blob: d8b4395265634525d919cf7a000e5b1d74e7908f [file] [log] [blame]
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package report
// This file contains routines related to the generation of annotated
// source listings.
import (
"bufio"
"fmt"
"html/template"
"io"
"os"
"path/filepath"
"regexp"
"sort"
"strconv"
"strings"
"github.com/google/pprof/internal/graph"
"github.com/google/pprof/internal/measurement"
"github.com/google/pprof/internal/plugin"
"github.com/google/pprof/profile"
)
// printSource prints an annotated source listing, include all
// functions with samples that match the regexp rpt.options.symbol.
// The sources are sorted by function name and then by filename to
// eliminate potential nondeterminism.
func printSource(w io.Writer, rpt *Report) error {
o := rpt.options
g := rpt.newGraph(nil)
// Identify all the functions that match the regexp provided.
// Group nodes for each matching function.
var functions graph.Nodes
functionNodes := make(map[string]graph.Nodes)
for _, n := range g.Nodes {
if !o.Symbol.MatchString(n.Info.Name) {
continue
}
if functionNodes[n.Info.Name] == nil {
functions = append(functions, n)
}
functionNodes[n.Info.Name] = append(functionNodes[n.Info.Name], n)
}
functions.Sort(graph.NameOrder)
if len(functionNodes) == 0 {
return fmt.Errorf("no matches found for regexp: %s", o.Symbol)
}
sourcePath := o.SourcePath
if sourcePath == "" {
wd, err := os.Getwd()
if err != nil {
return fmt.Errorf("could not stat current dir: %v", err)
}
sourcePath = wd
}
reader := newSourceReader(sourcePath, o.TrimPath)
fmt.Fprintf(w, "Total: %s\n", rpt.formatValue(rpt.total))
for _, fn := range functions {
name := fn.Info.Name
// Identify all the source files associated to this function.
// Group nodes for each source file.
var sourceFiles graph.Nodes
fileNodes := make(map[string]graph.Nodes)
for _, n := range functionNodes[name] {
if n.Info.File == "" {
continue
}
if fileNodes[n.Info.File] == nil {
sourceFiles = append(sourceFiles, n)
}
fileNodes[n.Info.File] = append(fileNodes[n.Info.File], n)
}
if len(sourceFiles) == 0 {
fmt.Fprintf(w, "No source information for %s\n", name)
continue
}
sourceFiles.Sort(graph.FileOrder)
// Print each file associated with this function.
for _, fl := range sourceFiles {
filename := fl.Info.File
fns := fileNodes[filename]
flatSum, cumSum := fns.Sum()
fnodes, _, err := getSourceFromFile(filename, reader, fns, 0, 0)
fmt.Fprintf(w, "ROUTINE ======================== %s in %s\n", name, filename)
fmt.Fprintf(w, "%10s %10s (flat, cum) %s of Total\n",
rpt.formatValue(flatSum), rpt.formatValue(cumSum),
measurement.Percentage(cumSum, rpt.total))
if err != nil {
fmt.Fprintf(w, " Error: %v\n", err)
continue
}
for _, fn := range fnodes {
fmt.Fprintf(w, "%10s %10s %6d:%s\n", valueOrDot(fn.Flat, rpt), valueOrDot(fn.Cum, rpt), fn.Info.Lineno, fn.Info.Name)
}
}
}
return nil
}
// printWebSource prints an annotated source listing, include all
// functions with samples that match the regexp rpt.options.symbol.
func printWebSource(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
printHeader(w, rpt)
if err := PrintWebList(w, rpt, obj, -1); err != nil {
return err
}
printPageClosing(w)
return nil
}
// sourcePrinter holds state needed for generating source+asm HTML listing.
type sourcePrinter struct {
reader *sourceReader
synth *synthCode
objectTool plugin.ObjTool
objects map[string]plugin.ObjFile // Opened object files
sym *regexp.Regexp // May be nil
files map[string]*sourceFile // Set of files to print.
insts map[uint64]instructionInfo // Instructions of interest (keyed by address).
