blob: 193dc5f04a4d079528f330699bced19052d65231 [file] [log] [blame]
/*
* Copyright (c) 2007-2011 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL INTEL AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file va_vpp.h
* \brief The video processing API
*
* This file contains the \ref api_vpp "Video processing API".
*/
#ifndef VA_VPP_H
#define VA_VPP_H
#ifdef __cplusplus
extern "C" {
#endif
/**
* \defgroup api_vpp Video processing API
*
* @{
*
* The video processing API uses the same paradigm as for decoding:
* - Query for supported filters;
* - Set up a video processing pipeline;
* - Send video processing parameters through VA buffers.
*
* \section api_vpp_caps Query for supported filters
*
* Checking whether video processing is supported can be performed
* with vaQueryConfigEntrypoints() and the profile argument set to
* #VAProfileNone. If video processing is supported, then the list of
* returned entry-points will include #VAEntrypointVideoProc.
*
* \code
* VAEntrypoint *entrypoints;
* int i, num_entrypoints, supportsVideoProcessing = 0;
*
* num_entrypoints = vaMaxNumEntrypoints();
* entrypoints = malloc(num_entrypoints * sizeof(entrypoints[0]);
* vaQueryConfigEntrypoints(va_dpy, VAProfileNone,
* entrypoints, &num_entrypoints);
*
* for (i = 0; !supportsVideoProcessing && i < num_entrypoints; i++) {
* if (entrypoints[i] == VAEntrypointVideoProc)
* supportsVideoProcessing = 1;
* }
* \endcode
*
* Then, the vaQueryVideoProcFilters() function is used to query the
* list of video processing filters.
*
* \code
* VAProcFilterType filters[VAProcFilterCount];
* unsigned int num_filters = VAProcFilterCount;
*
* // num_filters shall be initialized to the length of the array
* vaQueryVideoProcFilters(va_dpy, vpp_ctx, &filters, &num_filters);
* \endcode
*
* Finally, individual filter capabilities can be checked with
* vaQueryVideoProcFilterCaps().
*
* \code
* VAProcFilterCap denoise_caps;
* unsigned int num_denoise_caps = 1;
* vaQueryVideoProcFilterCaps(va_dpy, vpp_ctx,
* VAProcFilterNoiseReduction,
* &denoise_caps, &num_denoise_caps
* );
*
* VAProcFilterCapDeinterlacing deinterlacing_caps[VAProcDeinterlacingCount];
* unsigned int num_deinterlacing_caps = VAProcDeinterlacingCount;
* vaQueryVideoProcFilterCaps(va_dpy, vpp_ctx,
* VAProcFilterDeinterlacing,
* &deinterlacing_caps, &num_deinterlacing_caps
* );
* \endcode
*
* \section api_vpp_setup Set up a video processing pipeline
*
* A video processing pipeline buffer is created for each source
* surface we want to process. However, buffers holding filter
* parameters can be created once and for all. Rationale is to avoid
* multiple creation/destruction chains of filter buffers and also
* because filter parameters generally won't change frame after
* frame. e.g. this makes it possible to implement a checkerboard of
* videos where the same filters are applied to each video source.
*
* The general control flow is demonstrated by the following pseudo-code:
* \code
* // Create filters
* VABufferID denoise_filter, deint_filter;
* VABufferID filter_bufs[VAProcFilterCount];
* unsigned int num_filter_bufs;
*
* for (i = 0; i < num_filters; i++) {
* switch (filters[i]) {
* case VAProcFilterNoiseReduction: { // Noise reduction filter
* VAProcFilterParameterBuffer denoise;
* denoise.type = VAProcFilterNoiseReduction;
* denoise.value = 0.5;
* vaCreateBuffer(va_dpy, vpp_ctx,
* VAProcFilterParameterBufferType, sizeof(denoise), 1,
* &denoise, &denoise_filter
* );
* filter_bufs[num_filter_bufs++] = denoise_filter;
* break;
* }
*
* case VAProcFilterDeinterlacing: // Motion-adaptive deinterlacing
* for (j = 0; j < num_deinterlacing_caps; j++) {
* VAProcFilterCapDeinterlacing * const cap = &deinterlacing_caps[j];
* if (cap->type != VAProcDeinterlacingMotionAdaptive)
* continue;
*
* VAProcFilterParameterBufferDeinterlacing deint;
* deint.type = VAProcFilterDeinterlacing;
* deint.algorithm = VAProcDeinterlacingMotionAdaptive;
* vaCreateBuffer(va_dpy, vpp_ctx,
* VAProcFilterParameterBufferType, sizeof(deint), 1,
* &deint, &deint_filter
* );
* filter_bufs[num_filter_bufs++] = deint_filter;
* }
* }
* }
* \endcode
*
* Once the video processing pipeline is set up, the caller shall check the
* implied capabilities and requirements with vaQueryVideoProcPipelineCaps().
* This function can be used to validate the number of reference frames are
* needed by the specified deinterlacing algorithm, the supported color
* primaries, etc.
* \code
* // Create filters
* VAProcPipelineCaps pipeline_caps;
* VASurfaceID *forward_references;
* unsigned int num_forward_references;
* VASurfaceID *backward_references;
* unsigned int num_backward_references;
* VAProcColorStandardType in_color_standards[VAProcColorStandardCount];
* VAProcColorStandardType out_color_standards[VAProcColorStandardCount];
*
* pipeline_caps.input_color_standards = NULL;
* pipeline_caps.num_input_color_standards = ARRAY_ELEMS(in_color_standards);
* pipeline_caps.output_color_standards = NULL;
* pipeline_caps.num_output_color_standards = ARRAY_ELEMS(out_color_standards);
* vaQueryVideoProcPipelineCaps(va_dpy, vpp_ctx,
* filter_bufs, num_filter_bufs,
* &pipeline_caps
* );
*
* num_forward_references = pipeline_caps.num_forward_references;
* forward_references =
* malloc(num__forward_references * sizeof(VASurfaceID));
* num_backward_references = pipeline_caps.num_backward_references;
* backward_references =
* malloc(num_backward_references * sizeof(VASurfaceID));
* \endcode
*
* \section api_vpp_submit Send video processing parameters through VA buffers
*
* Video processing pipeline parameters are submitted for each source
* surface to process. Video filter parameters can also change, per-surface.
* e.g. the list of reference frames used for deinterlacing.
