_id;
context_param.size = size;
context_param.param = param;
context_param.value = value;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM,
&context_param);
return ret;
}
int
mos_reg_read(struct mos_bufmgr *bufmgr,
uint32_t offset,
uint64_t *result)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
struct drm_i915_reg_read reg_read;
int ret;
memclear(reg_read);
reg_read.offset = offset;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
*result = reg_read.val;
return ret;
}
int
mos_get_subslice_total(int fd, unsigned int *subslice_total)
{
drm_i915_getparam_t gp;
int ret;
memclear(gp);
gp.value = (int*)subslice_total;
gp.param = I915_PARAM_SUBSLICE_TOTAL;
ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret)
return -errno;
return 0;
}
int
mos_get_eu_total(int fd, unsigned int *eu_total)
{
drm_i915_getparam_t gp;
int ret;
memclear(gp);
gp.value = (int*)eu_total;
gp.param = I915_PARAM_EU_TOTAL;
ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret)
return -errno;
return 0;
}
static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
static struct mos_bufmgr_gem *
mos_bufmgr_gem_find(int fd)
{
struct mos_bufmgr_gem *bufmgr_gem;
DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
if (bufmgr_gem->fd == fd) {
atomic_inc(&bufmgr_gem->refcount);
return bufmgr_gem;
}
}
return nullptr;
}
static void
mos_bufmgr_gem_unref(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
pthread_mutex_lock(&bufmgr_list_mutex);
if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
DRMLISTDEL(&bufmgr_gem->managers);
mos_bufmgr_gem_destroy(bufmgr);
}
pthread_mutex_unlock(&bufmgr_list_mutex);
}
}
int
mos_bufmgr_gem_get_memory_info(struct mos_bufmgr *bufmgr, char *info, uint32_t length)
{
return 0;
}
void mos_bufmgr_gem_enable_softpin(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
bufmgr_gem->use_softpin = true;
}
/**
* Initializes the GEM buffer manager, which uses the kernel to allocate, map,
* and manage map buffer objections.
*
* \param fd File descriptor of the opened DRM device.
*/
struct mos_bufmgr *
mos_bufmgr_gem_init(int fd, int batch_size)
{
struct mos_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_get_aperture aperture;
drm_i915_getparam_t gp;
int ret, tmp;
bool exec2 = false;
pthread_mutex_lock(&bufmgr_list_mutex);
bufmgr_gem = mos_bufmgr_gem_find(fd);
if (bufmgr_gem)
goto exit;
bufmgr_gem = (struct mos_bufmgr_gem *)calloc(1, sizeof(*bufmgr_gem));
if (bufmgr_gem == nullptr)
goto exit;
bufmgr_gem->fd = fd;
atomic_set(&bufmgr_gem->refcount, 1);
if (pthread_mutex_init(&bufmgr_gem->lock, nullptr) != 0) {
free(bufmgr_gem);
bufmgr_gem = nullptr;
goto exit;
}
memclear(aperture);
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_GET_APERTURE,
&aperture);
if (ret == 0)
bufmgr_gem->gtt_size = aperture.aper_available_size;
else {
fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
strerror(errno));
bufmgr_gem->gtt_size = 128 * 1024 * 1024;
fprintf(stderr, "Assuming %dkB available aperture size.\n"
"May lead to reduced performance or incorrect "
"rendering.\n",
(int)bufmgr_gem->gtt_size / 1024);
}
/* support Gen 8+ */
bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
if (bufmgr_gem->pci_device == 0) {
free(bufmgr_gem);
bufmgr_gem = nullptr;
goto exit;
}
memclear(gp);
gp.value = &tmp;
gp.param = I915_PARAM_HAS_EXECBUF2;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (!ret)
exec2 = true;
gp.param = I915_PARAM_HAS_BSD;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_bsd = ret == 0;
gp.param = I915_PARAM_HAS_BLT;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_blt = ret == 0;
gp.param = I915_PARAM_HAS_RELAXED_FENCING;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_relaxed_fencing = ret == 0;
bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_wait_timeout = ret == 0;
gp.param = I915_PARAM_HAS_LLC;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_llc = *gp.value;
gp.param = I915_PARAM_HAS_VEBOX;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
gp.param = I915_PARAM_MMAP_VERSION;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_ext_mmap = (ret == 0) & (*gp.value > 0);
gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret == 0 && *gp.value > 0)
{
bufmgr_gem->bufmgr.bo_set_softpin = mos_gem_bo_set_softpin;
bufmgr_gem->bufmgr.bo_add_softpin_target = mos_gem_bo_add_softpin_target;
}
gp.param = I915_PARAM_HAS_EXEC_ASYNC;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret == 0 && *gp.value > 0) {
bufmgr_gem->bufmgr.set_object_async = mos_gem_bo_set_object_async;
bufmgr_gem->bufmgr.set_exec_object_async = mos_gem_bo_set_exec_object_async;
}
struct drm_i915_gem_context_param context_param;
memset(&context_param, 0, sizeof(context_param));
context_param.param = I915_CONTEXT_PARAM_GTT_SIZE;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &context_param);
if (ret == 0){
uint64_t gtt_size_4g = (uint64_t)1 << 32;
if (context_param.value > gtt_size_4g)
{
bufmgr_gem->bufmgr.bo_use_48b_address_range = mos_gem_bo_use_48b_address_range;
}
}
/* Let's go with one relocation per every 2 dwords (but round down a bit
* since a power of two will mean an extra page allocation for the reloc
* buffer).