// Set of function names that we are interested in (because they had
// a sample and match sym).
interest map[string]bool
// Mapping from system function names to printable names.
prettyNames map[string]string
}
// addrInfo holds information for an address we are interested in.
type addrInfo struct {
loc *profile.Location // Always non-nil
obj plugin.ObjFile // May be nil
}
// instructionInfo holds collected information for an instruction.
type instructionInfo struct {
objAddr uint64 // Address in object file (with base subtracted out)
length int // Instruction length in bytes
disasm string // Disassembly of instruction
file string // For top-level function in which instruction occurs
line int // For top-level function in which instruction occurs
flat, cum int64 // Samples to report (divisor already applied)
}
// sourceFile contains collected information for files we will print.
type sourceFile struct {
fname string
cum int64
flat int64
lines map[int][]sourceInst // Instructions to show per line
funcName map[int]string // Function name per line
}
// sourceInst holds information for an instruction to be displayed.
type sourceInst struct {
addr uint64
stack []callID // Inlined call-stack
}
// sourceFunction contains information for a contiguous range of lines per function we
// will print.
type sourceFunction struct {
name string
begin, end int // Line numbers (end is not included in the range)
flat, cum int64
}
// addressRange is a range of addresses plus the object file that contains it.
type addressRange struct {
begin, end uint64
obj plugin.ObjFile
mapping *profile.Mapping
score int64 // Used to order ranges for processing
}
// PrintWebList prints annotated source listing of rpt to w.
// rpt.prof should contain inlined call info.
func PrintWebList(w io.Writer, rpt *Report, obj plugin.ObjTool, maxFiles int) error {
sourcePath := rpt.options.SourcePath
if sourcePath == "" {
wd, err := os.Getwd()
if err != nil {
return fmt.Errorf("could not stat current dir: %v", err)
}
sourcePath = wd
}
sp := newSourcePrinter(rpt, obj, sourcePath)
if len(sp.interest) == 0 {
return fmt.Errorf("no matches found for regexp: %s", rpt.options.Symbol)
}
sp.print(w, maxFiles, rpt)
sp.close()
return nil
}
func newSourcePrinter(rpt *Report, obj plugin.ObjTool, sourcePath string) *sourcePrinter {
sp := &sourcePrinter{
reader: newSourceReader(sourcePath, rpt.options.TrimPath),
synth: newSynthCode(rpt.prof.Mapping),
objectTool: obj,
objects: map[string]plugin.ObjFile{},
sym: rpt.options.Symbol,
files: map[string]*sourceFile{},
insts: map[uint64]instructionInfo{},
prettyNames: map[string]string{},
interest: map[string]bool{},
}
// If the regexp source can be parsed as an address, also match
// functions that land on that address.
var address *uint64
if sp.sym != nil {
if hex, err := strconv.ParseUint(sp.sym.String(), 0, 64); err == nil {
address = &hex
}
}
addrs := map[uint64]addrInfo{}
flat := map[uint64]int64{}
cum := map[uint64]int64{}
// Record an interest in the function corresponding to lines[index].
markInterest := func(addr uint64, loc *profile.Location, index int) {
fn := loc.Line[index]
if fn.Function == nil {
return
}
sp.interest[fn.Function.Name] = true
sp.interest[fn.Function.SystemName] = true
if _, ok := addrs[addr]; !ok {
addrs[addr] = addrInfo{loc, sp.objectFile(loc.Mapping)}
}
}
// See if sp.sym matches line.
matches := func(line profile.Line) bool {
if line.Function == nil {
return false
}
return sp.sym.MatchString(line.Function.Name) ||
sp.sym.MatchString(line.Function.SystemName) ||
sp.sym.MatchString(line.Function.Filename)
}
// Extract sample counts and compute set of interesting functions.
for _, sample := range rpt.prof.Sample {
value := rpt.options.SampleValue(sample.Value)
if rpt.options.SampleMeanDivisor != nil {
div := rpt.options.SampleMeanDivisor(sample.Value)
if div != 0 {
value /= div
}
}
// Find call-sites matching sym.
for i := len(sample.Location) - 1; i >= 0; i-- {
loc := sample.Location[i]
for _, line := range loc.Line {
if line.Function == nil {
continue
}
sp.prettyNames[line.Function.SystemName] = line.Function.Name
}
addr := loc.Address
if addr == 0 {
// Some profiles are missing valid addresses.