*
* \code
* foreach (iteration) {
* vaBeginPicture(va_dpy, vpp_ctx, vpp_surface);
* foreach (surface) {
* VARectangle output_region;
* VABufferID pipeline_buf;
* VAProcPipelineParameterBuffer *pipeline_param;
*
* vaCreateBuffer(va_dpy, vpp_ctx,
* VAProcPipelineParameterBuffer, sizeof(*pipeline_param), 1,
* NULL, &pipeline_buf
* );
*
* // Setup output region for this surface
* // e.g. upper left corner for the first surface
* output_region.x = BORDER;
* output_region.y = BORDER;
* output_region.width =
* (vpp_surface_width - (Nx_surfaces + 1) * BORDER) / Nx_surfaces;
* output_region.height =
* (vpp_surface_height - (Ny_surfaces + 1) * BORDER) / Ny_surfaces;
*
* vaMapBuffer(va_dpy, pipeline_buf, &pipeline_param);
* pipeline_param->surface = surface;
* pipeline_param->surface_region = NULL;
* pipeline_param->output_region = &output_region;
* pipeline_param->output_background_color = 0;
* if (first surface to render)
* pipeline_param->output_background_color = 0xff000000; // black
* pipeline_param->filter_flags = VA_FILTER_SCALING_HQ;
* pipeline_param->filters = filter_bufs;
* pipeline_param->num_filters = num_filter_bufs;
* vaUnmapBuffer(va_dpy, pipeline_buf);
*
* // Update reference frames for deinterlacing, if necessary
* pipeline_param->forward_references = forward_references;
* pipeline_param->num_forward_references = num_forward_references_used;
* pipeline_param->backward_references = backward_references;
* pipeline_param->num_backward_references = num_bacward_references_used;
*
* // Apply filters
* vaRenderPicture(va_dpy, vpp_ctx, &pipeline_buf, 1);
* }
* vaEndPicture(va_dpy, vpp_ctx);
* }
* \endcode
*/
/** \brief Video filter types. */
typedef enum _VAProcFilterType {
VAProcFilterNone = 0,
/** \brief Noise reduction filter. */
VAProcFilterNoiseReduction,
/** \brief Deinterlacing filter. */
VAProcFilterDeinterlacing,
/** \brief Sharpening filter. */
VAProcFilterSharpening,
/** \brief Color balance parameters. */
VAProcFilterColorBalance,
/** \brief Skin Tone Enhancement. */
VAProcFilterSkinToneEnhancement,
/** \brief Total Color Correction. */
VAProcFilterTotalColorCorrection,
/** \brief Human Vision System(HVS) Noise reduction filter. */
VAProcFilterHVSNoiseReduction,
/** \brief High Dynamic Range Tone Mapping. */
VAProcFilterHighDynamicRangeToneMapping,
/** \brief Three-Dimensional Look Up Table (3DLUT). */
VAProcFilter3DLUT,
/** \brief Number of video filters. */
VAProcFilterCount
} VAProcFilterType;
/** \brief Deinterlacing types. */
typedef enum _VAProcDeinterlacingType {
VAProcDeinterlacingNone = 0,
/** \brief Bob deinterlacing algorithm. */
VAProcDeinterlacingBob,
/** \brief Weave deinterlacing algorithm. */
VAProcDeinterlacingWeave,
/** \brief Motion adaptive deinterlacing algorithm. */
VAProcDeinterlacingMotionAdaptive,
/** \brief Motion compensated deinterlacing algorithm. */
VAProcDeinterlacingMotionCompensated,
/** \brief Number of deinterlacing algorithms. */
VAProcDeinterlacingCount
} VAProcDeinterlacingType;
/** \brief Color balance types. */
typedef enum _VAProcColorBalanceType {
VAProcColorBalanceNone = 0,
/** \brief Hue. */
VAProcColorBalanceHue,
/** \brief Saturation. */
VAProcColorBalanceSaturation,
/** \brief Brightness. */
VAProcColorBalanceBrightness,
/** \brief Contrast. */
VAProcColorBalanceContrast,
/** \brief Automatically adjusted saturation. */
VAProcColorBalanceAutoSaturation,
/** \brief Automatically adjusted brightness. */
VAProcColorBalanceAutoBrightness,
/** \brief Automatically adjusted contrast. */
VAProcColorBalanceAutoContrast,
/** \brief Number of color balance attributes. */
VAProcColorBalanceCount
} VAProcColorBalanceType;
/** \brief Color standard types.
*
* These define a set of color properties corresponding to particular
* video standards.
*
* Where matrix_coefficients is specified, it applies only to YUV data -
* RGB data always use the identity matrix (matrix_coefficients = 0).
*/
typedef enum _VAProcColorStandardType {
VAProcColorStandardNone = 0,
/** \brief ITU-R BT.601.
*
* It is unspecified whether this will use 525-line or 625-line values;
* specify the colour primaries and matrix coefficients explicitly if
* it is known which one is required.
*
* Equivalent to:
* colour_primaries = 5 or 6
* transfer_characteristics = 6
* matrix_coefficients = 5 or 6
*/
VAProcColorStandardBT601,
/** \brief ITU-R BT.709.
*
* Equivalent to:
* colour_primaries = 1
* transfer_characteristics = 1
* matrix_coefficients = 1
*/
VAProcColorStandardBT709,
/** \brief ITU-R BT.470-2 System M.
*
* Equivalent to:
* colour_primaries = 4
* transfer_characteristics = 4
* matrix_coefficients = 4
*/
VAProcColorStandardBT470M,
/** \brief ITU-R BT.470-2 System B, G.
*
* Equivalent to:
* colour_primaries = 5
* transfer_characteristics = 5
* matrix_coefficients = 5
*/
VAProcColorStandardBT470BG,
/** \brief SMPTE-170M.
*
* Equivalent to:
* colour_primaries = 6
* transfer_characteristics = 6
* matrix_coefficients = 6
*/
VAProcColorStandardSMPTE170M,
/** \brief SMPTE-240M.
*
* Equivalent to:
* colour_primaries = 7
* transfer_characteristics = 7
* matrix_coefficients = 7
*/
VAProcColorStandardSMPTE240M,
/** \brief Generic film.
*
* Equivalent to:
* colour_primaries = 8
* transfer_characteristics = 1
* matrix_coefficients = 1
*/
VAProcColorStandardGenericFilm,
/** \brief sRGB.
*
* Equivalent to:
* colour_primaries = 1
* transfer_characteristics = 13
* matrix_coefficients = 0
*/
VAProcColorStandardSRGB,
/** \brief stRGB.
*
* ???
*/
VAProcColorStandardSTRGB,
/** \brief xvYCC601.
*
* Equivalent to:
* colour_primaries = 1
* transfer_characteristics = 11
* matrix_coefficients = 5
*/
VAProcColorStandardXVYCC601,
/** \brief xvYCC709.
*
* Equivalent to:
* colour_primaries = 1
* transfer_characteristics = 11
* matrix_coefficients = 1
*/
VAProcColorStandardXVYCC709,
/** \brief ITU-R BT.2020.
*
* Equivalent to:
* colour_primaries = 9
* transfer_characteristics = 14
* matrix_coefficients = 9
*/
VAProcColorStandardBT2020,
/** \brief Explicitly specified color properties.
*
* Use corresponding color properties section.
* For example, HDR10 content:
* colour_primaries = 9 (BT2020)
* transfer_characteristics = 16 (SMPTE ST2084)
* matrix_coefficients = 9
*/
VAProcColorStandardExplicit,
/** \brief Number of color standards. */
VAProcColorStandardCount
} VAProcColorStandardType;
/** \brief Total color correction types. */
typedef enum _VAProcTotalColorCorrectionType {
VAProcTotalColorCorrectionNone = 0,
/** \brief Red Saturation. */
VAProcTotalColorCorrectionRed,
/** \brief Green Saturation. */
VAProcTotalColorCorrectionGreen,
/** \brief Blue Saturation. */
VAProcTotalColorCorrectionBlue,
/** \brief Cyan Saturation. */
VAProcTotalColorCorrectionCyan,
/** \brief Magenta Saturation. */
VAProcTotalColorCorrectionMagenta,
/** \brief Yellow Saturation. */
VAProcTotalColorCorrectionYellow,
/** \brief Number of color correction attributes. */
VAProcTotalColorCorrectionCount
} VAProcTotalColorCorrectionType;
/** \brief High Dynamic Range Metadata types. */
typedef enum _VAProcHighDynamicRangeMetadataType {
VAProcHighDynamicRangeMetadataNone = 0,
/** \brief Metadata type for HDR10. */
VAProcHighDynamicRangeMetadataHDR10,
/** \brief Number of Metadata type. */
VAProcHighDynamicRangeMetadataTypeCount
} VAProcHighDynamicRangeMetadataType;
/** \brief Video Processing Mode. */
typedef enum _VAProcMode {
/**
* \brief Default Mode.