*
* Every 4 was too few for the blender benchmark.
*/
bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
bufmgr_gem->bufmgr.bo_alloc = mos_gem_bo_alloc;
bufmgr_gem->bufmgr.bo_alloc_for_render =
mos_gem_bo_alloc_for_render;
bufmgr_gem->bufmgr.bo_alloc_tiled = mos_gem_bo_alloc_tiled;
bufmgr_gem->bufmgr.bo_reference = mos_gem_bo_reference;
bufmgr_gem->bufmgr.bo_unreference = mos_gem_bo_unreference;
bufmgr_gem->bufmgr.bo_map = mos_gem_bo_map;
bufmgr_gem->bufmgr.bo_unmap = mos_gem_bo_unmap;
bufmgr_gem->bufmgr.bo_subdata = mos_gem_bo_subdata;
bufmgr_gem->bufmgr.bo_get_subdata = mos_gem_bo_get_subdata;
bufmgr_gem->bufmgr.bo_wait_rendering = mos_gem_bo_wait_rendering;
bufmgr_gem->bufmgr.bo_pad_to_size = mos_gem_bo_pad_to_size;
bufmgr_gem->bufmgr.bo_emit_reloc = mos_gem_bo_emit_reloc;
bufmgr_gem->bufmgr.bo_emit_reloc2 = mos_gem_bo_emit_reloc2;
bufmgr_gem->bufmgr.bo_emit_reloc_fence = mos_gem_bo_emit_reloc_fence;
bufmgr_gem->bufmgr.bo_pin = mos_gem_bo_pin;
bufmgr_gem->bufmgr.bo_unpin = mos_gem_bo_unpin;
bufmgr_gem->bufmgr.bo_get_tiling = mos_gem_bo_get_tiling;
bufmgr_gem->bufmgr.bo_set_tiling = mos_gem_bo_set_tiling;
bufmgr_gem->bufmgr.bo_flink = mos_gem_bo_flink;
/* Use the new one if available */
if (exec2) {
bufmgr_gem->bufmgr.bo_exec = mos_gem_bo_exec2;
bufmgr_gem->bufmgr.bo_mrb_exec = mos_gem_bo_mrb_exec2;
} else
bufmgr_gem->bufmgr.bo_exec = mos_gem_bo_exec;
bufmgr_gem->bufmgr.bo_busy = mos_gem_bo_busy;
bufmgr_gem->bufmgr.bo_madvise = mos_gem_bo_madvise;
bufmgr_gem->bufmgr.destroy = mos_bufmgr_gem_unref;
bufmgr_gem->bufmgr.debug = 0;
bufmgr_gem->bufmgr.check_aperture_space =
mos_gem_check_aperture_space;
bufmgr_gem->bufmgr.bo_disable_reuse = mos_gem_bo_disable_reuse;
bufmgr_gem->bufmgr.bo_is_reusable = mos_gem_bo_is_reusable;
bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
mos_gem_get_pipe_from_crtc_id;
bufmgr_gem->bufmgr.bo_references = mos_gem_bo_references;
DRMINITLISTHEAD(&bufmgr_gem->named);
init_cache_buckets(bufmgr_gem);
DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
// init head_offset to 64K, since 0 will be regarded as nullptr in some condition
bufmgr_gem->head_offset = MEMZONE_SYS_START;
bufmgr_gem->use_softpin = false;
exit:
pthread_mutex_unlock(&bufmgr_list_mutex);
return bufmgr_gem != nullptr ? &bufmgr_gem->bufmgr : nullptr;
}
struct mos_linux_context *
mos_gem_context_create_ext(struct mos_bufmgr *bufmgr, __u32 flags)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
struct drm_i915_gem_context_create_ext create;
struct mos_linux_context *context = nullptr;
int ret;
context = (struct mos_linux_context *)calloc(1, sizeof(*context));
if (!context)
return nullptr;
memclear(create);
create.flags = flags;
create.extensions = 0;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT, &create);
if (ret != 0) {
MOS_DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
strerror(errno));
free(context);
return nullptr;
}
context->ctx_id = create.ctx_id;
context->bufmgr = bufmgr;
return context;
}
struct drm_i915_gem_vm_control* mos_gem_vm_create(struct mos_bufmgr *bufmgr)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
struct drm_i915_gem_vm_control *vm = nullptr;
int ret;
vm = (struct drm_i915_gem_vm_control *)calloc(1, sizeof(*vm));
if (nullptr == vm)
{
return nullptr;
}
memset(vm, 0, sizeof(*vm));
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_VM_CREATE, vm);
if (ret != 0) {
MOS_DBG("DRM_IOCTL_I915_GEM_VM_CREATE failed: %s\n",
strerror(errno));
free(vm);
return nullptr;
}
return vm;
}
void mos_gem_vm_destroy(struct mos_bufmgr *bufmgr, struct drm_i915_gem_vm_control* vm)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