addr = sp.synth.address(loc)
}
cum[addr] += value
if i == 0 {
flat[addr] += value
}
if sp.sym == nil || (address != nil && addr == *address) {
// Interested in top-level entry of stack.
if len(loc.Line) > 0 {
markInterest(addr, loc, len(loc.Line)-1)
}
continue
}
// Search in inlined stack for a match.
matchFile := (loc.Mapping != nil && sp.sym.MatchString(loc.Mapping.File))
for j, line := range loc.Line {
if (j == 0 && matchFile) || matches(line) {
markInterest(addr, loc, j)
}
}
}
}
sp.expandAddresses(rpt, addrs, flat)
sp.initSamples(flat, cum)
return sp
}
func (sp *sourcePrinter) close() {
for _, objFile := range sp.objects {
if objFile != nil {
objFile.Close()
}
}
}
func (sp *sourcePrinter) expandAddresses(rpt *Report, addrs map[uint64]addrInfo, flat map[uint64]int64) {
// We found interesting addresses (ones with non-zero samples) above.
// Get covering address ranges and disassemble the ranges.
ranges, unprocessed := sp.splitIntoRanges(rpt.prof, addrs, flat)
sp.handleUnprocessed(addrs, unprocessed)
// Trim ranges if there are too many.
const maxRanges = 25
sort.Slice(ranges, func(i, j int) bool {
return ranges[i].score > ranges[j].score
})
if len(ranges) > maxRanges {
ranges = ranges[:maxRanges]
}
for _, r := range ranges {
objBegin, err := r.obj.ObjAddr(r.begin)
if err != nil {
fmt.Fprintf(os.Stderr, "Failed to compute objdump address for range start %x: %v\n", r.begin, err)
continue
}
objEnd, err := r.obj.ObjAddr(r.end)
if err != nil {
fmt.Fprintf(os.Stderr, "Failed to compute objdump address for range end %x: %v\n", r.end, err)
continue
}
base := r.begin - objBegin
insts, err := sp.objectTool.Disasm(r.mapping.File, objBegin, objEnd, rpt.options.IntelSyntax)
if err != nil {
// TODO(sanjay): Report that the covered addresses are missing.
continue
}
var lastFrames []plugin.Frame
var lastAddr, maxAddr uint64
for i, inst := range insts {
addr := inst.Addr + base
// Guard against duplicate output from Disasm.
if addr <= maxAddr {
continue
}
maxAddr = addr
length := 1
if i+1 < len(insts) && insts[i+1].Addr > inst.Addr {
// Extend to next instruction.
length = int(insts[i+1].Addr - inst.Addr)
}
// Get inlined-call-stack for address.
frames, err := r.obj.SourceLine(addr)
if err != nil {
// Construct a frame from disassembler output.
frames = []plugin.Frame{{Func: inst.Function, File: inst.File, Line: inst.Line}}
}
x := instructionInfo{objAddr: inst.Addr, length: length, disasm: inst.Text}
if len(frames) > 0 {
// We could consider using the outer-most caller's source
// location so we give the some hint as to where the
// inlining happened that led to this instruction. So for
// example, suppose we have the following (inlined) call
// chains for this instruction:
// F1->G->H
// F2->G->H
// We could tag the instructions from the first call with
// F1 and instructions from the second call with F2. But
// that leads to a somewhat confusing display. So for now,
// we stick with just the inner-most location (i.e., H).
// In the future we will consider changing the display to
// make caller info more visible.
index := 0 // Inner-most frame
x.file = frames[index].File
x.line = frames[index].Line
}
sp.insts[addr] = x
// We sometimes get instructions with a zero reported line number.