* In this mode, pipeline is decided in driver to the appropriate mode.
* e.g. a mode that's a balance between power and performance.
*/
VAProcDefaultMode = 0,
/**
* \brief Power Saving Mode.
* In this mode, pipeline is optimized for power saving.
*/
VAProcPowerSavingMode,
/**
* \brief Performance Mode.
* In this mode, pipeline is optimized for performance.
*/
VAProcPerformanceMode
} VAProcMode;
/** @name Video blending flags */
/**@{*/
/** \brief Global alpha blending. */
#define VA_BLEND_GLOBAL_ALPHA 0x0001
/** \brief Premultiplied alpha blending (RGBA surfaces only). */
#define VA_BLEND_PREMULTIPLIED_ALPHA 0x0002
/** \brief Luma color key (YUV surfaces only). */
#define VA_BLEND_LUMA_KEY 0x0010
/**@}*/
/** \brief Video blending state definition. */
typedef struct _VABlendState {
/** \brief Video blending flags. */
unsigned int flags;
/**
* \brief Global alpha value.
*
* Valid if \flags has VA_BLEND_GLOBAL_ALPHA.
* Valid range is 0.0 to 1.0 inclusive.
*/
float global_alpha;
/**
* \brief Minimum luma value.
*
* Valid if \flags has VA_BLEND_LUMA_KEY.
* Valid range is 0.0 to 1.0 inclusive.
* \ref min_luma shall be set to a sensible value lower than \ref max_luma.
*/
float min_luma;
/**
* \brief Maximum luma value.
*
* Valid if \flags has VA_BLEND_LUMA_KEY.
* Valid range is 0.0 to 1.0 inclusive.
* \ref max_luma shall be set to a sensible value larger than \ref min_luma.
*/
float max_luma;
} VABlendState;
/** @name Video pipeline flags */
/**@{*/
/** \brief Specifies whether to apply subpictures when processing a surface. */
#define VA_PROC_PIPELINE_SUBPICTURES 0x00000001
/**
* \brief Specifies whether to apply power or performance
* optimizations to a pipeline.
*
* When processing several surfaces, it may be necessary to prioritize
* more certain pipelines than others. This flag is only a hint to the
* video processor so that it can omit certain filters to save power
* for example. Typically, this flag could be used with video surfaces
* decoded from a secondary bitstream.
*/
#define VA_PROC_PIPELINE_FAST 0x00000002
/**@}*/
/** @name Video filter flags */
/**@{*/
/** \brief Specifies whether the filter shall be present in the pipeline. */
#define VA_PROC_FILTER_MANDATORY 0x00000001
/**@}*/
/** @name Pipeline end flags */
/**@{*/
/** \brief Specifies the pipeline is the last. */
#define VA_PIPELINE_FLAG_END 0x00000004
/**@}*/
/** @name Chroma Siting flag */
/**@{*/
/** vertical chroma sitting take bit 0-1, horizontal chroma sitting take bit 2-3
* vertical chromma siting | horizontal chroma sitting to be chroma sitting */
#define VA_CHROMA_SITING_UNKNOWN 0x00
/** \brief Chroma samples are co-sited vertically on the top with the luma samples. */
#define VA_CHROMA_SITING_VERTICAL_TOP 0x01
/** \brief Chroma samples are not co-sited vertically with the luma samples. */
#define VA_CHROMA_SITING_VERTICAL_CENTER 0x02
/** \brief Chroma samples are co-sited vertically on the bottom with the luma samples. */
#define VA_CHROMA_SITING_VERTICAL_BOTTOM 0x03
/** \brief Chroma samples are co-sited horizontally on the left with the luma samples. */
#define VA_CHROMA_SITING_HORIZONTAL_LEFT 0x04
/** \brief Chroma samples are not co-sited horizontally with the luma samples. */
#define VA_CHROMA_SITING_HORIZONTAL_CENTER 0x08
/**@}*/
/**
* This is to indicate that the color-space conversion uses full range or reduced range.
* VA_SOURCE_RANGE_FULL(Full range): Y/Cb/Cr is in [0, 255]. It is mainly used
* for JPEG/JFIF formats. The combination with the BT601 flag means that
* JPEG/JFIF color-space conversion matrix is used.
* VA_SOURCE_RANGE_REDUCED(Reduced range): Y is in [16, 235] and Cb/Cr is in [16, 240].
* It is mainly used for the YUV->RGB color-space conversion in SDTV/HDTV/UHDTV.
*/
#define VA_SOURCE_RANGE_UNKNOWN 0
#define VA_SOURCE_RANGE_REDUCED 1
#define VA_SOURCE_RANGE_FULL 2
/** @name Tone Mapping flags multiple HDR mode*/
/**@{*/
/** \brief Tone Mapping from HDR content to HDR display. */
#define VA_TONE_MAPPING_HDR_TO_HDR 0x0001
/** \brief Tone Mapping from HDR content to SDR display. */
#define VA_TONE_MAPPING_HDR_TO_SDR 0x0002
/** \brief Tone Mapping from HDR content to EDR display. */
#define VA_TONE_MAPPING_HDR_TO_EDR 0x0004
/** \brief Tone Mapping from SDR content to HDR display. */
#define VA_TONE_MAPPING_SDR_TO_HDR 0x0008
/**@}*/
/** \brief Video processing pipeline capabilities. */
typedef struct _VAProcPipelineCaps {
/** \brief Pipeline flags. See VAProcPipelineParameterBuffer::pipeline_flags. */
uint32_t pipeline_flags;
/** \brief Extra filter flags. See VAProcPipelineParameterBuffer::filter_flags. */
uint32_t filter_flags;
/** \brief Number of forward reference frames that are needed. */
uint32_t num_forward_references;
/** \brief Number of backward reference frames that are needed. */
uint32_t num_backward_references;
/** \brief List of color standards supported on input. */
VAProcColorStandardType *input_color_standards;
/** \brief Number of elements in \ref input_color_standards array. */
uint32_t num_input_color_standards;
/** \brief List of color standards supported on output. */
VAProcColorStandardType *output_color_standards;
/** \brief Number of elements in \ref output_color_standards array. */
uint32_t num_output_color_standards;
/**
* \brief Rotation flags.
*
* For each rotation angle supported by the underlying hardware,
* the corresponding bit is set in \ref rotation_flags. See
* "Rotation angles" for a description of rotation angles.
*
* A value of 0 means the underlying hardware does not support any
* rotation. Otherwise, a check for a specific rotation angle can be
* performed as follows:
*
* \code
* VAProcPipelineCaps pipeline_caps;
* ...
* vaQueryVideoProcPipelineCaps(va_dpy, vpp_ctx,
* filter_bufs, num_filter_bufs,
* &pipeline_caps
* );
* ...
* if (pipeline_caps.rotation_flags & (1 << VA_ROTATION_xxx)) {
* // Clockwise rotation by xxx degrees is supported
* ...
* }
* \endcode
*/
uint32_t rotation_flags;
/** \brief Blend flags. See "Video blending flags". */
uint32_t blend_flags;
/**
* \brief Mirroring flags.
*
* For each mirroring direction supported by the underlying hardware,
* the corresponding bit is set in \ref mirror_flags. See
* "Mirroring directions" for a description of mirroring directions.