assert(vm);
int ret;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_VM_DESTROY, vm);
if (ret != 0) {
MOS_DBG("DRM_IOCTL_I915_GEM_VM_DESTROY failed: %s\n",
strerror(errno));
}
free(vm);
}
struct mos_linux_context *
mos_gem_context_create_shared(struct mos_bufmgr *bufmgr, mos_linux_context* ctx, __u32 flags)
{
struct mos_bufmgr_gem *bufmgr_gem = (struct mos_bufmgr_gem *)bufmgr;
struct drm_i915_gem_context_create_ext create;
struct mos_linux_context *context = nullptr;
int ret;
if (ctx == nullptr || ctx->vm == nullptr)
return nullptr;
context = (struct mos_linux_context *)calloc(1, sizeof(*context));
if (!context)
return nullptr;
memclear(create);
create.flags = flags;
create.extensions = 0;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT, &create);
if (ret != 0) {
MOS_DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
strerror(errno));
free(context);
return nullptr;
}
context->ctx_id = create.ctx_id;
context->bufmgr = bufmgr;
ret = mos_set_context_param(context,
0,
I915_CONTEXT_PARAM_VM,
ctx->vm->vm_id);
if(ret != 0) {
MOS_DBG("I915_CONTEXT_PARAM_VM failed: %s\n",
strerror(errno));
free(context);
return nullptr;
}
return context;
}
int mos_query_engines_count(struct mos_bufmgr *bufmgr,
unsigned int *nengine)
{
assert(bufmgr);
assert(nengine);
int fd = ((struct mos_bufmgr_gem*)bufmgr)->fd;
struct drm_i915_query query;
struct drm_i915_query_item query_item;
int ret, len;
memclear(query_item);
query_item.query_id = DRM_I915_QUERY_ENGINE_INFO;
query_item.length = 0;
memclear(query);
query.num_items = 1;
query.items_ptr = (uintptr_t)&query_item;
ret = drmIoctl(fd, DRM_IOCTL_I915_QUERY, &query);
*nengine = query_item.length;
return ret;
}
int mos_query_engines(struct mos_bufmgr *bufmgr,
__u16 engine_class,
__u64 caps,
unsigned int *nengine,
struct i915_engine_class_instance *ci)
{
struct drm_i915_query query;
struct drm_i915_query_item query_item;
struct drm_i915_query_engine_info *engines = nullptr;
int ret, len;
assert(bufmgr);
int fd = ((struct mos_bufmgr_gem*)bufmgr)->fd;
memclear(query_item);
query_item.query_id = DRM_I915_QUERY_ENGINE_INFO;
query_item.length = 0;
memclear(query);
query.num_items = 1;
query.items_ptr = (uintptr_t)&query_item;
ret = drmIoctl(fd, DRM_IOCTL_I915_QUERY, &query);
if (ret)
{
goto fini;
}
len = query_item.length;
engines = (drm_i915_query_engine_info *)malloc(len);
if (nullptr == engines)
{
ret = -ENOMEM;
goto fini;
}
memset(engines,0,len);
memclear(query_item);
query_item.query_id = DRM_I915_QUERY_ENGINE_INFO;
query_item.length = len;
query_item.data_ptr = (uintptr_t)engines;
memclear(query);
query.num_items = 1;
query.items_ptr = (uintptr_t)&query_item;
ret = drmIoctl(fd, DRM_IOCTL_I915_QUERY, &query);
if (ret)
{
goto fini;
}
int i, num;
for (i = 0, num = 0; i < engines->num_engines; i++) {
struct drm_i915_engine_info *engine =
(struct drm_i915_engine_info *)&engines->engines[i];
if ( engine_class == engine->engine.engine_class
&& ((caps & engine->capabilities) == caps ))
{
ci->engine_class = engine_class;
ci->engine_instance = engine->engine.engine_instance;
ci++;
num++;
}
if (num > *nengine)
{
fprintf(stderr,"%s: Number of engine instances out of range, %d,%d\n",
__FUNCTION__, num, *nengine);
goto fini;
}
}
*nengine = num;
fini:
if (engines)
free(engines);
return ret;
}
int mos_set_context_param_parallel(struct mos_linux_context *ctx,
struct i915_engine_class_instance *ci,
unsigned int count)
{
return 0;
}
int mos_set_context_param_load_balance(struct mos_linux_context *ctx,
struct i915_engine_class_instance *ci,
unsigned int count)
{
int ret;
uint32_t size;
struct i915_context_engines_load_balance* balancer = nullptr;