// Make such instructions have the same line info as the preceding
// instruction, if an earlier instruction is found close enough.
const neighborhood = 32
if len(frames) > 0 && frames[0].Line != 0 {
lastFrames = frames
lastAddr = addr
} else if (addr-lastAddr <= neighborhood) && lastFrames != nil {
frames = lastFrames
}
sp.addStack(addr, frames)
}
}
}
func (sp *sourcePrinter) addStack(addr uint64, frames []plugin.Frame) {
// See if the stack contains a function we are interested in.
for i, f := range frames {
if !sp.interest[f.Func] {
continue
}
// Record sub-stack under frame's file/line.
fname := canonicalizeFileName(f.File)
file := sp.files[fname]
if file == nil {
file = &sourceFile{
fname: fname,
lines: map[int][]sourceInst{},
funcName: map[int]string{},
}
sp.files[fname] = file
}
callees := frames[:i]
stack := make([]callID, 0, len(callees))
for j := len(callees) - 1; j >= 0; j-- { // Reverse so caller is first
stack = append(stack, callID{
file: callees[j].File,
line: callees[j].Line,
})
}
file.lines[f.Line] = append(file.lines[f.Line], sourceInst{addr, stack})
// Remember the first function name encountered per source line
// and assume that that line belongs to that function.
if _, ok := file.funcName[f.Line]; !ok {
file.funcName[f.Line] = f.Func
}
}
}
// synthAsm is the special disassembler value used for instructions without an object file.
const synthAsm = ""
// handleUnprocessed handles addresses that were skipped by splitIntoRanges because they
// did not belong to a known object file.
func (sp *sourcePrinter) handleUnprocessed(addrs map[uint64]addrInfo, unprocessed []uint64) {
// makeFrames synthesizes a []plugin.Frame list for the specified address.
// The result will typically have length 1, but may be longer if address corresponds
// to inlined calls.
makeFrames := func(addr uint64) []plugin.Frame {
loc := addrs[addr].loc
stack := make([]plugin.Frame, 0, len(loc.Line))
for _, line := range loc.Line {
fn := line.Function
if fn == nil {
continue
}
stack = append(stack, plugin.Frame{
Func: fn.Name,
File: fn.Filename,
Line: int(line.Line),
})
}
return stack
}
for _, addr := range unprocessed {
frames := makeFrames(addr)
x := instructionInfo{
objAddr: addr,
length: 1,
disasm: synthAsm,
}
if len(frames) > 0 {
x.file = frames[0].File
x.line = frames[0].Line
}
sp.insts[addr] = x
sp.addStack(addr, frames)
}
}
// splitIntoRanges converts the set of addresses we are interested in into a set of address
// ranges to disassemble. It also returns the set of addresses found that did not have an
// associated object file and were therefore not added to an address range.
func (sp *sourcePrinter) splitIntoRanges(prof *profile.Profile, addrMap map[uint64]addrInfo, flat map[uint64]int64) ([]addressRange, []uint64) {
// Partition addresses into two sets: ones with a known object file, and ones without.
var addrs, unprocessed []uint64
for addr, info := range addrMap {
if info.obj != nil {
addrs = append(addrs, addr)
} else {
unprocessed = append(unprocessed, addr)
}
}
sort.Slice(addrs, func(i, j int) bool { return addrs[i] < addrs[j] })
const expand = 500 // How much to expand range to pick up nearby addresses.
var result []addressRange
for i, n := 0, len(addrs); i < n; {
begin, end := addrs[i], addrs[i]
sum := flat[begin]
i++
info := addrMap[begin]
m := info.loc.Mapping
obj := info.obj // Non-nil because of the partitioning done above.
// Find following addresses that are close enough to addrs[i].
for i < n && addrs[i] <= end+2*expand && addrs[i] < m.Limit {
// When we expand ranges by "expand" on either side, the ranges
// for addrs[i] and addrs[i-1] will merge.
end = addrs[i]
sum += flat[end]
i++
}
if m.Start-begin >= expand {
begin -= expand
} else {
begin = m.Start
}
if m.Limit-end >= expand {
end += expand
} else {
end = m.Limit
}
result = append(result, addressRange{begin, end, obj, m, sum})
}
return result, unprocessed
}
func (sp *sourcePrinter) initSamples(flat, cum map[uint64]int64) {
for addr, inst := range sp.insts {
// Move all samples that were assigned to the middle of an instruction to the
// beginning of that instruction. This takes care of samples that were recorded
// against pc+1.
instEnd := addr + uint64(inst.length)
for p := addr; p < instEnd; p++ {
inst.flat += flat[p]
inst.cum += cum[p]
}
sp.insts[addr] = inst
}
}
func (sp *sourcePrinter) print(w io.Writer, maxFiles int, rpt *Report) {
// Finalize per-file counts.
for _, file := range sp.files {
seen := map[uint64]bool{}
for _, line := range file.lines {
for _, x := range line {
if seen[x.addr] {
// Same address can be displayed multiple times in a file
// (e.g., if we show multiple inlined functions).