*
*/
uint32_t mirror_flags;
/** \brief Number of additional output surfaces supported by the pipeline */
uint32_t num_additional_outputs;
/** \brief Number of elements in \ref input_pixel_format array. */
uint32_t num_input_pixel_formats;
/** \brief List of input pixel formats in fourcc. */
uint32_t *input_pixel_format;
/** \brief Number of elements in \ref output_pixel_format array. */
uint32_t num_output_pixel_formats;
/** \brief List of output pixel formats in fourcc. */
uint32_t *output_pixel_format;
/** \brief Max supported input width in pixels. */
uint32_t max_input_width;
/** \brief Max supported input height in pixels. */
uint32_t max_input_height;
/** \brief Min supported input width in pixels. */
uint32_t min_input_width;
/** \brief Min supported input height in pixels. */
uint32_t min_input_height;
/** \brief Max supported output width in pixels. */
uint32_t max_output_width;
/** \brief Max supported output height in pixels. */
uint32_t max_output_height;
/** \brief Min supported output width in pixels. */
uint32_t min_output_width;
/** \brief Min supported output height in pixels. */
uint32_t min_output_height;
/** \brief Reserved bytes for future use, must be zero */
#if defined(__AMD64__) || defined(__x86_64__) || defined(__amd64__) || defined(__LP64__)
uint32_t va_reserved[VA_PADDING_HIGH - 2];
#else
uint32_t va_reserved[VA_PADDING_HIGH];
#endif
} VAProcPipelineCaps;
/** \brief Specification of values supported by the filter. */
typedef struct _VAProcFilterValueRange {
/** \brief Minimum value supported, inclusive. */
float min_value;
/** \brief Maximum value supported, inclusive. */
float max_value;
/** \brief Default value. */
float default_value;
/** \brief Step value that alters the filter behaviour in a sensible way. */
float step;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_LOW];
} VAProcFilterValueRange;
typedef struct _VAProcColorProperties {
/** Chroma sample location.\c VA_CHROMA_SITING_VERTICAL_XXX | VA_CHROMA_SITING_HORIZONTAL_XXX */
uint8_t chroma_sample_location;
/** Color range. \c VA_SOURCE_RANGE_XXX*/
uint8_t color_range;
/** Colour primaries.
*
* See ISO/IEC 23001-8 or ITU H.273, section 8.1 and table 2.
* Only used if the color standard in use is \c VAColorStandardExplicit.
* Below list the typical colour primaries for the reference.
* ---------------------------------------------------------------------------------
* | Value | Primaries | Informative Remark |
* --------------------------------------------------------------------------------
* | 1 |primary x y |Rec.ITU-R BT.709-5 |
* | |green 0.300 0.600 |IEC 61966-2-1(sRGB or sYCC) |
* | |blue 0.150 0.060 | |
* | |red 0.640 0.330 | |
* | |whiteD65 0.3127 0.3290 | |
* ---------------------------------------------------------------------------------
* | 6 |primary x y |Rec.ITU-R BT.601-6 525 |
* | |green 0.310 0.595 | |
* | |blue 0.155 0.070 | |
* | |red 0.630 0.340 | |
* | |whiteD65 0.3127 0.3290 | |
* ---------------------------------------------------------------------------------
* | 9 |primary x y |Rec.ITU-R BT.2020 |
* | |green 0.170 0.797 | |
* | |blue 0.131 0.046 | |
* | |red 0.708 0.292 | |
* | |whiteD65 0.3127 0.3290 | |
* ---------------------------------------------------------------------------------
*/
uint8_t colour_primaries;
/** Transfer characteristics.
*
* See ISO/IEC 23001-8 or ITU H.273, section 8.2 and table 3.
* Only used if the color standard in use is \c VAColorStandardExplicit.
* Below list the typical transfer characteristics for the reference.
* -----------------------------------------------------------
* | Value | Informative Remark |
* -----------------------------------------------------------
* | 1 |Rec.ITU-R BT.709-5 |
* | |colour gamut system |
* -----------------------------------------------------------
* | 4 |Assumed display gamma 2.2 |
* -----------------------------------------------------------
* | 6 |Rec.ITU-R BT.601-6 525 or 625 |
* -----------------------------------------------------------
* | 8 |Linear transfer characteristics |
* -----------------------------------------------------------
* | 13 |IEC 61966-2-1(sRGB or sYCC) |
* -----------------------------------------------------------
* | 14,15 |Rec.ITU-R BT.2020 |
* -----------------------------------------------------------
* | 16 |SMPTE ST 2084 for 10,12,14 and 16bit system |
* -----------------------------------------------------------
*/
uint8_t transfer_characteristics;
/** Matrix coefficients.
*
* See ISO/IEC 23001-8 or ITU H.273, section 8.3 and table 4.
* Only used if the color standard in use is \c VAColorStandardExplicit.
*/
uint8_t matrix_coefficients;
/** Reserved bytes for future use, must be zero. */
uint8_t reserved[3];
} VAProcColorProperties;
/** \brief Describes High Dynamic Range Meta Data for HDR10.
*
* Specifies the colour volume(the colour primaries, white point and luminance range) of
* a display considered to be the mastering display for the associated video content -e.g.,
* the colour volume of a display that was used for viewing while authoring the video content.
* See ITU-T H.265 D.3.27 Mastering display colour volume SEI message semantics.
*
* Specifies upper bounds for the nominal light level of the content. See ITU-T H.265 D.3.35
* Content light level information SEI message semantics.
*
* This structure can be used to indicate the HDR10 metadata for 1) the content which was authored;
* 2) the display on which the content will be presented. If it is for display, max_content_light_level
* and max_pic_average_light_level are ignored.
*/
typedef struct _VAHdrMetaDataHDR10 {
/**
* \brief X chromaticity coordinate of the mastering display.
*
* Index value c equal to 0 should correspond to the green primary.
* Index value c equal to 1 should correspond to the blue primary.
* Index value c equal to 2 should correspond to the red primary.
* The value for display_primaries_x shall be in the range of 0 to 50000 inclusive.
*/
uint16_t display_primaries_x[3];
/**
* \brief Y chromaticity coordinate of the mastering display.
*
* Index value c equal to 0 should correspond to the green primary.
* Index value c equal to 1 should correspond to the blue primary.
* Index value c equal to 2 should correspond to the red primary.
* The value for display_primaries_y shall be in the range of 0 to 50000 inclusive.
*/
uint16_t display_primaries_y[3];
/**
* \brief X chromaticity coordinate of the white point of the mastering display.
*
* The value for white_point_x shall be in the range of 0 to 50000 inclusive.
*/
uint16_t white_point_x;
/**
* \brief Y chromaticity coordinate of the white point of the mastering display.
*
* The value for white_point_y shall be in the range of 0 to 50000 inclusive.
*/
uint16_t white_point_y;
/**
* \brief The maximum display luminance of the mastering display.
*
* The value is in units of 0.0001 candelas per square metre.
*/
uint32_t max_display_mastering_luminance;
/**
* \brief The minumum display luminance of the mastering display.
*
* The value is in units of 0.0001 candelas per square metre.
*/
uint32_t min_display_mastering_luminance;
/**
* \brief The maximum content light level (MaxCLL).
*
* The value is in units of 1 candelas per square metre.
*/
uint16_t max_content_light_level;
/**
* \brief The maximum picture average light level (MaxFALL).
*
* The value is in units of 1 candelas per square metre.
*/
uint16_t max_pic_average_light_level;
/** Resevered */
uint16_t reserved[VA_PADDING_HIGH];
} VAHdrMetaDataHDR10;
/** \brief Capabilities specification for the High Dynamic Range filter. */
typedef struct _VAProcFilterCapHighDynamicRange {
/** \brief high dynamic range type. */
VAProcHighDynamicRangeMetadataType metadata_type;
/**
* \brief flag for high dynamic range tone mapping
*
* The flag is the combination of VA_TONE_MAPPING_XXX_TO_XXX.