struct i915_context_param_engines* set_engines = nullptr;
MOS_OS_CHECK_CONDITION(ci == nullptr, "Invalid (nullptr) Pointer.", EINVAL);
MOS_OS_CHECK_CONDITION(count == 0, "Invalid input parameter. Number of engines must be > 0.", EINVAL);
/* I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE */
size = sizeof(struct i915_context_engines_load_balance) + count * sizeof(*ci);
balancer = (struct i915_context_engines_load_balance*)malloc(size);
if (NULL == balancer)
{
ret = -ENOMEM;
goto fini;
}
memset(balancer, 0, size);
balancer->base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE;
balancer->num_siblings = count;
memcpy(balancer->engines, ci, count * sizeof(*ci));
/* I915_DEFINE_CONTEXT_PARAM_ENGINES */
size = sizeof(uint64_t) + sizeof(*ci);
set_engines = (struct i915_context_param_engines*) malloc(size);
if (NULL == set_engines)
{
ret = -ENOMEM;
goto fini;
}
set_engines->extensions = (uintptr_t)(balancer);
set_engines->engines[0].engine_class = I915_ENGINE_CLASS_INVALID;
set_engines->engines[0].engine_instance = I915_ENGINE_CLASS_INVALID_NONE;
ret = mos_set_context_param(ctx,
size,
I915_CONTEXT_PARAM_ENGINES,
(uintptr_t)set_engines);
fini:
if (set_engines)
free(set_engines);
if (balancer)
free(balancer);
return ret;
}
int mos_set_context_param_bond(struct mos_linux_context *ctx,
struct i915_engine_class_instance master_ci,
struct i915_engine_class_instance *bond_ci,
unsigned int bond_count)
{
int ret;
uint32_t size;
struct i915_context_engines_load_balance* balancer = nullptr;
struct i915_context_engines_bond *bond = nullptr;
struct i915_context_param_engines* set_engines = nullptr;
assert(bond_ci);
/* I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE */
size = sizeof(struct i915_context_engines_load_balance) + bond_count * sizeof(bond_ci);
balancer = (struct i915_context_engines_load_balance*)malloc(size);
if (NULL == balancer)
{
ret = -ENOMEM;
goto fini;
}
memset(balancer, 0, size);
balancer->base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE;
balancer->num_siblings = bond_count;
memcpy(balancer->engines, bond_ci, bond_count * sizeof(*bond_ci));
/* I915_DEFINE_CONTEXT_ENGINES_BOND */
size = sizeof(struct i915_context_engines_bond) + bond_count * sizeof(*bond_ci);
bond = (struct i915_context_engines_bond*)malloc(size);
if (NULL == bond)
{
ret = -ENOMEM;
goto fini;
}
memset(bond, 0, size);
bond->base.name = I915_CONTEXT_ENGINES_EXT_BOND;
bond->master = master_ci;
bond->num_bonds = bond_count;
memcpy(bond->engines, bond_ci, bond_count * sizeof(*bond_ci));
/* I915_DEFINE_CONTEXT_PARAM_ENGINES */
size = sizeof(uint64_t) + sizeof(struct i915_engine_class_instance);
set_engines = (struct i915_context_param_engines*) malloc(size);
if (NULL == set_engines)
{
ret = -ENOMEM;
goto fini;
}
set_engines->extensions = (uintptr_t)(balancer);
balancer->base.next_extension = (uintptr_t)(bond);
set_engines->engines[0].engine_class = I915_ENGINE_CLASS_INVALID;
set_engines->engines[0].engine_instance = I915_ENGINE_CLASS_INVALID_NONE;
ret = mos_set_context_param(ctx,
size,
I915_CONTEXT_PARAM_ENGINES,
(uintptr_t)set_engines);
fini:
if (set_engines)
free(set_engines);
if (bond)
free(bond);
if (balancer)
free(balancer);
return ret;
}
drm_export bool mos_gem_bo_is_softpin(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *) bo;
if (bo_gem == nullptr)
{
return false;
}
return bo_gem->is_softpin;
}
drm_export bool
mos_gem_bo_is_exec_object_async(struct mos_linux_bo *bo)
{
struct mos_bo_gem *bo_gem = (struct mos_bo_gem *)bo;
return bo_gem->exec_async;
}
int mos_query_device_blob(int fd, MEDIA_SYSTEM_INFO* gfx_info)
{
return -1;
}