// Avoid double-counting samples in this case.
continue
}
seen[x.addr] = true
inst := sp.insts[x.addr]
file.cum += inst.cum
file.flat += inst.flat
}
}
}
// Get sorted list of files to print.
var files []*sourceFile
for _, f := range sp.files {
files = append(files, f)
}
order := func(i, j int) bool { return files[i].flat > files[j].flat }
if maxFiles < 0 {
// Order by name for compatibility with old code.
order = func(i, j int) bool { return files[i].fname < files[j].fname }
maxFiles = len(files)
}
sort.Slice(files, order)
for i, f := range files {
if i < maxFiles {
sp.printFile(w, f, rpt)
}
}
}
func (sp *sourcePrinter) printFile(w io.Writer, f *sourceFile, rpt *Report) {
for _, fn := range sp.functions(f) {
if fn.cum == 0 {
continue
}
printFunctionHeader(w, fn.name, f.fname, fn.flat, fn.cum, rpt)
var asm []assemblyInstruction
for l := fn.begin; l < fn.end; l++ {
lineContents, ok := sp.reader.line(f.fname, l)
if !ok {
if len(f.lines[l]) == 0 {
// Outside of range of valid lines and nothing to print.
continue
}
if l == 0 {
// Line number 0 shows up if line number is not known.
lineContents = "<instructions with unknown line numbers>"
} else {
// Past end of file, but have data to print.
lineContents = "???"
}
}
// Make list of assembly instructions.
asm = asm[:0]
var flatSum, cumSum int64
var lastAddr uint64
for _, inst := range f.lines[l] {
addr := inst.addr
x := sp.insts[addr]
flatSum += x.flat
cumSum += x.cum
startsBlock := (addr != lastAddr+uint64(sp.insts[lastAddr].length))
lastAddr = addr
// divisors already applied, so leave flatDiv,cumDiv as 0
asm = append(asm, assemblyInstruction{
address: x.objAddr,
instruction: x.disasm,
function: fn.name,
file: x.file,
line: x.line,
flat: x.flat,
cum: x.cum,
startsBlock: startsBlock,
inlineCalls: inst.stack,
})
}
printFunctionSourceLine(w, l, flatSum, cumSum, lineContents, asm, sp.reader, rpt)
}
printFunctionClosing(w)
}
}
// functions splits apart the lines to show in a file into a list of per-function ranges.
func (sp *sourcePrinter) functions(f *sourceFile) []sourceFunction {
var funcs []sourceFunction
// Get interesting lines in sorted order.
lines := make([]int, 0, len(f.lines))
for l := range f.lines {
lines = append(lines, l)
}
sort.Ints(lines)
// Merge adjacent lines that are in same function and not too far apart.
const mergeLimit = 20
for _, l := range lines {
name := f.funcName[l]
if pretty, ok := sp.prettyNames[name]; ok {
// Use demangled name if available.
name = pretty
}
fn := sourceFunction{name: name, begin: l, end: l + 1}
for _, x := range f.lines[l] {
inst := sp.insts[x.addr]
fn.flat += inst.flat
fn.cum += inst.cum
}
// See if we should merge into preceding function.
if len(funcs) > 0 {
last := funcs[len(funcs)-1]
if l-last.end < mergeLimit && last.name == name {
last.end = l + 1
last.flat += fn.flat
last.cum += fn.cum
funcs[len(funcs)-1] = last
continue
}
}
// Add new function.
funcs = append(funcs, fn)
}
// Expand function boundaries to show neighborhood.