* It could be VA_TONE_MAPPING_HDR_TO_HDR | VA_TONE_MAPPING_HDR_TO_SDR.
* SDR content to SDR display is always supported by default since it is legacy path.
*/
uint16_t caps_flag;
/** \brief Reserved bytes for future use, must be zero */
uint16_t va_reserved[VA_PADDING_HIGH];
} VAProcFilterCapHighDynamicRange;
/** \brief High Dynamic Range Meta Data. */
typedef struct _VAHdrMetaData {
/** \brief high dynamic range metadata type, HDR10 etc. */
VAProcHighDynamicRangeMetadataType metadata_type;
/**
* \brief Pointer to high dynamic range metadata.
*
* The pointer could point to VAHdrMetaDataHDR10 or other HDR meta data.
*/
void* metadata;
/**
* \brief Size of high dynamic range metadata.
*/
uint32_t metadata_size;
/** \brief Reserved bytes for future use, must be zero */
uint32_t reserved[VA_PADDING_LOW];
} VAHdrMetaData;
/**
* \brief Video processing pipeline configuration.
*
* This buffer defines a video processing pipeline. The actual filters to
* be applied are provided in the \c filters field, they can be re-used
* in other processing pipelines.
*
* The target surface is specified by the \c render_target argument of
* \c vaBeginPicture(). The general usage model is described as follows:
* - \c vaBeginPicture(): specify the target surface that receives the
* processed output;
* - \c vaRenderPicture(): specify a surface to be processed and composed
* into the \c render_target. Use as many \c vaRenderPicture() calls as
* necessary surfaces to compose ;
* - \c vaEndPicture(): tell the driver to start processing the surfaces
* with the requested filters.
*
* If a filter (e.g. noise reduction) needs to be applied with different
* values for multiple surfaces, the application needs to create as many
* filter parameter buffers as necessary. i.e. the filter parameters shall
* not change between two calls to \c vaRenderPicture().
*
* For composition usage models, the first surface to process will generally
* use an opaque background color, i.e. \c output_background_color set with
* the most significant byte set to \c 0xff. For instance, \c 0xff000000 for
* a black background. Then, subsequent surfaces would use a transparent
* background color.
*/
typedef struct _VAProcPipelineParameterBuffer {
/**
* \brief Source surface ID.
*
* ID of the source surface to process. If subpictures are associated
* with the video surfaces then they shall be rendered to the target
* surface, if the #VA_PROC_PIPELINE_SUBPICTURES pipeline flag is set.
*/
VASurfaceID surface;
/**
* \brief Region within the source surface to be processed.
*
* Pointer to a #VARectangle defining the region within the source
* surface to be processed. If NULL, \c surface_region implies the
* whole surface.
*/
const VARectangle *surface_region;
/**
* \brief Requested input color standard.
*
* Color properties are implicitly converted throughout the processing
* pipeline. The video processor chooses the best moment to apply
* this conversion. The set of supported color standards for input shall
* be queried with vaQueryVideoProcPipelineCaps().
*
* If this is set to VAProcColorStandardExplicit, the color properties
* are specified explicitly in surface_color_properties instead.
*/
VAProcColorStandardType surface_color_standard;
/**
* \brief Region within the output surface.
*
* Pointer to a #VARectangle defining the region within the output
* surface that receives the processed pixels. If NULL, \c output_region
* implies the whole surface.
*
* Note that any pixels residing outside the specified region will
* be filled in with the \ref output_background_color.
*/
const VARectangle *output_region;
/**
* \brief Background color.
*
* Background color used to fill in pixels that reside outside of the
* specified \ref output_region. The color is specified in ARGB format:
* [31:24] alpha, [23:16] red, [15:8] green, [7:0] blue.
*
* Unless the alpha value is zero or the \ref output_region represents
* the whole target surface size, implementations shall not render the
* source surface to the target surface directly. Rather, in order to
* maintain the exact semantics of \ref output_background_color, the
* driver shall use a temporary surface and fill it in with the
* appropriate background color. Next, the driver will blend this
* temporary surface into the target surface.
*/
uint32_t output_background_color;
/**
* \brief Requested output color standard.
*
* If this is set to VAProcColorStandardExplicit, the color properties
* are specified explicitly in output_color_properties instead.
*/
VAProcColorStandardType output_color_standard;
/**
* \brief Pipeline filters. See video pipeline flags.
*
* Flags to control the pipeline, like whether to apply subpictures
* or not, notify the driver that it can opt for power optimizations,
* should this be needed.
*/
uint32_t pipeline_flags;
/**
* \brief Extra filter flags. See vaPutSurface() flags.
*
* Filter flags are used as a fast path, wherever possible, to use
* vaPutSurface() flags instead of explicit filter parameter buffers.
*
* Allowed filter flags API-wise. Use vaQueryVideoProcPipelineCaps()
* to check for implementation details:
* - Bob-deinterlacing: \c VA_FRAME_PICTURE, \c VA_TOP_FIELD,
* \c VA_BOTTOM_FIELD. Note that any deinterlacing filter
* (#VAProcFilterDeinterlacing) will override those flags.
* - Color space conversion: \c VA_SRC_BT601, \c VA_SRC_BT709,
* \c VA_SRC_SMPTE_240.
* - Scaling: \c VA_FILTER_SCALING_DEFAULT, \c VA_FILTER_SCALING_FAST,
* \c VA_FILTER_SCALING_HQ, \c VA_FILTER_SCALING_NL_ANAMORPHIC.
* - Interpolation Method: \c VA_FILTER_INTERPOLATION_DEFAULT,
* \c VA_FILTER_INTERPOLATION_NEAREST_NEIGHBOR,
* \c VA_FILTER_INTERPOLATION_BILINEAR, \c VA_FILTER_INTERPOLATION_ADVANCED.
*/
uint32_t filter_flags;
/**
* \brief Array of filters to apply to the surface.
*
* The list of filters shall be ordered in the same way the driver expects
* them. i.e. as was returned from vaQueryVideoProcFilters().
* Otherwise, a #VA_STATUS_ERROR_INVALID_FILTER_CHAIN is returned
* from vaRenderPicture() with this buffer.
*
* #VA_STATUS_ERROR_UNSUPPORTED_FILTER is returned if the list
* contains an unsupported filter.
*
*/
VABufferID *filters;
/** \brief Actual number of filters. */
uint32_t num_filters;
/** \brief Array of forward reference frames (past frames). */
VASurfaceID *forward_references;
/** \brief Number of forward reference frames that were supplied. */
uint32_t num_forward_references;
/** \brief Array of backward reference frames (future frames). */
VASurfaceID *backward_references;
/** \brief Number of backward reference frames that were supplied. */
uint32_t num_backward_references;
/**
* \brief Rotation state. See rotation angles.
*
* The rotation angle is clockwise. There is no specific rotation
* center for this operation. Rather, The source \ref surface is
* first rotated by the specified angle and then scaled to fit the
* \ref output_region.
*
* This means that the top-left hand corner (0,0) of the output
* (rotated) surface is expressed as follows:
* - \ref VA_ROTATION_NONE: (0,0) is the top left corner of the
* source surface -- no rotation is performed ;
* - \ref VA_ROTATION_90: (0,0) is the bottom-left corner of the
* source surface ;
* - \ref VA_ROTATION_180: (0,0) is the bottom-right corner of the
* source surface -- the surface is flipped around the X axis ;
* - \ref VA_ROTATION_270: (0,0) is the top-right corner of the
* source surface.
*
* Check VAProcPipelineCaps::rotation_flags first prior to
* defining a specific rotation angle. Otherwise, the hardware can
* perfectly ignore this variable if it does not support any
* rotation.
*/
uint32_t rotation_state;
/**
* \brief blending state. See "Video blending state definition".
*
* If \ref blend_state is NULL, then default operation mode depends
* on the source \ref surface format:
* - RGB: per-pixel alpha blending ;
* - YUV: no blending, i.e override the underlying pixels.
*
* Otherwise, \ref blend_state is a pointer to a #VABlendState
* structure that shall be live until vaEndPicture().
*
* Implementation note: the driver is responsible for checking the
* blend state flags against the actual source \ref surface format.
* e.g. premultiplied alpha blending is only applicable to RGB
* surfaces, and luma keying is only applicable to YUV surfaces.
* If a mismatch occurs, then #VA_STATUS_ERROR_INVALID_BLEND_STATE
* is returned.
*/
const VABlendState *blend_state;
/**
* \bried mirroring state. See "Mirroring directions".
*
* Mirroring of an image can be performed either along the
* horizontal or vertical axis. It is assumed that the rotation
* operation is always performed before the mirroring operation.
*/
uint32_t mirror_state;
/** \brief Array of additional output surfaces. */
VASurfaceID *additional_outputs;
/** \brief Number of additional output surfaces. */
uint32_t num_additional_outputs;
/**
* \brief Flag to indicate the input surface flag
*
* bit0~3: Surface sample type
* - 0000: Progressive --> VA_FRAME_PICTURE
* - 0001: Single Top Field --> VA_TOP_FIELD
* - 0010: Single Bottom Field --> VA_BOTTOM_FIELD
* - 0100: Interleaved Top Field First --> VA_TOP_FIELD_FIRST
* - 1000: Interleaved Bottom Field First --> VA_BOTTOM_FIELD_FIRST
*
* For interlaced scaling, examples as follow:
* - 1. Interleaved to Interleaved (Suppose input is top field first)
* -- set input_surface_flag as VA_TOP_FIELD_FIRST
* -- set output_surface_flag as VA_TOP_FIELD_FIRST
* - 2. Interleaved to Field (Suppose input is top field first)
* An interleaved frame need to be passed twice.
* First cycle to get the first field:
* -- set input_surface_flag as VA_TOP_FIELD_FIRST
* -- set output_surface_flag as VA_TOP_FIELD
* Second cycle to get the second field:
* -- set input_surface_flag as VA_TOP_FIELD_FIRST
* -- set output_surface_flag as VA_BOTTOM_FIELD
* - 3. Field to Interleaved (Suppose first field is top field)
* -- create two surfaces, one for top field, the other for bottom field
* -- set surface with the first field surface id
* -- set backward_reference with the second field surface id
* -- set input_surface_flag as VA_TOP_FIELD
* -- set output_surface_flag as VA_TOP_FIELD_FIRST
* - 4. Field to Field:
* -- set flag according to each frame.
*
* bit31: Surface encryption
* - 0: non-protected
* - 1: protected
*
* bit4~30 for future
*/
uint32_t input_surface_flag;
/**
* \brief Flag to indicate the output surface flag
*
* bit0~3: Surface sample type
* - 0000: Progressive --> VA_FRAME_PICTURE
* - 0001: Top Field --> VA_TOP_FIELD
* - 0010: Bottom Field --> VA_BOTTOM_FIELD
* - 0100: Top Field First --> VA_TOP_FIELD_FIRST
* - 1000: Bottom Field First --> VA_BOTTOM_FIELD_FIRST
*
* bit31: Surface encryption
* - 0: non-protected
* - 1: protected
*
* bit4~30 for future
*/
uint32_t output_surface_flag;
/**
* \brief Input Color Properties. See "VAProcColorProperties".
*/
VAProcColorProperties input_color_properties;
/**
* \brief Output Color Properties. See "VAProcColorProperties".
*/
VAProcColorProperties output_color_properties;
/**
* \brief Processing mode. See "VAProcMode".
*/
VAProcMode processing_mode;
/**
* \brief Output High Dynamic Metadata.
*
* If output_metadata is NULL, then output default to SDR.
*/
VAHdrMetaData *output_hdr_metadata;
/** \brief Reserved bytes for future use, must be zero */
#if defined(__AMD64__) || defined(__x86_64__) || defined(__amd64__)|| defined(__LP64__)
uint32_t va_reserved[VA_PADDING_LARGE - 16];
#else
uint32_t va_reserved[VA_PADDING_LARGE - 13];
#endif
} VAProcPipelineParameterBuffer;
/**
* \brief Filter parameter buffer base.
*
* This is a helper structure used by driver implementations only.
* Users are not supposed to allocate filter parameter buffers of this
* type.
*/
typedef struct _VAProcFilterParameterBufferBase {
/** \brief Filter type. */
VAProcFilterType type;
} VAProcFilterParameterBufferBase;
/**
* \brief Default filter parametrization.
*
* Unless there is a filter-specific parameter buffer,
* #VAProcFilterParameterBuffer is the default type to use.
*/
typedef struct _VAProcFilterParameterBuffer {
/** \brief Filter type. */
VAProcFilterType type;
/** \brief Value. */
float value;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_LOW];
} VAProcFilterParameterBuffer;
/** @name De-interlacing flags */
/**@{*/
/**
* \brief Bottom field first in the input frame.
* if this is not set then assumes top field first.
*/
#define VA_DEINTERLACING_BOTTOM_FIELD_FIRST 0x0001
/**
* \brief Bottom field used in deinterlacing.
* if this is not set then assumes top field is used.
*/
#define VA_DEINTERLACING_BOTTOM_FIELD 0x0002
/**
* \brief A single field is stored in the input frame.
* if this is not set then assumes the frame contains two interleaved fields.
*/
#define VA_DEINTERLACING_ONE_FIELD 0x0004
/**
* \brief Film Mode Detection is enabled. If enabled, driver performs inverse
* of various pulldowns, such as 3:2 pulldown.
* if this is not set then assumes FMD is disabled.
*/
#define VA_DEINTERLACING_FMD_ENABLE 0x0008
//Scene change parameter for ADI on Linux, if enabled, driver use spatial DI(Bob), instead of ADI. if not, use old behavior for ADI
//Input stream is TFF(set flags = 0), SRC0,1,2,3 are interlaced frame (top +bottom fields), DSTs are progressive frames
//30i->30p
//SRC0 -> BOBDI, no reference, set flag = 0, output DST0
//SRC1 -> ADI, reference frame=SRC0, set flags = 0, call VP, output DST1
//SRC2 -> ADI, reference frame=SRC1, set flags = 0x0010(decimal 16), call VP, output DST2(T4)
//SRC3 -> ADI, reference frame=SRC2, set flags = 0, call VP, output DST3
//30i->60p
//SRC0 -> BOBDI, no reference, set flag = 0, output DST0
//SRC0 -> BOBDI, no reference, set flag =0x0002, output DST1
//SRC1 -> ADI, reference frame =SRC0, set flags = 0, call VP, output DST2
//SRC1 -> ADI, reference frame =SRC0, set flags = 0x0012(decimal18), call VP, output DST3(B3)
//SRC2 -> ADI, reference frame =SRC1, set flags = 0x0010(decimal 16), call VP, output DST4(T4)
//SRC2 -> ADI, reference frame =SRC1, set flags = 0x0002, call VP, output DST5
//SRC3 -> ADI, reference frame =SRC2, set flags = 0, call VP, output DST6
//SRC3 -> ADI, reference frame =SRC1, set flags = 0x0002, call VP, output DST7
#define VA_DEINTERLACING_SCD_ENABLE 0x0010
/**@}*/
/** \brief Deinterlacing filter parametrization. */
typedef struct _VAProcFilterParameterBufferDeinterlacing {
/** \brief Filter type. Shall be set to #VAProcFilterDeinterlacing. */
VAProcFilterType type;
/** \brief Deinterlacing algorithm. */
VAProcDeinterlacingType algorithm;
/** \brief Deinterlacing flags. */
uint32_t flags;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_LOW];
} VAProcFilterParameterBufferDeinterlacing;
/**
* \brief Color balance filter parametrization.