const expand = 5
for i, f := range funcs {
if i == 0 {
// Extend backwards, stopping at line number 1, but do not disturb 0
// since that is a special line number that can show up when addr2line
// cannot determine the real line number.
if f.begin > expand {
f.begin -= expand
} else if f.begin > 1 {
f.begin = 1
}
} else {
// Find gap from predecessor and divide between predecessor and f.
halfGap := (f.begin - funcs[i-1].end) / 2
if halfGap > expand {
halfGap = expand
}
funcs[i-1].end += halfGap
f.begin -= halfGap
}
funcs[i] = f
}
// Also extend the ending point of the last function.
if len(funcs) > 0 {
funcs[len(funcs)-1].end += expand
}
return funcs
}
// objectFile return the object for the specified mapping, opening it if necessary.
// It returns nil on error.
func (sp *sourcePrinter) objectFile(m *profile.Mapping) plugin.ObjFile {
if m == nil {
return nil
}
if object, ok := sp.objects[m.File]; ok {
return object // May be nil if we detected an error earlier.
}
object, err := sp.objectTool.Open(m.File, m.Start, m.Limit, m.Offset, m.KernelRelocationSymbol)
if err != nil {
object = nil
}
sp.objects[m.File] = object // Cache even on error.
return object
}
// printHeader prints the page header for a weblist report.
func printHeader(w io.Writer, rpt *Report) {
fmt.Fprintln(w, `
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Pprof listing</title>`)
fmt.Fprintln(w, weblistPageCSS)
fmt.Fprintln(w, weblistPageScript)
fmt.Fprint(w, "</head>\n<body>\n\n")
var labels []string
for _, l := range ProfileLabels(rpt) {
labels = append(labels, template.HTMLEscapeString(l))
}
fmt.Fprintf(w, `<div class="legend">%s<br>Total: %s</div>`,
strings.Join(labels, "<br>\n"),
rpt.formatValue(rpt.total),
)
}
// printFunctionHeader prints a function header for a weblist report.
func printFunctionHeader(w io.Writer, name, path string, flatSum, cumSum int64, rpt *Report) {
fmt.Fprintf(w, `<h2>%s</h2><p class="filename">%s</p>
<pre onClick="pprof_toggle_asm(event)">
Total: %10s %10s (flat, cum) %s
`,
template.HTMLEscapeString(name), template.HTMLEscapeString(path),
rpt.formatValue(flatSum), rpt.formatValue(cumSum),
measurement.Percentage(cumSum, rpt.total))
}
// printFunctionSourceLine prints a source line and the corresponding assembly.
func printFunctionSourceLine(w io.Writer, lineNo int, flat, cum int64, lineContents string,
assembly []assemblyInstruction, reader *sourceReader, rpt *Report) {
if len(assembly) == 0 {
fmt.Fprintf(w,
"<span class=line> %6d</span> <span class=nop> %10s %10s %8s %s </span>\n",
lineNo,
valueOrDot(flat, rpt), valueOrDot(cum, rpt),
"", template.HTMLEscapeString(lineContents))
return
}
nestedInfo := false
cl := "deadsrc"
for _, an := range assembly {
if len(an.inlineCalls) > 0 || an.instruction != synthAsm {
nestedInfo = true
cl = "livesrc"
}
}
fmt.Fprintf(w,
"<span class=line> %6d</span> <span class=%s> %10s %10s %8s %s </span>",
lineNo, cl,
valueOrDot(flat, rpt), valueOrDot(cum, rpt),
"", template.HTMLEscapeString(lineContents))
if nestedInfo {
srcIndent := indentation(lineContents)
printNested(w, srcIndent, assembly, reader, rpt)
}
fmt.Fprintln(w)
}
func printNested(w io.Writer, srcIndent int, assembly []assemblyInstruction, reader *sourceReader, rpt *Report) {
fmt.Fprint(w, "<span class=asm>")
var curCalls []callID
for i, an := range assembly {
if an.startsBlock && i != 0 {
// Insert a separator between discontiguous blocks.