*
* This buffer defines color balance attributes. A VA buffer can hold
* several color balance attributes by creating a VA buffer of desired
* number of elements. This can be achieved by the following pseudo-code:
*
* \code
* enum { kHue, kSaturation, kBrightness, kContrast };
*
* // Initial color balance parameters
* static const VAProcFilterParameterBufferColorBalance colorBalanceParams[4] =
* {
* [kHue] =
* { VAProcFilterColorBalance, VAProcColorBalanceHue, 0.5 },
* [kSaturation] =
* { VAProcFilterColorBalance, VAProcColorBalanceSaturation, 0.5 },
* [kBrightness] =
* { VAProcFilterColorBalance, VAProcColorBalanceBrightness, 0.5 },
* [kSaturation] =
* { VAProcFilterColorBalance, VAProcColorBalanceSaturation, 0.5 }
* };
*
* // Create buffer
* VABufferID colorBalanceBuffer;
* vaCreateBuffer(va_dpy, vpp_ctx,
* VAProcFilterParameterBufferType, sizeof(*pColorBalanceParam), 4,
* colorBalanceParams,
* &colorBalanceBuffer
* );
*
* VAProcFilterParameterBufferColorBalance *pColorBalanceParam;
* vaMapBuffer(va_dpy, colorBalanceBuffer, &pColorBalanceParam);
* {
* // Change brightness only
* pColorBalanceBuffer[kBrightness].value = 0.75;
* }
* vaUnmapBuffer(va_dpy, colorBalanceBuffer);
* \endcode
*/
typedef struct _VAProcFilterParameterBufferColorBalance {
/** \brief Filter type. Shall be set to #VAProcFilterColorBalance. */
VAProcFilterType type;
/** \brief Color balance attribute. */
VAProcColorBalanceType attrib;
/**
* \brief Color balance value.
*
* Special case for automatically adjusted attributes. e.g.
* #VAProcColorBalanceAutoSaturation,
* #VAProcColorBalanceAutoBrightness,
* #VAProcColorBalanceAutoContrast.
* - If \ref value is \c 1.0 +/- \c FLT_EPSILON, the attribute is
* automatically adjusted and overrides any other attribute of
* the same type that would have been set explicitly;
* - If \ref value is \c 0.0 +/- \c FLT_EPSILON, the attribute is
* disabled and other attribute of the same type is used instead.
*/
float value;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_LOW];
} VAProcFilterParameterBufferColorBalance;
/** \brief Total color correction filter parametrization. */
typedef struct _VAProcFilterParameterBufferTotalColorCorrection {
/** \brief Filter type. Shall be set to #VAProcFilterTotalColorCorrection. */
VAProcFilterType type;
/** \brief Color to correct. */
VAProcTotalColorCorrectionType attrib;
/** \brief Color correction value. */
float value;
} VAProcFilterParameterBufferTotalColorCorrection;
/** @name Video Processing Human Vision System (HVS) Denoise Mode.*/
/**@{*/
/**
* \brief Default Mode.
* This mode is decided in driver to the appropriate mode.
*/
#define VA_PROC_HVS_DENOISE_DEFAULT 0x0000
/**
* \brief Auto BDRate Mode.
* Indicates auto BD rate improvement in pre-processing (such as before video encoding), ignore Strength.
*/
#define VA_PROC_HVS_DENOISE_AUTO_BDRATE 0x0001
/**
* \brief Auto Subjective Mode.
* Indicates auto subjective quality improvement in pre-processing (such as before video encoding), ignore Strength.
*/
#define VA_PROC_HVS_DENOISE_AUTO_SUBJECTIVE 0x0002
/**
* \brief Manual Mode.
* Indicates manual mode, allow to adjust the denoise strength manually (need to set Strength explicitly).
*/
#define VA_PROC_HVS_DENOISE_MANUAL 0x0003
/**@}*/
/** \brief Human Vision System(HVS) Noise reduction filter parametrization. */
typedef struct _VAProcFilterParameterBufferHVSNoiseReduction {
/** \brief Filter type. Shall be set to #VAProcFilterHVSNoiseReduction. */
VAProcFilterType type;
/** \brief QP for encoding, used for HVS Denoise */
uint16_t qp;
/**
* \brief QP to Noise Reduction Strength Mode, used for Human Vision System Based Noise Reduction.
* Controls Noise Reduction strength of conservative and aggressive mode.
* It is an integer from [0-16].
* Value 0 means completely turn off Noise Reduction;
* Value 16 means the most aggressive mode of Noise Reduction;
* Value 10 is the default value.
*/
uint16_t strength;
/**
* \brief HVS Denoise Mode which controls denoise method.
* It is a value of VA_PROC_HVS_DENOISE_xxx.
* Please see the definition of VA_PROC_HVS_DENOISE_xxx.
*/
uint16_t mode;
/** \brief Reserved bytes for future use, must be zero */
uint16_t va_reserved[VA_PADDING_HIGH - 1];
} VAProcFilterParameterBufferHVSNoiseReduction;
/** \brief High Dynamic Range(HDR) Tone Mapping filter parametrization. */
typedef struct _VAProcFilterParameterBufferHDRToneMapping {
/** \brief Filter type. Shall be set to #VAProcFilterHighDynamicRangeToneMapping.*/
VAProcFilterType type;
/**
* \brief High Dynamic Range metadata, could be HDR10 etc.
*
* This metadata is mainly for the input surface. Given that dynamic metadata is changing
* on frame-by-frame or scene-by-scene basis for HDR10 plus, differentiate the metadata
* for the input and output.
*/
VAHdrMetaData data;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_HIGH];
} VAProcFilterParameterBufferHDRToneMapping;
/** @name 3DLUT Channel Layout and Mapping */
/**@{*/
/** \brief 3DLUT Channel Layout is unknown. */
#define VA_3DLUT_CHANNEL_UNKNOWN 0x00000000
/** \brief 3DLUT Channel Layout is R, G, B, the default layout. Map RGB to RGB. */
#define VA_3DLUT_CHANNEL_RGB_RGB 0x00000001
/** \brief 3DLUT Channel Layout is Y, U, V. Map YUV to RGB. */
#define VA_3DLUT_CHANNEL_YUV_RGB 0x00000002
/** \brief 3DLUT Channel Layout is V, U, Y. Map VUY to RGB. */
#define VA_3DLUT_CHANNEL_VUY_RGB 0x00000004
/**@}*/
/**
* \brief 3DLUT filter parametrization.
*
* 3DLUT (Three Dimensional Look Up Table) is often used when converting an image or a video frame
* from one color representation to another, for example, when converting log and gamma encodings,
* changing the color space, applying a color correction, changing the dynamic range, gamut mapping etc.
*
* This buffer defines 3DLUT attributes and memory layout. The typical 3DLUT has fixed number(lut_size)
* per dimension and memory layout is 3 dimensional array as 3dlut[stride_0][stride_1][stride_2] (lut_size
* shall be smaller than stride_0/1/2).
*
* API user should query hardware capability by using the VAProcFilterCap3DLUT to get the 3DLUT attributes
* which hardware supports, and use these attributes. For example, if the user queries hardware, the API user
* could get caps with 3dlut[33][33][64] (lut_size = 33, lut_stride[0/1/2] = 33/33/64). API user shall not
* use the attributes which hardware can not support.
*
* 3DLUT is usually used to transform input RGB/YUV values in one color space to output RGB values in another
* color space. Based on 1) the format and color space of VPP input and output and 2) 3DLUT memory layout and
* channel mapping, driver will enable some color space conversion implicitly if needed. For example, the input of
* VPP is P010 format in BT2020 color space, the output of VPP is NV12 in BT709 color space and the 3DLUT channel
* mapping is VA_3DLUT_CHANNEL_RGB_RGB, driver could build the data pipeline as P010(BT2020)->RGB(BT2020)
* ->3DULT(BT709)->NV12(BT709). Please note, the limitation of 3DLUT filter color space is that the color space of
* 3DLUT filter input data needs to be same as the input data of VPP; the color space of 3DLUT filter output data
* needs to be same as the output data of VPP; format does not have such limitation.
*/
typedef struct _VAProcFilterParameterBuffer3DLUT {
/** \brief Filter type. Shall be set to #VAProcFilter3DLUT.*/
VAProcFilterType type;
/** \brief lut_surface contains 3DLUT data in the 3DLUT memory layout, must be linear */
VASurfaceID lut_surface;
/**
* \brief lut_size is the number of valid points on every dimension of the three dimensional look up table.
* The size of LUT (lut_size) shall be same among every dimension of the three dimensional look up table.
* The size of LUT (lut_size) shall be smaller than lut_stride[0/1/2].
*/
uint16_t lut_size;
/**
* \brief lut_stride are the number of points on every dimension of the three dimensional look up table.
* Three dimension can has 3 different stride, lut3d[lut_stride[0]][lut_stride[1]][lut_stride[2]].
* But the valid point shall start from 0, the range of valid point is [0, lut_size-1] for every dimension.
*/
uint16_t lut_stride[3];
/** \brief bit_depth is the number of bits for every channel R, G or B (or Y, U, V) */
uint16_t bit_depth;
/** \brief num_channel is the number of channels */
uint16_t num_channel;
/** \brief channel_mapping defines the mapping of input and output channels, could be one of VA_3DLUT_CHANNEL_XXX*/
uint32_t channel_mapping;
/** \brief reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_HIGH];
} VAProcFilterParameterBuffer3DLUT;
/** \brief Capabilities specification for the 3DLUT filter. */
typedef struct _VAProcFilterCap3DLUT {
/** \brief lut_size is the number of valid points on every dimension of the three dimensional look up table. */
uint16_t lut_size;
/** \brief lut_stride are the number of points on every dimension of the three dimensional look up table. lut3d[lut_stride[0]][lut_stride[1]][lut_stride[2]]*/
uint16_t lut_stride[3];
/** \brief bit_depth is the number of bits for every channel R, G or B (or Y, U, V) */
uint16_t bit_depth;
/** \brief num_channel is the number of channels */
uint16_t num_channel;
/** \brief channel_mapping defines the mapping of channels, could be some combination of VA_3DLUT_CHANNEL_XXX*/
uint32_t channel_mapping;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_HIGH];
} VAProcFilterCap3DLUT;
/**
* \brief Default filter cap specification (single range value).
*
* Unless there is a filter-specific cap structure, #VAProcFilterCap is the
* default type to use for output caps from vaQueryVideoProcFilterCaps().
*/
typedef struct _VAProcFilterCap {
/** \brief Range of supported values for the filter. */
VAProcFilterValueRange range;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_LOW];
} VAProcFilterCap;
/** \brief Capabilities specification for the deinterlacing filter. */
typedef struct _VAProcFilterCapDeinterlacing {
/** \brief Deinterlacing algorithm. */
VAProcDeinterlacingType type;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_LOW];
} VAProcFilterCapDeinterlacing;
/** \brief Capabilities specification for the color balance filter. */
typedef struct _VAProcFilterCapColorBalance {
/** \brief Color balance operation. */
VAProcColorBalanceType type;
/** \brief Range of supported values for the specified operation. */
VAProcFilterValueRange range;
/** \brief Reserved bytes for future use, must be zero */
uint32_t va_reserved[VA_PADDING_LOW];
} VAProcFilterCapColorBalance;
/** \brief Capabilities specification for the Total Color Correction filter. */
typedef struct _VAProcFilterCapTotalColorCorrection {
/** \brief Color to correct. */
VAProcTotalColorCorrectionType type;
/** \brief Range of supported values for the specified color. */
VAProcFilterValueRange range;
} VAProcFilterCapTotalColorCorrection;
/**
* \brief Queries video processing filters.
*
* This function returns the list of video processing filters supported
* by the driver. The \c filters array is allocated by the user and
* \c num_filters shall be initialized to the number of allocated
* elements in that array. Upon successful return, the actual number
* of filters will be overwritten into \c num_filters. Otherwise,
* \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and \c num_filters
* is adjusted to the number of elements that would be returned if enough
* space was available.
*
* The list of video processing filters supported by the driver shall
* be ordered in the way they can be iteratively applied. This is needed
* for both correctness, i.e. some filters would not mean anything if
* applied at the beginning of the pipeline; but also for performance
* since some filters can be applied in a single pass (e.g. noise
* reduction + deinterlacing).
*
* @param[in] dpy the VA display
* @param[in] context the video processing context
* @param[out] filters the output array of #VAProcFilterType elements
* @param[in,out] num_filters the number of elements allocated on input,
* the number of elements actually filled in on output
*/
VAStatus
vaQueryVideoProcFilters(
VADisplay dpy,
VAContextID context,
VAProcFilterType *filters,
unsigned int *num_filters
);
/**
* \brief Queries video filter capabilities.
*
* This function returns the list of capabilities supported by the driver
* for a specific video filter. The \c filter_caps array is allocated by
* the user and \c num_filter_caps shall be initialized to the number
* of allocated elements in that array. Upon successful return, the
* actual number of filters will be overwritten into \c num_filter_caps.
* Otherwise, \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and
* \c num_filter_caps is adjusted to the number of elements that would be
* returned if enough space was available.
*
* @param[in] dpy the VA display
* @param[in] context the video processing context
* @param[in] type the video filter type
* @param[out] filter_caps the output array of #VAProcFilterCap elements
* @param[in,out] num_filter_caps the number of elements allocated on input,
* the number of elements actually filled in output
*/
VAStatus
vaQueryVideoProcFilterCaps(
VADisplay dpy,
VAContextID context,
VAProcFilterType type,
void *filter_caps,
unsigned int *num_filter_caps
);
/**
* \brief Queries video processing pipeline capabilities.
*
* This function returns the video processing pipeline capabilities. The
* \c filters array defines the video processing pipeline and is an array
* of buffers holding filter parameters.
*
* Note: the #VAProcPipelineCaps structure contains user-provided arrays.
* If non-NULL, the corresponding \c num_* fields shall be filled in on
* input with the number of elements allocated. Upon successful return,
* the actual number of elements will be overwritten into the \c num_*
* fields. Otherwise, \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned
* and \c num_* fields are adjusted to the number of elements that would
* be returned if enough space was available.
*
* @param[in] dpy the VA display
* @param[in] context the video processing context
* @param[in] filters the array of VA buffers defining the video
* processing pipeline
* @param[in] num_filters the number of elements in filters
* @param[in,out] pipeline_caps the video processing pipeline capabilities
*/
VAStatus
vaQueryVideoProcPipelineCaps(
VADisplay dpy,
VAContextID context,
VABufferID *filters,
unsigned int num_filters,
VAProcPipelineCaps *pipeline_caps
);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* VA_VPP_H */