fmt.Fprintf(w, " %8s %28s\n", "", "â‹®")
}
var fileline string
if an.file != "" {
fileline = fmt.Sprintf("%s:%d", template.HTMLEscapeString(filepath.Base(an.file)), an.line)
}
flat, cum := an.flat, an.cum
// Print inlined call context.
for j, c := range an.inlineCalls {
if j < len(curCalls) && curCalls[j] == c {
// Skip if same as previous instruction.
continue
}
curCalls = nil
fline, ok := reader.line(c.file, c.line)
if !ok {
fline = ""
}
text := strings.Repeat(" ", srcIndent+4+4*j) + strings.TrimSpace(fline)
fmt.Fprintf(w, " %8s %10s %10s %8s <span class=inlinesrc>%s</span> <span class=unimportant>%s:%d</span>\n",
"", "", "", "",
template.HTMLEscapeString(rightPad(text, 80)),
template.HTMLEscapeString(filepath.Base(c.file)), c.line)
}
curCalls = an.inlineCalls
if an.instruction == synthAsm {
continue
}
text := strings.Repeat(" ", srcIndent+4+4*len(curCalls)) + an.instruction
fmt.Fprintf(w, " %8s %10s %10s %8x: %s <span class=unimportant>%s</span>\n",
"", valueOrDot(flat, rpt), valueOrDot(cum, rpt), an.address,
template.HTMLEscapeString(rightPad(text, 80)),
// fileline should not be escaped since it was formed by appending
// line number (just digits) to an escaped file name. Escaping here
// would cause double-escaping of file name.
fileline)
}
fmt.Fprint(w, "</span>")
}
// printFunctionClosing prints the end of a function in a weblist report.
func printFunctionClosing(w io.Writer) {
fmt.Fprintln(w, "</pre>")
}
// printPageClosing prints the end of the page in a weblist report.
func printPageClosing(w io.Writer) {
fmt.Fprintln(w, weblistPageClosing)
}
// getSourceFromFile collects the sources of a function from a source
// file and annotates it with the samples in fns. Returns the sources
// as nodes, using the info.name field to hold the source code.
func getSourceFromFile(file string, reader *sourceReader, fns graph.Nodes, start, end int) (graph.Nodes, string, error) {
lineNodes := make(map[int]graph.Nodes)
// Collect source coordinates from profile.
const margin = 5 // Lines before first/after last sample.
if start == 0 {
if fns[0].Info.StartLine != 0 {
start = fns[0].Info.StartLine
} else {
start = fns[0].Info.Lineno - margin
}
} else {
start -= margin
}
if end == 0 {
end = fns[0].Info.Lineno
}
end += margin
for _, n := range fns {
lineno := n.Info.Lineno
nodeStart := n.Info.StartLine
if nodeStart == 0 {
nodeStart = lineno - margin
}
nodeEnd := lineno + margin
if nodeStart < start {
start = nodeStart
} else if nodeEnd > end {
end = nodeEnd
}
lineNodes[lineno] = append(lineNodes[lineno], n)
}
if start < 1 {
start = 1
}
var src graph.Nodes
for lineno := start; lineno <= end; lineno++ {
line, ok := reader.line(file, lineno)
if !ok {
break
}
flat, cum := lineNodes[lineno].Sum()
src = append(src, &graph.Node{
Info: graph.NodeInfo{
Name: strings.TrimRight(line, "\n"),
Lineno: lineno,
},
Flat: flat,
Cum: cum,
})
}
if err := reader.fileError(file); err != nil {
return nil, file, err
}
return src, file, nil
}
// sourceReader provides access to source code with caching of file contents.
type sourceReader struct {
// searchPath is a filepath.ListSeparator-separated list of directories where
// source files should be searched.
searchPath string
// trimPath is a filepath.ListSeparator-separated list of paths to trim.
trimPath string
// files maps from path name to a list of lines.
// files[*][0] is unused since line numbering starts at 1.
files map[string][]string
// errors collects errors encountered per file. These errors are
// consulted before returning out of these module.
errors map[string]error
}
func newSourceReader(searchPath, trimPath string) *sourceReader {
return &sourceReader{
searchPath,
trimPath,
make(map[string][]string),
make(map[string]error),
}
}
func (reader *sourceReader) fileError(path string) error {
return reader.errors[path]
}
// line returns the line numbered "lineno" in path, or _,false if lineno is out of range.
func (reader *sourceReader) line(path string, lineno int) (string, bool) {
lines, ok := reader.files[path]
if !ok {
// Read and cache file contents.
lines = []string{""} // Skip 0th line
f, err := openSourceFile(path, reader.searchPath, reader.trimPath)
if err != nil {
reader.errors[path] = err
} else {
s := bufio.NewScanner(f)
for s.Scan() {
lines = append(lines, s.Text())
}
f.Close()
if s.Err() != nil {
reader.errors[path] = err
}
}
reader.files[path] = lines
}
if lineno <= 0 || lineno >= len(lines) {
return "", false
}
return lines[lineno], true
}
// openSourceFile opens a source file from a name encoded in a profile. File
// names in a profile after can be relative paths, so search them in each of
// the paths in searchPath and their parents. In case the profile contains
// absolute paths, additional paths may be configured to trim from the source
// paths in the profile. This effectively turns the path into a relative path
// searching it using searchPath as usual).
func openSourceFile(path, searchPath, trim string) (*os.File, error) {
path = trimPath(path, trim, searchPath)
// If file is still absolute, require file to exist.
if filepath.IsAbs(path) {
f, err := os.Open(path)
return f, err
}
// Scan each component of the path.
for _, dir := range filepath.SplitList(searchPath) {
// Search up for every parent of each possible path.
for {
filename := filepath.Join(dir, path)
if f, err := os.Open(filename); err == nil {
return f, nil
}
parent := filepath.Dir(dir)
if parent == dir {
break
}
dir = parent
}
}
return nil, fmt.Errorf("could not find file %s on path %s", path, searchPath)
}
// trimPath cleans up a path by removing prefixes that are commonly
// found on profiles plus configured prefixes.
// TODO(aalexand): Consider optimizing out the redundant work done in this
// function if it proves to matter.
func trimPath(path, trimPath, searchPath string) string {
// Keep path variable intact as it's used below to form the return value.
sPath, searchPath := filepath.ToSlash(path), filepath.ToSlash(searchPath)
if trimPath == "" {
// If the trim path is not configured, try to guess it heuristically:
// search for basename of each search path in the original path and, if
// found, strip everything up to and including the basename. So, for
// example, given original path "/some/remote/path/my-project/foo/bar.c"
// and search path "/my/local/path/my-project" the heuristic will return
// "/my/local/path/my-project/foo/bar.c".
for _, dir := range filepath.SplitList(searchPath) {
want := "/" + filepath.Base(dir) + "/"
if found := strings.Index(sPath, want); found != -1 {
return path[found+len(want):]
}
}
}
// Trim configured trim prefixes.
trimPaths := append(filepath.SplitList(filepath.ToSlash(trimPath)), "/proc/self/cwd/./", "/proc/self/cwd/")
for _, trimPath := range trimPaths {
if !strings.HasSuffix(trimPath, "/") {
trimPath += "/"
}
if strings.HasPrefix(sPath, trimPath) {
return path[len(trimPath):]
}
}
return path
}
func indentation(line string) int {
column := 0
for _, c := range line {
if c == ' ' {
column++
} else if c == '\t' {
column++
for column%8 != 0 {
column++
}
} else {
break
}
}
return column
}
// rightPad pads the input with spaces on the right-hand-side to make it have
// at least width n. It treats tabs as enough spaces that lead to the next
// 8-aligned tab-stop.
func rightPad(s string, n int) string {
var str strings.Builder
// Convert tabs to spaces as we go so padding works regardless of what prefix
// is placed before the result.
column := 0
for _, c := range s {
column++
if c == '\t' {
str.WriteRune(' ')
for column%8 != 0 {
column++
str.WriteRune(' ')
}
} else {
str.WriteRune(c)
}
}
for column < n {
column++
str.WriteRune(' ')
}
return str.String()
}
func canonicalizeFileName(fname string) string {
fname = strings.TrimPrefix(fname, "/proc/self/cwd/")
fname = strings.TrimPrefix(fname, "./")
return filepath.Clean(fname)
}